123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517 |
- MODULE sbcmod
- !!======================================================================
- !! *** MODULE sbcmod ***
- !! Surface module : provide to the ocean its surface boundary condition
- !!======================================================================
- !! History : 3.0 ! 2006-07 (G. Madec) Original code
- !! 3.1 ! 2008-08 (S. Masson, A. Caubel, E. Maisonnave, G. Madec) coupled interface
- !! 3.3 ! 2010-04 (M. Leclair, G. Madec) Forcing averaged over 2 time steps
- !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle
- !! 3.3 ! 2010-09 (D. Storkey) add ice boundary conditions (BDY)
- !! - ! 2010-11 (G. Madec) ice-ocean stress always computed at each ocean time-step
- !! - ! 2010-10 (J. Chanut, C. Bricaud, G. Madec) add the surface pressure forcing
- !! 3.4 ! 2011-11 (C. Harris) CICE added as an option
- !! 3.5 ! 2012-11 (A. Coward, G. Madec) Rethink of heat, mass and salt surface fluxes
- !! 3.6 ! 2014-11 (P. Mathiot, C. Harris) add ice shelves melting
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! sbc_init : read namsbc namelist
- !! sbc : surface ocean momentum, heat and freshwater boundary conditions
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE trc_oce ! shared ocean-passive tracers variables
- USE sbc_ice ! Surface boundary condition: ice fields
- USE sbcdcy ! surface boundary condition: diurnal cycle
- USE sbcssm ! surface boundary condition: sea-surface mean variables
- USE sbcapr ! surface boundary condition: atmospheric pressure
- USE sbcana ! surface boundary condition: analytical formulation
- USE sbcflx ! surface boundary condition: flux formulation
- USE sbcblk_clio ! surface boundary condition: bulk formulation : CLIO
- USE sbcblk_core ! surface boundary condition: bulk formulation : CORE
- USE sbcblk_mfs ! surface boundary condition: bulk formulation : MFS
- USE sbcice_if ! surface boundary condition: ice-if sea-ice model
- USE sbcice_lim ! surface boundary condition: LIM 3.0 sea-ice model
- USE sbcice_lim_2 ! surface boundary condition: LIM 2.0 sea-ice model
- USE sbcice_cice ! surface boundary condition: CICE sea-ice model
- USE sbccpl ! surface boundary condition: coupled florulation
- USE cpl_oasis3 ! OASIS routines for coupling
- USE sbcssr ! surface boundary condition: sea surface restoring
- USE sbcrnf ! surface boundary condition: runoffs
- USE sbcisf ! surface boundary condition: ice shelf
- USE sbcfwb ! surface boundary condition: freshwater budget
- USE closea ! closed sea
- USE icbstp ! Icebergs!
- USE prtctl ! Print control (prt_ctl routine)
- USE iom ! IOM library
- USE in_out_manager ! I/O manager
- USE lib_mpp ! MPP library
- USE timing ! Timing
- USE sbcwave ! Wave module
- USE bdy_par ! Require lk_bdy
- IMPLICIT NONE
- PRIVATE
- PUBLIC sbc ! routine called by step.F90
- PUBLIC sbc_init ! routine called by opa.F90
-
- INTEGER :: nsbc ! type of surface boundary condition (deduced from namsbc informations)
-
- !! * Substitutions
- # include "domzgr_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO-consortium (2011)
- !! $Id: sbcmod.F90 5628 2015-07-22 20:26:35Z mathiot $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE sbc_init
- !!---------------------------------------------------------------------
- !! *** ROUTINE sbc_init ***
- !!
- !! ** Purpose : Initialisation of the ocean surface boundary computation
- !!
- !! ** Method : Read the namsbc namelist and set derived parameters
- !! Call init routines for all other SBC modules that have one
- !!
- !! ** Action : - read namsbc parameters
- !! - nsbc: type of sbc
- !!----------------------------------------------------------------------
- INTEGER :: icpt ! local integer
- !!
