MODULE sbcmod !!====================================================================== !! *** MODULE sbcmod *** !! Surface module : provide to the ocean its surface boundary condition !!====================================================================== !! History : 3.0 ! 2006-07 (G. Madec) Original code !! 3.1 ! 2008-08 (S. Masson, A. Caubel, E. Maisonnave, G. Madec) coupled interface !! 3.3 ! 2010-04 (M. Leclair, G. Madec) Forcing averaged over 2 time steps !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle !! 3.3 ! 2010-09 (D. Storkey) add ice boundary conditions (BDY) !! - ! 2010-11 (G. Madec) ice-ocean stress always computed at each ocean time-step !! - ! 2010-10 (J. Chanut, C. Bricaud, G. Madec) add the surface pressure forcing !! 3.4 ! 2011-11 (C. Harris) CICE added as an option !! 3.5 ! 2012-11 (A. Coward, G. Madec) Rethink of heat, mass and salt surface fluxes !! 3.6 ! 2014-11 (P. Mathiot, C. Harris) add ice shelves melting !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_init : read namsbc namelist !! sbc : surface ocean momentum, heat and freshwater boundary conditions !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE sbc_oce ! Surface boundary condition: ocean fields USE trc_oce ! shared ocean-passive tracers variables USE sbc_ice ! Surface boundary condition: ice fields USE sbcdcy ! surface boundary condition: diurnal cycle USE sbcssm ! surface boundary condition: sea-surface mean variables USE sbcapr ! surface boundary condition: atmospheric pressure USE sbcana ! surface boundary condition: analytical formulation USE sbcflx ! surface boundary condition: flux formulation USE sbcblk_clio ! surface boundary condition: bulk formulation : CLIO USE sbcblk_core ! surface boundary condition: bulk formulation : CORE USE sbcblk_mfs ! surface boundary condition: bulk formulation : MFS USE sbcice_if ! surface boundary condition: ice-if sea-ice model USE sbcice_lim ! surface boundary condition: LIM 3.0 sea-ice model USE sbcice_lim_2 ! surface boundary condition: LIM 2.0 sea-ice model USE sbcice_cice ! surface boundary condition: CICE sea-ice model USE sbccpl ! surface boundary condition: coupled florulation USE cpl_oasis3 ! OASIS routines for coupling USE sbcssr ! surface boundary condition: sea surface restoring USE sbcrnf ! surface boundary condition: runoffs USE sbcisf ! surface boundary condition: ice shelf USE sbcfwb ! surface boundary condition: freshwater budget USE closea ! closed sea USE icbstp ! Icebergs! USE prtctl ! Print control (prt_ctl routine) USE iom ! IOM library USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE timing ! Timing USE sbcwave ! Wave module USE bdy_par ! Require lk_bdy IMPLICIT NONE PRIVATE PUBLIC sbc ! routine called by step.F90 PUBLIC sbc_init ! routine called by opa.F90 INTEGER :: nsbc ! type of surface boundary condition (deduced from namsbc informations) !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO-consortium (2011) !! $Id: sbcmod.F90 5628 2015-07-22 20:26:35Z mathiot $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_init *** !! !! ** Purpose : Initialisation of the ocean surface boundary computation !! !! ** Method : Read the namsbc namelist and set derived parameters !! Call init routines for all other SBC modules that have one !! !! ** Action : - read namsbc parameters !! - nsbc: type of sbc !!