- NAMELIST/namsbc/ nn_fsbc , ln_ana , ln_flx, ln_blk_clio, ln_blk_core, ln_mixcpl, &
- & ln_blk_mfs, ln_apr_dyn, nn_ice, nn_ice_embd, ln_dm2dc , ln_rnf , &
- & ln_ssr , nn_isf , nn_fwb, ln_cdgw , ln_wave , ln_sdw , &
- & nn_lsm , nn_limflx , nn_components, ln_cpl
- INTEGER :: ios
- INTEGER :: ierr, ierr0, ierr1, ierr2, ierr3, jpm
- LOGICAL :: ll_purecpl
- !!----------------------------------------------------------------------
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'sbc_init : surface boundary condition setting'
- WRITE(numout,*) '~~~~~~~~ '
- ENDIF
- REWIND( numnam_ref ) ! Namelist namsbc in reference namelist : Surface boundary
- READ ( numnam_ref, namsbc, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namsbc in configuration namelist : Parameters of the run
- READ ( numnam_cfg, namsbc, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namsbc )
- ! ! overwrite namelist parameter using CPP key information
- IF( Agrif_Root() ) THEN ! AGRIF zoom
- IF( lk_lim2 ) nn_ice = 2
- IF( lk_lim3 ) nn_ice = 3
- IF( lk_cice ) nn_ice = 4
- ENDIF
- IF( cp_cfg == 'gyre' ) THEN ! GYRE configuration
- ln_ana = .TRUE.
- nn_ice = 0
- ENDIF
- IF(lwp) THEN ! Control print
- WRITE(numout,*) ' Namelist namsbc (partly overwritten with CPP key setting)'
- WRITE(numout,*) ' frequency update of sbc (and ice) nn_fsbc = ', nn_fsbc
- WRITE(numout,*) ' Type of sbc : '
- WRITE(numout,*) ' analytical formulation ln_ana = ', ln_ana
- WRITE(numout,*) ' flux formulation ln_flx = ', ln_flx
- WRITE(numout,*) ' CLIO bulk formulation ln_blk_clio = ', ln_blk_clio
- WRITE(numout,*) ' CORE bulk formulation ln_blk_core = ', ln_blk_core
- WRITE(numout,*) ' MFS bulk formulation ln_blk_mfs = ', ln_blk_mfs
- WRITE(numout,*) ' ocean-atmosphere coupled formulation ln_cpl = ', ln_cpl
- WRITE(numout,*) ' forced-coupled mixed formulation ln_mixcpl = ', ln_mixcpl
- WRITE(numout,*) ' OASIS coupling (with atm or sas) lk_oasis = ', lk_oasis
- WRITE(numout,*) ' components of your executable nn_components = ', nn_components
- WRITE(numout,*) ' Multicategory heat flux formulation (LIM3) nn_limflx = ', nn_limflx
- WRITE(numout,*) ' Misc. options of sbc : '
- WRITE(numout,*) ' Patm gradient added in ocean & ice Eqs. ln_apr_dyn = ', ln_apr_dyn
- WRITE(numout,*) ' ice management in the sbc (=0/1/2/3) nn_ice = ', nn_ice
- WRITE(numout,*) ' ice-ocean embedded/levitating (=0/1/2) nn_ice_embd = ', nn_ice_embd
- WRITE(numout,*) ' daily mean to diurnal cycle qsr ln_dm2dc = ', ln_dm2dc
- WRITE(numout,*) ' runoff / runoff mouths ln_rnf = ', ln_rnf
- WRITE(numout,*) ' iceshelf formulation nn_isf = ', nn_isf
- WRITE(numout,*) ' Sea Surface Restoring on SST and/or SSS ln_ssr = ', ln_ssr
- WRITE(numout,*) ' FreshWater Budget control (=0/1/2) nn_fwb = ', nn_fwb
- WRITE(numout,*) ' closed sea (=0/1) (set in namdom) nn_closea = ', nn_closea
- WRITE(numout,*) ' n. of iterations if land-sea-mask applied nn_lsm = ', nn_lsm
- ENDIF
- ! LIM3 Multi-category heat flux formulation
- SELECT CASE ( nn_limflx)
- CASE ( -1 )
- IF(lwp) WRITE(numout,*) ' Use of per-category fluxes (nn_limflx = -1) '
- CASE ( 0 )
- IF(lwp) WRITE(numout,*) ' Average per-category fluxes (nn_limflx = 0) '
- CASE ( 1 )
- IF(lwp) WRITE(numout,*) ' Average then redistribute per-category fluxes (nn_limflx = 1) '
- CASE ( 2 )
- IF(lwp) WRITE(numout,*) ' Redistribute a single flux over categories (nn_limflx = 2) '
- END SELECT
- !