---------------------------------------------------------------------- INTEGER :: icpt ! local integer !! NAMELIST/namsbc/ nn_fsbc , ln_ana , ln_flx, ln_blk_clio, ln_blk_core, ln_mixcpl, & & ln_blk_mfs, ln_apr_dyn, nn_ice, nn_ice_embd, ln_dm2dc , ln_rnf , & & ln_ssr , nn_isf , nn_fwb, ln_cdgw , ln_wave , ln_sdw , & & nn_lsm , nn_limflx , nn_components, ln_cpl INTEGER :: ios INTEGER :: ierr, ierr0, ierr1, ierr2, ierr3, jpm LOGICAL :: ll_purecpl !!---------------------------------------------------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_init : surface boundary condition setting' WRITE(numout,*) '~~~~~~~~ ' ENDIF REWIND( numnam_ref ) ! Namelist namsbc in reference namelist : Surface boundary READ ( numnam_ref, namsbc, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc in configuration namelist : Parameters of the run READ ( numnam_cfg, namsbc, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc ) ! ! overwrite namelist parameter using CPP key information IF( Agrif_Root() ) THEN ! AGRIF zoom IF( lk_lim2 ) nn_ice = 2 IF( lk_lim3 ) nn_ice = 3 IF( lk_cice ) nn_ice = 4 ENDIF IF( cp_cfg == 'gyre' ) THEN ! GYRE configuration ln_ana = .TRUE. nn_ice = 0 ENDIF IF(lwp) THEN ! Control print WRITE(numout,*) ' Namelist namsbc (partly overwritten with CPP key setting)' WRITE(numout,*) ' frequency update of sbc (and ice) nn_fsbc = ', nn_fsbc WRITE(numout,*) ' Type of sbc : ' WRITE(numout,*) ' analytical formulation ln_ana = ', ln_ana WRITE(numout,*) ' flux formulation ln_flx = ', ln_flx WRITE(numout,*) ' CLIO bulk formulation ln_blk_clio = ', ln_blk_clio WRITE(numout,*) ' CORE bulk formulation ln_blk_core = ', ln_blk_core WRITE(numout,*) ' MFS bulk formulation ln_blk_mfs = ', ln_blk_mfs WRITE(numout,*) ' ocean-atmosphere coupled formulation ln_cpl = ', ln_cpl WRITE(numout,*) ' forced-coupled mixed formulation ln_mixcpl = ', ln_mixcpl WRITE(numout,*) ' OASIS coupling (with atm or sas) lk_oasis = ', lk_oasis WRITE(numout,*) ' components of your executable nn_components = ', nn_components WRITE(numout,*) ' Multicategory heat flux formulation (LIM3) nn_limflx = ', nn_limflx WRITE(numout,*) ' Misc. options of sbc : ' WRITE(numout,*) ' Patm gradient added in ocean & ice Eqs. ln_apr_dyn = ', ln_apr_dyn WRITE(numout,*) ' ice management in the sbc (=0/1/2/3) nn_ice = ', nn_ice WRITE(numout,*) ' ice-ocean embedded/levitating (=0/1/2) nn_ice_embd = ', nn_ice_embd WRITE(numout,*) ' daily mean to diurnal cycle qsr ln_dm2dc = ', ln_dm2dc WRITE(numout,*) ' runoff / runoff mouths ln_rnf = ', ln_rnf WRITE(numout,*) ' iceshelf formulation nn_isf = ', nn_isf WRITE(numout,*) ' Sea Surface Restoring on SST and/or SSS ln_ssr = ', ln_ssr WRITE(numout,*) ' FreshWater Budget control (=0/1/2) nn_fwb = ', nn_fwb WRITE(numout,*) ' closed sea (=0/1) (set in namdom) nn_closea = ', nn_closea WRITE(numout,*) ' n. of iterations if land-sea-mask applied nn_lsm = ', nn_lsm ENDIF ! LIM3 Multi-category heat flux formulation SELECT CASE ( nn_limflx) CASE ( -1 ) IF(lwp) WRITE(numout,*) ' Use of per-category fluxes (nn_limflx = -1) ' CASE ( 0 ) IF(lwp) WRITE(numout,*) ' Average per-category fluxes (nn_limflx = 0) ' CASE ( 1 ) IF(lwp) WRITE(numout,*) ' Average then redistribute per-category fluxes (nn_limflx = 1) ' CASE ( 2 ) IF(lwp) WRITE(numout,*) ' Redistribute a single flux over categories (nn_limflx = 2) ' END SELECT ! IF ( nn_components /= jp_iam_nemo .AND. .NOT. lk_oasis ) & & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but key_oasis3 disabled' ) IF ( nn_components == jp_iam_opa .AND. ln_cpl ) & & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_cpl = T in OPA' ) IF ( nn_components == jp_iam_opa .AND. ln_mixcpl ) & & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_mixcpl = T in OPA' ) IF ( ln_cpl .AND. .NOT. lk_oasis ) & & CALL ctl_stop( 'STOP', 'sbc_init : OASIS-coupled atmosphere model, but key_oasis3 disabled' ) IF( ln_mixcpl .AND. .NOT. lk_oasis ) & & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires the cpp key key_oasis3' ) IF( ln_mixcpl .AND. .NOT. ln_cpl ) & & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires ln_cpl = T' ) IF( ln_mixcpl .AND. nn_components /= jp_iam_nemo ) & & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) is not yet working with sas-opa coupling via oasis' ) ! ! allocate sbc arrays IF( sbc_oce_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_oce arrays' ) ! ! Checks: IF( nn_isf .EQ. 0 ) THEN ! variable initialisation if no ice shelf IF( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_isf arrays' ) fwfisf (:,:) = 0.0_wp ; fwfisf_b (:,:) = 0.0_wp risf_tsc(:,:,:) = 0.0_wp ; risf_tsc_b(:,:,:) = 0.0_wp rdivisf = 0.0_wp END IF IF( nn_ice == 0 .AND. nn_components /= jp_iam_opa ) fr_i(:,:) = 0.e0 ! no ice in the domain, ice fraction is always zero sfx(:,:) = 0.0_wp ! the salt flux due to freezing/melting will be computed (i.e. will be non-zero) ! only if sea-ice is present fmmflx(:,:) = 0.0_wp ! freezing-melting array initialisation taum(:,:) = 0.0_wp ! Initialise taum for use in gls in case of reduced restart ! ! restartability IF( ( nn_ice == 2 .OR. nn_ice ==3 ) .AND. .NOT.( ln_blk_clio .OR. ln_blk_core .OR. ln_cpl ) ) & & CALL ctl_stop( 'LIM sea-ice model requires a bulk formulation or coupled configuration' ) IF( nn_ice == 4 .AND. .NOT.( ln_blk_core .OR. ln_cpl ) ) & & CALL ctl_stop( 'CICE sea-ice model requires ln_blk_core or ln_cpl' ) IF( nn_ice == 4 .AND. lk_agrif ) & & CALL ctl_stop( 'CICE sea-ice model not currently available with AGRIF' ) IF( ( nn_ice == 3 .OR. nn_ice == 4 ) .AND. nn_ice_embd == 0 ) & & CALL ctl_stop( 'LIM3 and CICE sea-ice models require nn_ice_embd = 1 or 2' ) IF( ( nn_ice /= 3 ) .AND. ( nn_limflx >= 0 ) ) & & WRITE(numout,*) 'The nn_limflx>=0 option has no effect if sea ice model is not LIM3' IF( ( nn_ice == 3 ) .AND. ( ln_cpl ) .AND. ( ( nn_limflx == -1 ) .OR. ( nn_limflx == 1 ) ) ) & & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in coupled mode must be 0 or 2' ) IF( ( nn_ice == 3 ) .AND. ( .NOT. ln_cpl ) .AND. ( nn_limflx == 2 ) ) & & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in forced mode cannot be 2' ) IF( ln_dm2dc ) nday_qsr = -1 ! initialisation flag IF( ln_dm2dc .AND. .NOT.( ln_flx .OR. ln_blk_core ) .AND. nn_components /= jp_iam_opa ) & & CALL ctl_stop( 'diurnal cycle into qsr field from daily values requires a flux or core-bulk formulation' ) IF ( ln_wave ) THEN !Activated wave module but neither drag nor stokes drift activated IF ( .NOT.