- IF ( nn_components /= jp_iam_nemo .AND. .NOT. lk_oasis ) &
- & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but key_oasis3 disabled' )
- IF ( nn_components == jp_iam_opa .AND. ln_cpl ) &
- & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_cpl = T in OPA' )
- IF ( nn_components == jp_iam_opa .AND. ln_mixcpl ) &
- & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_mixcpl = T in OPA' )
- IF ( ln_cpl .AND. .NOT. lk_oasis ) &
- & CALL ctl_stop( 'STOP', 'sbc_init : OASIS-coupled atmosphere model, but key_oasis3 disabled' )
- IF( ln_mixcpl .AND. .NOT. lk_oasis ) &
- & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires the cpp key key_oasis3' )
- IF( ln_mixcpl .AND. .NOT. ln_cpl ) &
- & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires ln_cpl = T' )
- IF( ln_mixcpl .AND. nn_components /= jp_iam_nemo ) &
- & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) is not yet working with sas-opa coupling via oasis' )
- ! ! allocate sbc arrays
- IF( sbc_oce_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_oce arrays' )
- ! ! Checks:
- IF( nn_isf .EQ. 0 ) THEN ! variable initialisation if no ice shelf
- IF( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_isf arrays' )
- fwfisf (:,:) = 0.0_wp ; fwfisf_b (:,:) = 0.0_wp
- risf_tsc(:,:,:) = 0.0_wp ; risf_tsc_b(:,:,:) = 0.0_wp
- rdivisf = 0.0_wp
- END IF
- IF( nn_ice == 0 .AND. nn_components /= jp_iam_opa ) fr_i(:,:) = 0.e0 ! no ice in the domain, ice fraction is always zero
- sfx(:,:) = 0.0_wp ! the salt flux due to freezing/melting will be computed (i.e. will be non-zero)
- ! only if sea-ice is present
-
- fmmflx(:,:) = 0.0_wp ! freezing-melting array initialisation
-
- taum(:,:) = 0.0_wp ! Initialise taum for use in gls in case of reduced restart
- ! ! restartability
- IF( ( nn_ice == 2 .OR. nn_ice ==3 ) .AND. .NOT.( ln_blk_clio .OR. ln_blk_core .OR. ln_cpl ) ) &
- & CALL ctl_stop( 'LIM sea-ice model requires a bulk formulation or coupled configuration' )
- IF( nn_ice == 4 .AND. .NOT.( ln_blk_core .OR. ln_cpl ) ) &
- & CALL ctl_stop( 'CICE sea-ice model requires ln_blk_core or ln_cpl' )
- IF( nn_ice == 4 .AND. lk_agrif ) &
- & CALL ctl_stop( 'CICE sea-ice model not currently available with AGRIF' )
- IF( ( nn_ice == 3 .OR. nn_ice == 4 ) .AND. nn_ice_embd == 0 ) &
- & CALL ctl_stop( 'LIM3 and CICE sea-ice models require nn_ice_embd = 1 or 2' )