(ln_cdgw .OR. ln_sdw) ) THEN CALL ctl_warn( 'Ask for wave coupling but nor drag coefficient (ln_cdgw=F) neither stokes drift activated (ln_sdw=F)' ) !drag coefficient read from wave model definable only with mfs bulk formulae and core ELSEIF (ln_cdgw .AND. .NOT.(ln_blk_mfs .OR. ln_blk_core) ) THEN CALL ctl_stop( 'drag coefficient read from wave model definable only with mfs bulk formulae and core') ENDIF ELSE IF ( ln_cdgw .OR. ln_sdw ) & & CALL ctl_stop('Not Activated Wave Module (ln_wave=F) but & & asked coupling with drag coefficient (ln_cdgw =T) or Stokes drift (ln_sdw=T) ') ENDIF ! ! Choice of the Surface Boudary Condition (set nsbc) ll_purecpl = ln_cpl .AND. .NOT. ln_mixcpl ! icpt = 0 IF( ln_ana ) THEN ; nsbc = jp_ana ; icpt = icpt + 1 ; ENDIF ! analytical formulation IF( ln_flx ) THEN ; nsbc = jp_flx ; icpt = icpt + 1 ; ENDIF ! flux formulation IF( ln_blk_clio ) THEN ; nsbc = jp_clio ; icpt = icpt + 1 ; ENDIF ! CLIO bulk formulation IF( ln_blk_core ) THEN ; nsbc = jp_core ; icpt = icpt + 1 ; ENDIF ! CORE bulk formulation IF( ln_blk_mfs ) THEN ; nsbc = jp_mfs ; icpt = icpt + 1 ; ENDIF ! MFS bulk formulation IF( ll_purecpl ) THEN ; nsbc = jp_purecpl ; icpt = icpt + 1 ; ENDIF ! Pure Coupled formulation IF( cp_cfg == 'gyre') THEN ; nsbc = jp_gyre ; ENDIF ! GYRE analytical formulation IF( nn_components == jp_iam_opa ) & & THEN ; nsbc = jp_none ; icpt = icpt + 1 ; ENDIF ! opa coupling via SAS module IF( lk_esopa ) nsbc = jp_esopa ! esopa test, ALL formulations ! IF( icpt /= 1 .AND. .NOT.lk_esopa ) THEN WRITE(numout,*) WRITE(numout,*) ' E R R O R in setting the sbc, one and only one namelist/CPP key option ' WRITE(numout,*) ' must be choosen. You choose ', icpt, ' option(s)' WRITE(numout,*) ' We stop' nstop = nstop + 1 ENDIF IF(lwp) THEN WRITE(numout,*) IF( nsbc == jp_esopa ) WRITE(numout,*) ' ESOPA test All surface boundary conditions' IF( nsbc == jp_gyre ) WRITE(numout,*) ' GYRE analytical formulation' IF( nsbc == jp_ana ) WRITE(numout,*) ' analytical formulation' IF( nsbc == jp_flx ) WRITE(numout,*) ' flux formulation' IF( nsbc == jp_clio ) WRITE(numout,*) ' CLIO bulk formulation' IF( nsbc == jp_core ) WRITE(numout,*) ' CORE bulk formulation' IF( nsbc == jp_purecpl ) WRITE(numout,*) ' pure coupled formulation' IF( nsbc == jp_mfs ) WRITE(numout,*) ' MFS Bulk formulation' IF( nsbc == jp_none ) WRITE(numout,*) ' OPA coupled to SAS via oasis' IF( ln_mixcpl ) WRITE(numout,*) ' + forced-coupled mixed formulation' IF( nn_components/= jp_iam_nemo ) & & WRITE(numout,*) ' + OASIS coupled SAS' ENDIF ! IF( lk_oasis ) CALL sbc_cpl_init (nn_ice) ! OASIS initialisation. must be done before: (1) first time step ! ! (2) the use of nn_fsbc ! nn_fsbc initialization if OPA-SAS coupling via OASIS ! sas model time step has to be declared in OASIS (mandatory) -> nn_fsbc has to be modified accordingly IF ( nn_components /= jp_iam_nemo ) THEN IF ( nn_components == jp_iam_opa ) nn_fsbc = cpl_freq('O_SFLX') / NINT(rdt) IF ( nn_components == jp_iam_sas ) nn_fsbc = cpl_freq('I_SFLX') / NINT(rdt) ! IF(lwp)THEN WRITE(numout,*) WRITE(numout,*)" OPA-SAS coupled via OASIS : nn_fsbc re-defined from OASIS namcouple ", nn_fsbc WRITE(numout,*) ENDIF ENDIF IF( MOD( nitend - nit000 + 1, nn_fsbc) /= 0 .OR. & MOD( nstock , nn_fsbc) /= 0 ) THEN WRITE(ctmp1,*) 'experiment length (', nitend - nit000 + 1, ') or nstock (', nstock, & & ' is NOT a multiple of nn_fsbc (', nn_fsbc, ')' CALL ctl_stop( ctmp1, 'Impossible to properly do model restart' ) ENDIF ! IF( MOD( rday, REAL(nn_fsbc, wp) * rdt ) /= 0 ) & & CALL ctl_warn( 'nn_fsbc is NOT a multiple of the number of time steps in a day' ) ! IF( ln_dm2dc .AND. ( ( NINT(rday) / ( nn_fsbc * NINT(rdt) ) ) < 8 ) ) & & CALL ctl_warn( 'diurnal cycle for qsr: the sampling of the diurnal cycle is too small...' ) CALL sbc_ssm_init ! Sea-surface mean fields initialisation ! IF( ln_ssr ) CALL sbc_ssr_init ! Sea-Surface Restoring initialisation ! IF( nn_isf /= 0 ) CALL sbc_isf_init ! Compute iceshelves CALL sbc_rnf_init ! Runof initialisation ! IF( nn_ice == 3 ) CALL sbc_lim_init ! LIM3 initialisation IF( nn_ice == 4 ) CALL cice_sbc_init( nsbc ) ! CICE initialisation END SUBROUTINE sbc_init SUBROUTINE sbc( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc *** !! !! ** Purpose : provide at each time-step the ocean surface boundary !! condition (momentum, heat and freshwater fluxes) !! !! ** Method : blah blah to be written ????????? !! CAUTION : never mask the surface stress field (tke sbc) !! !! ** Action : - set the ocean surface boundary condition at before and now !! time step, i.e. !! utau_b, vtau_b, qns_b, qsr_b, emp_n, sfx_b, qrp_b, erp_b !! utau , vtau , qns , qsr , emp , sfx , qrp , erp !! - updte the ice fraction : fr_i !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('sbc') ! ! ! ---------------------------------------- ! IF( kt /= nit000 ) THEN ! Swap of forcing fields ! ! ! ---------------------------------------- ! utau_b(:,:) = utau(:,:) ! Swap the ocean forcing fields vtau_b(:,:) = vtau(:,:) ! (except at nit000 where before fields qns_b (:,:) = qns (:,:) ! are set at the end of the routine) ! The 3D heat content due to qsr forcing is treated in traqsr ! qsr_b (:,:) = qsr (:,:) emp_b(:,:) = emp(:,:) sfx_b(:,:) = sfx(:,:) IF ( ln_rnf ) THEN rnf_b (:,: ) = rnf (:,: ) rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:) ENDIF IF( nn_isf /= 0 ) THEN fwfisf_b (:,: ) = fwfisf (:,: ) risf_tsc_b(:,:,:) = risf_tsc(:,:,:) ENDIF ENDIF ! ! ---------------------------------------- ! ! ! forcing field computation ! ! ! ---------------------------------------- ! ! IF ( .NOT. lk_bdy ) then IF( ln_apr_dyn ) CALL sbc_apr( kt ) ! atmospheric pressure provided at kt+0.5*nn_fsbc ENDIF ! (caution called before sbc_ssm) ! IF( nn_components /= jp_iam_sas ) CALL sbc_ssm( kt ) ! ocean sea surface variables (sst_m, sss_m, ssu_m, ssv_m) ! ! averaged over nf_sbc time-step IF (ln_wave) CALL sbc_wave( kt ) !