- IF( ( nn_ice /= 3 ) .AND. ( nn_limflx >= 0 ) ) &
- & WRITE(numout,*) 'The nn_limflx>=0 option has no effect if sea ice model is not LIM3'
- IF( ( nn_ice == 3 ) .AND. ( ln_cpl ) .AND. ( ( nn_limflx == -1 ) .OR. ( nn_limflx == 1 ) ) ) &
- & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in coupled mode must be 0 or 2' )
- IF( ( nn_ice == 3 ) .AND. ( .NOT. ln_cpl ) .AND. ( nn_limflx == 2 ) ) &
- & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in forced mode cannot be 2' )
- IF( ln_dm2dc ) nday_qsr = -1 ! initialisation flag
- IF( ln_dm2dc .AND. .NOT.( ln_flx .OR. ln_blk_core ) .AND. nn_components /= jp_iam_opa ) &
- & CALL ctl_stop( 'diurnal cycle into qsr field from daily values requires a flux or core-bulk formulation' )
-
- IF ( ln_wave ) THEN
- !Activated wave module but neither drag nor stokes drift activated
- IF ( .NOT.(ln_cdgw .OR. ln_sdw) ) THEN
- CALL ctl_warn( 'Ask for wave coupling but nor drag coefficient (ln_cdgw=F) neither stokes drift activated (ln_sdw=F)' )
- !drag coefficient read from wave model definable only with mfs bulk formulae and core
- ELSEIF (ln_cdgw .AND. .NOT.(ln_blk_mfs .OR. ln_blk_core) ) THEN
- CALL ctl_stop( 'drag coefficient read from wave model definable only with mfs bulk formulae and core')
- ENDIF
- ELSE
- IF ( ln_cdgw .OR. ln_sdw ) &
- & CALL ctl_stop('Not Activated Wave Module (ln_wave=F) but &
- & asked coupling with drag coefficient (ln_cdgw =T) or Stokes drift (ln_sdw=T) ')
- ENDIF
- ! ! Choice of the Surface Boudary Condition (set nsbc)
- ll_purecpl = ln_cpl .AND. .NOT. ln_mixcpl
- !
- icpt = 0
- IF( ln_ana ) THEN ; nsbc = jp_ana ; icpt = icpt + 1 ; ENDIF ! analytical formulation
- IF( ln_flx ) THEN ; nsbc = jp_flx ; icpt = icpt + 1 ; ENDIF ! flux formulation
- IF( ln_blk_clio ) THEN ; nsbc = jp_clio ; icpt = icpt + 1 ; ENDIF ! CLIO bulk formulation
- IF( ln_blk_core ) THEN ; nsbc = jp_core ; icpt = icpt + 1 ; ENDIF ! CORE bulk formulation
- IF( ln_blk_mfs ) THEN ; nsbc = jp_mfs ; icpt = icpt + 1 ; ENDIF ! MFS bulk formulation
- IF( ll_purecpl ) THEN ; nsbc = jp_purecpl ; icpt = icpt + 1 ; ENDIF ! Pure Coupled formulation
- IF( cp_cfg == 'gyre') THEN ; nsbc = jp_gyre ; ENDIF ! GYRE analytical formulation
- IF( nn_components == jp_iam_opa ) &
- & THEN ; nsbc = jp_none ; icpt = icpt + 1 ; ENDIF ! opa coupling via SAS module
- IF( lk_esopa ) nsbc = jp_esopa ! esopa test, ALL formulations
- !