== sbc formulation ==! SELECT CASE( nsbc ) ! Compute ocean surface boundary condition ! ! (i.e. utau,vtau, qns, qsr, emp, sfx) CASE( jp_gyre ) ; CALL sbc_gyre ( kt ) ! analytical formulation : GYRE configuration CASE( jp_ana ) ; CALL sbc_ana ( kt ) ! analytical formulation : uniform sbc CASE( jp_flx ) ; CALL sbc_flx ( kt ) ! flux formulation CASE( jp_clio ) ; CALL sbc_blk_clio( kt ) ! bulk formulation : CLIO for the ocean CASE( jp_core ) IF( nn_components == jp_iam_sas ) & & CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: SAS receiving fields from OPA CALL sbc_blk_core( kt ) ! bulk formulation : CORE for the ocean ! from oce: sea surface variables (sst_m, sss_m, ssu_m, ssv_m) CASE( jp_purecpl ) ; CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! pure coupled formulation ! CASE( jp_mfs ) ; CALL sbc_blk_mfs ( kt ) ! bulk formulation : MFS for the ocean CASE( jp_none ) IF( nn_components == jp_iam_opa ) & CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: OPA receiving fields from SAS CASE( jp_esopa ) CALL sbc_ana ( kt ) ! ESOPA, test ALL the formulations CALL sbc_gyre ( kt ) ! CALL sbc_flx ( kt ) ! CALL sbc_blk_clio( kt ) ! CALL sbc_blk_core( kt ) ! CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! END SELECT IF( ln_mixcpl ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! forced-coupled mixed formulation after forcing ! !== Misc. Options ==! SELECT CASE( nn_ice ) ! Update heat and freshwater fluxes over sea-ice areas CASE( 1 ) ; CALL sbc_ice_if ( kt ) ! Ice-cover climatology ("Ice-if" model) CASE( 2 ) ; CALL sbc_ice_lim_2( kt, nsbc ) ! LIM-2 ice model CASE( 3 ) ; CALL sbc_ice_lim ( kt, nsbc ) ! LIM-3 ice model CASE( 4 ) ; CALL sbc_ice_cice ( kt, nsbc ) ! CICE ice model END SELECT IF( ln_icebergs ) CALL icb_stp( kt ) ! compute icebergs IF( nn_isf /= 0 ) CALL sbc_isf( kt ) ! compute iceshelves IF( ln_rnf ) CALL sbc_rnf( kt ) ! add runoffs to fresh water fluxes IF( ln_ssr ) CALL sbc_ssr( kt ) ! add SST/SSS damping term IF( nn_fwb /= 0 ) CALL sbc_fwb( kt, nn_fwb, nn_fsbc ) ! control the freshwater budget IF( nn_closea == 1 ) CALL sbc_clo( kt ) ! treatment of closed sea in the model domain ! ! (update freshwater fluxes) !RBbug do not understand why see ticket 667 !clem: it looks like it is necessary for the north fold (in certain circumstances). Don't know why. CALL lbc_lnk( emp, 'T', 1. ) ! IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 ! ! ! ---------------------------------------- ! IF( ln_rstart .AND. & !* Restart: read in restart file & iom_varid( numror, 'utau_b', ldstop = .FALSE. ) > 0 ) THEN IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields red in the restart file' CALL iom_get( numror, jpdom_autoglo, 'utau_b', utau_b ) ! before i-stress (U-point) CALL iom_get( numror, jpdom_autoglo, 'vtau_b', vtau_b ) ! before j-stress (V-point) CALL iom_get( numror, jpdom_autoglo, 'qns_b' , qns_b ) ! before non solar heat flux (T-point) ! The 3D heat content due to qsr forcing is treated in traqsr ! CALL iom_get( numror, jpdom_autoglo, 'qsr_b' , qsr_b ) ! before solar heat flux (T-point) CALL iom_get( numror, jpdom_autoglo, 'emp_b', emp_b ) ! before freshwater flux (T-point) ! To ensure restart capability with 3.3x/3.4 restart files !! to be removed in v3.6 IF( iom_varid( numror, 'sfx_b', ldstop = .FALSE. ) > 0 ) THEN CALL iom_get( numror, jpdom_autoglo, 'sfx_b', sfx_b ) ! before salt flux (T-point) ELSE sfx_b (:,:) = sfx(:,:) ENDIF ELSE !* no restart: set from nit000 values IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields set to nit000' utau_b(:,:) = utau(:,:) vtau_b(:,:) = vtau(:,:) qns_b (:,:) = qns (:,:) emp_b (:,:) = emp(:,:) sfx_b (:,:) = sfx(:,:) ENDIF ENDIF ! ! ---------------------------------------- ! IF( lrst_oce ) THEN ! Write in the ocean restart file ! ! ! ---------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc : ocean surface forcing fields written in ocean restart file ', & & 'at it= ', kt,' date= ', ndastp IF(lwp) WRITE(numout,*) '~~~~' CALL iom_rstput( kt, nitrst, numrow, 'utau_b' , utau ) CALL iom_rstput( kt, nitrst, numrow, 'vtau_b' , vtau ) CALL iom_rstput( kt, nitrst, numrow, 'qns_b' , qns ) ! The 3D heat content due to qsr forcing is treated in traqsr ! CALL iom_rstput( kt, nitrst, numrow, 'qsr_b' , qsr ) CALL iom_rstput( kt, nitrst, numrow, 'emp_b' , emp ) CALL iom_rstput( kt, nitrst, numrow, 'sfx_b' , sfx ) ENDIF ! ! ---------------------------------------- ! ! ! Outputs and control print ! ! ! ---------------------------------------- ! IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN CALL iom_put( "empmr" , emp - rnf ) ! upward water flux CALL iom_put( "empbmr" , emp_b - rnf ) ! before upward water flux ( needed to recalculate the time evolution of ssh in offline ) CALL iom_put( "saltflx", sfx ) ! downward salt flux ! (includes virtual salt flux beneath ice ! in linear free surface case) CALL iom_put( "fmmflx", fmmflx ) ! Freezing-melting water flux CALL iom_put( "qt" , qns + qsr ) ! total heat flux CALL iom_put( "qns" , qns ) ! solar heat flux CALL iom_put( "qsr" , qsr ) ! solar heat flux IF( nn_ice > 0 .OR. nn_components == jp_iam_opa ) CALL iom_put( "ice_cover", fr_i ) ! ice fraction CALL iom_put( "taum" , taum ) ! wind stress module CALL iom_put( "wspd" , wndm ) ! wind speed module over free ocean or leads in presence of sea-ice ENDIF ! CALL iom_put( "utau", utau ) ! i-wind stress (stress can be updated at CALL iom_put( "vtau", vtau ) ! j-wind stress each time step in sea-ice) ! IF(ln_ctl) THEN ! print mean trends (used for debugging) CALL prt_ctl(tab2d_1=fr_i , clinfo1=' fr_i - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=(emp-rnf + fwfisf), clinfo1=' emp-rnf - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=(sfx-rnf + fwfisf), clinfo1=' sfx-rnf - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=qns , clinfo1=' qns - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=qsr , clinfo1=' qsr - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab3d_1=tmask , clinfo1=' tmask - : ', mask1=tmask, ovlap=1, kdim=jpk ) CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_tem), clinfo1=' sst - : ', mask1=tmask, ovlap=1, kdim=1 ) CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_sal), clinfo1=' sss - : ', mask1=tmask, ovlap=1, kdim=1 ) CALL prt_ctl(tab2d_1=utau , clinfo1=' utau - : ', mask1=umask, & & tab2d_2=vtau , clinfo2=' vtau - : ', mask2=vmask, ovlap=1 ) ENDIF IF( kt == nitend ) CALL sbc_final ! Close down surface module if necessary ! IF( nn_timing == 1 ) CALL timing_stop('sbc') ! END SUBROUTINE sbc SUBROUTINE sbc_final !!--------------------------------------------------------------------- !! *** ROUTINE sbc_final *** !! !! ** Purpose : Finalize CICE (if used) !!--------------------------------------------------------------------- ! IF( nn_ice == 4 ) CALL cice_sbc_final ! END SUBROUTINE sbc_final !!====================================================================== END MODULE sbcmod