- IF( icpt /= 1 .AND. .NOT.lk_esopa ) THEN
- WRITE(numout,*)
- WRITE(numout,*) ' E R R O R in setting the sbc, one and only one namelist/CPP key option '
- WRITE(numout,*) ' must be choosen. You choose ', icpt, ' option(s)'
- WRITE(numout,*) ' We stop'
- nstop = nstop + 1
- ENDIF
- IF(lwp) THEN
- WRITE(numout,*)
- IF( nsbc == jp_esopa ) WRITE(numout,*) ' ESOPA test All surface boundary conditions'
- IF( nsbc == jp_gyre ) WRITE(numout,*) ' GYRE analytical formulation'
- IF( nsbc == jp_ana ) WRITE(numout,*) ' analytical formulation'
- IF( nsbc == jp_flx ) WRITE(numout,*) ' flux formulation'
- IF( nsbc == jp_clio ) WRITE(numout,*) ' CLIO bulk formulation'
- IF( nsbc == jp_core ) WRITE(numout,*) ' CORE bulk formulation'
- IF( nsbc == jp_purecpl ) WRITE(numout,*) ' pure coupled formulation'
- IF( nsbc == jp_mfs ) WRITE(numout,*) ' MFS Bulk formulation'
- IF( nsbc == jp_none ) WRITE(numout,*) ' OPA coupled to SAS via oasis'
- IF( ln_mixcpl ) WRITE(numout,*) ' + forced-coupled mixed formulation'
- IF( nn_components/= jp_iam_nemo ) &
- & WRITE(numout,*) ' + OASIS coupled SAS'
- ENDIF
- !
- IF( lk_oasis ) CALL sbc_cpl_init (nn_ice) ! OASIS initialisation. must be done before: (1) first time step
- ! ! (2) the use of nn_fsbc
- ! nn_fsbc initialization if OPA-SAS coupling via OASIS
- ! sas model time step has to be declared in OASIS (mandatory) -> nn_fsbc has to be modified accordingly
- IF ( nn_components /= jp_iam_nemo ) THEN
- IF ( nn_components == jp_iam_opa ) nn_fsbc = cpl_freq('O_SFLX') / NINT(rdt)
- IF ( nn_components == jp_iam_sas ) nn_fsbc = cpl_freq('I_SFLX') / NINT(rdt)
- !
- IF(lwp)THEN
- WRITE(numout,*)
- WRITE(numout,*)" OPA-SAS coupled via OASIS : nn_fsbc re-defined from OASIS namcouple ", nn_fsbc
- WRITE(numout,*)
- ENDIF
- ENDIF
- IF( MOD( nitend - nit000 + 1, nn_fsbc) /= 0 .OR. &
- MOD( nstock , nn_fsbc) /= 0 ) THEN
- WRITE(ctmp1,*) 'experiment length (', nitend - nit000 + 1, ') or nstock (', nstock, &
- & ' is NOT a multiple of nn_fsbc (', nn_fsbc, ')'
- CALL ctl_stop( ctmp1, 'Impossible to properly do model restart' )
- ENDIF
- !
- IF( MOD( rday, REAL(nn_fsbc, wp) * rdt ) /= 0 ) &
- & CALL ctl_warn( 'nn_fsbc is NOT a multiple of the number of time steps in a day' )
- !
- IF( ln_dm2dc .AND. ( ( NINT(rday) / ( nn_fsbc * NINT(rdt) ) ) < 8 ) ) &
- & CALL ctl_warn( 'diurnal cycle for qsr: the sampling of the diurnal cycle is too small...' )
- CALL sbc_ssm_init ! Sea-surface mean fields initialisation
- !
- IF( ln_ssr ) CALL sbc_ssr_init ! Sea-Surface Restoring initialisation
- !
- IF( nn_isf /= 0 ) CALL sbc_isf_init ! Compute iceshelves
- CALL sbc_rnf_init ! Runof initialisation
- !
- IF( nn_ice == 3 ) CALL sbc_lim_init ! LIM3 initialisation
- IF( nn_ice == 4 ) CALL cice_sbc_init( nsbc ) ! CICE initialisation
-
- END SUBROUTINE sbc_init
- SUBROUTINE sbc( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE sbc ***
- !!
- !! ** Purpose : provide at each time-step the ocean surface boundary
- !! condition (momentum, heat and freshwater fluxes)
- !!
- !! ** Method : blah blah to be written ?????????
- !! CAUTION : never mask the surface stress field (tke sbc)
- !!
- !! ** Action : - set the ocean surface boundary condition at before and now
- !! time step, i.e.
- !! utau_b, vtau_b, qns_b, qsr_b, emp_n, sfx_b, qrp_b, erp_b
- !! utau , vtau , qns , qsr , emp , sfx , qrp , erp
- !! - updte the ice fraction : fr_i
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time step
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('sbc')
- !
- ! ! ---------------------------------------- !
- IF( kt /= nit000 ) THEN ! Swap of forcing fields !
- ! ! ---------------------------------------- !
- utau_b(:,:) = utau(:,:) ! Swap the ocean forcing fields
- vtau_b(:,:) = vtau(:,:) ! (except at nit000 where before fields
- qns_b (:,:) = qns (:,:) ! are set at the end of the routine)
- ! The 3D heat content due to qsr forcing is treated in traqsr
- ! qsr_b (:,:) = qsr (:,:)
- emp_b(:,:) = emp(:,:)
- sfx_b(:,:) = sfx(:,:)
- IF ( ln_rnf ) THEN
- rnf_b (:,: ) = rnf (:,: )
- rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
- ENDIF
- IF( nn_isf /= 0 ) THEN
- fwfisf_b (:,: ) = fwfisf (:,: )
- risf_tsc_b(:,:,:) = risf_tsc(:,:,:)
- ENDIF
- ENDIF
- ! ! ---------------------------------------- !
- ! ! forcing field computation !
- ! ! ---------------------------------------- !
- !
- IF ( .NOT. lk_bdy ) then
- IF( ln_apr_dyn ) CALL sbc_apr( kt ) ! atmospheric pressure provided at kt+0.5*nn_fsbc
- ENDIF
- ! (caution called before sbc_ssm)
- !
- IF( nn_components /= jp_iam_sas ) CALL sbc_ssm( kt ) ! ocean sea surface variables (sst_m, sss_m, ssu_m, ssv_m)
- ! ! averaged over nf_sbc time-step
- IF (ln_wave) CALL sbc_wave( kt )
- !== sbc formulation ==!
-
- SELECT CASE( nsbc ) ! Compute ocean surface boundary condition
- ! ! (i.e. utau,vtau, qns, qsr, emp, sfx)
- CASE( jp_gyre ) ; CALL sbc_gyre ( kt ) ! analytical formulation : GYRE configuration
- CASE( jp_ana ) ; CALL sbc_ana ( kt ) ! analytical formulation : uniform sbc
- CASE( jp_flx ) ; CALL sbc_flx ( kt ) ! flux formulation
- CASE( jp_clio ) ; CALL sbc_blk_clio( kt ) ! bulk formulation : CLIO for the ocean
- CASE( jp_core )
- IF( nn_components == jp_iam_sas ) &
- & CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: SAS receiving fields from OPA
- CALL sbc_blk_core( kt ) ! bulk formulation : CORE for the ocean
- ! from oce: sea surface variables (sst_m, sss_m, ssu_m, ssv_m)
- CASE( jp_purecpl ) ; CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! pure coupled formulation
- !
- CASE( jp_mfs ) ; CALL sbc_blk_mfs ( kt ) ! bulk formulation : MFS for the ocean
- CASE( jp_none )
- IF( nn_components == jp_iam_opa ) &
- CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: OPA receiving fields from SAS
- CASE( jp_esopa )
- CALL sbc_ana ( kt ) ! ESOPA, test ALL the formulations
- CALL sbc_gyre ( kt ) !
- CALL sbc_flx ( kt ) !
- CALL sbc_blk_clio( kt ) !
- CALL sbc_blk_core( kt ) !
- CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) !
- END SELECT
- IF( ln_mixcpl ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! forced-coupled mixed formulation after forcing
- ! !== Misc. Options ==!
-
- SELECT CASE( nn_ice ) ! Update heat and freshwater fluxes over sea-ice areas
- CASE( 1 ) ; CALL sbc_ice_if ( kt ) ! Ice-cover climatology ("Ice-if" model)
- CASE( 2 ) ; CALL sbc_ice_lim_2( kt, nsbc ) ! LIM-2 ice model
- CASE( 3 ) ; CALL sbc_ice_lim ( kt, nsbc ) ! LIM-3 ice model
- CASE( 4 ) ; CALL sbc_ice_cice ( kt, nsbc ) ! CICE ice model
- END SELECT
- IF( ln_icebergs ) CALL icb_stp( kt ) ! compute icebergs
- IF( nn_isf /= 0 ) CALL sbc_isf( kt ) ! compute iceshelves
- IF( ln_rnf ) CALL sbc_rnf( kt ) ! add runoffs to fresh water fluxes
-
- IF( ln_ssr ) CALL sbc_ssr( kt ) ! add SST/SSS damping term
- IF( nn_fwb /= 0 ) CALL sbc_fwb( kt, nn_fwb, nn_fsbc ) ! control the freshwater budget
- IF( nn_closea == 1 ) CALL sbc_clo( kt ) ! treatment of closed sea in the model domain
- ! ! (update freshwater fluxes)
- !RBbug do not understand why see ticket 667
- !clem: it looks like it is necessary for the north fold (in certain circumstances). Don't know why.
- CALL lbc_lnk( emp, 'T', 1. )
- !
- IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
- ! ! ---------------------------------------- !
- IF( ln_rstart .AND. & !* Restart: read in restart file
- & iom_varid( numror, 'utau_b', ldstop = .FALSE. ) > 0 ) THEN
- IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields red in the restart file'
- CALL iom_get( numror, jpdom_autoglo, 'utau_b', utau_b ) ! before i-stress (U-point)
- CALL iom_get( numror, jpdom_autoglo, 'vtau_b', vtau_b ) ! before j-stress (V-point)
- CALL iom_get( numror, jpdom_autoglo, 'qns_b' , qns_b ) ! before non solar heat flux (T-point)
- ! The 3D heat content due to qsr forcing is treated in traqsr
- ! CALL iom_get( numror, jpdom_autoglo, 'qsr_b' , qsr_b ) ! before solar heat flux (T-point)
- CALL iom_get( numror, jpdom_autoglo, 'emp_b', emp_b ) ! before freshwater flux (T-point)
- ! To ensure restart capability with 3.3x/3.4 restart files !! to be removed in v3.6
- IF( iom_varid( numror, 'sfx_b', ldstop = .FALSE. ) > 0 ) THEN
- CALL iom_get( numror, jpdom_autoglo, 'sfx_b', sfx_b ) ! before salt flux (T-point)
- ELSE
- sfx_b (:,:) = sfx(:,:)
- ENDIF
- ELSE !* no restart: set from nit000 values
- IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields set to nit000'
- utau_b(:,:) = utau(:,:)
- vtau_b(:,:) = vtau(:,:)
- qns_b (:,:) = qns (:,:)
- emp_b (:,:) = emp(:,:)
- sfx_b (:,:) = sfx(:,:)
- ENDIF
- ENDIF
- ! ! ---------------------------------------- !
- IF( lrst_oce ) THEN ! Write in the ocean restart file !
- ! ! ---------------------------------------- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'sbc : ocean surface forcing fields written in ocean restart file ', &
- & 'at it= ', kt,' date= ', ndastp
- IF(lwp) WRITE(numout,*) '~~~~'
- CALL iom_rstput( kt, nitrst, numrow, 'utau_b' , utau )
- CALL iom_rstput( kt, nitrst, numrow, 'vtau_b' , vtau )
- CALL iom_rstput( kt, nitrst, numrow, 'qns_b' , qns )
- ! The 3D heat content due to qsr forcing is treated in traqsr
- ! CALL iom_rstput( kt, nitrst, numrow, 'qsr_b' , qsr )
- CALL iom_rstput( kt, nitrst, numrow, 'emp_b' , emp )
- CALL iom_rstput( kt, nitrst, numrow, 'sfx_b' , sfx )
- ENDIF
- ! ! ---------------------------------------- !
- ! ! Outputs and control print !
- ! ! ---------------------------------------- !
- IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN
- CALL iom_put( "empmr" , emp - rnf ) ! upward water flux
- CALL iom_put( "empbmr" , emp_b - rnf ) ! before upward water flux ( needed to recalculate the time evolution of ssh in offline )
- CALL iom_put( "saltflx", sfx ) ! downward salt flux
- ! (includes virtual salt flux beneath ice
- ! in linear free surface case)
- CALL iom_put( "fmmflx", fmmflx ) ! Freezing-melting water flux
- CALL iom_put( "qt" , qns + qsr ) ! total heat flux
- CALL iom_put( "qns" , qns ) ! solar heat flux
- CALL iom_put( "qsr" , qsr ) ! solar heat flux
- IF( nn_ice > 0 .OR. nn_components == jp_iam_opa ) CALL iom_put( "ice_cover", fr_i ) ! ice fraction
- CALL iom_put( "taum" , taum ) ! wind stress module
- CALL iom_put( "wspd" , wndm ) ! wind speed module over free ocean or leads in presence of sea-ice
- ENDIF
- !
- CALL iom_put( "utau", utau ) ! i-wind stress (stress can be updated at
- CALL iom_put( "vtau", vtau ) ! j-wind stress each time step in sea-ice)
- !
- IF(ln_ctl) THEN ! print mean trends (used for debugging)
- CALL prt_ctl(tab2d_1=fr_i , clinfo1=' fr_i - : ', mask1=tmask, ovlap=1 )
- CALL prt_ctl(tab2d_1=(emp-rnf + fwfisf), clinfo1=' emp-rnf - : ', mask1=tmask, ovlap=1 )
- CALL prt_ctl(tab2d_1=(sfx-rnf + fwfisf), clinfo1=' sfx-rnf - : ', mask1=tmask, ovlap=1 )
- CALL prt_ctl(tab2d_1=qns , clinfo1=' qns - : ', mask1=tmask, ovlap=1 )
- CALL prt_ctl(tab2d_1=qsr , clinfo1=' qsr - : ', mask1=tmask, ovlap=1 )
- CALL prt_ctl(tab3d_1=tmask , clinfo1=' tmask - : ', mask1=tmask, ovlap=1, kdim=jpk )
- CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_tem), clinfo1=' sst - : ', mask1=tmask, ovlap=1, kdim=1 )
- CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_sal), clinfo1=' sss - : ', mask1=tmask, ovlap=1, kdim=1 )
- CALL prt_ctl(tab2d_1=utau , clinfo1=' utau - : ', mask1=umask, &
- & tab2d_2=vtau , clinfo2=' vtau - : ', mask2=vmask, ovlap=1 )
- ENDIF
- IF( kt == nitend ) CALL sbc_final ! Close down surface module if necessary
- !
- IF( nn_timing == 1 ) CALL timing_stop('sbc')
- !
- END SUBROUTINE sbc
- SUBROUTINE sbc_final
- !!---------------------------------------------------------------------
- !! *** ROUTINE sbc_final ***
- !!
- !! ** Purpose : Finalize CICE (if used)
- !!---------------------------------------------------------------------
- !
- IF( nn_ice == 4 ) CALL cice_sbc_final
- !
- END SUBROUTINE sbc_final
- !!======================================================================
- END MODULE sbcmod
|