sbcmod.F90 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. MODULE sbcmod
  2. !!======================================================================
  3. !! *** MODULE sbcmod ***
  4. !! Surface module : provide to the ocean its surface boundary condition
  5. !!======================================================================
  6. !! History : 3.0 ! 2006-07 (G. Madec) Original code
  7. !! 3.1 ! 2008-08 (S. Masson, A. Caubel, E. Maisonnave, G. Madec) coupled interface
  8. !! 3.3 ! 2010-04 (M. Leclair, G. Madec) Forcing averaged over 2 time steps
  9. !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle
  10. !! 3.3 ! 2010-09 (D. Storkey) add ice boundary conditions (BDY)
  11. !! - ! 2010-11 (G. Madec) ice-ocean stress always computed at each ocean time-step
  12. !! - ! 2010-10 (J. Chanut, C. Bricaud, G. Madec) add the surface pressure forcing
  13. !! 3.4 ! 2011-11 (C. Harris) CICE added as an option
  14. !! 3.5 ! 2012-11 (A. Coward, G. Madec) Rethink of heat, mass and salt surface fluxes
  15. !! 3.6 ! 2014-11 (P. Mathiot, C. Harris) add ice shelves melting
  16. !!----------------------------------------------------------------------
  17. !!----------------------------------------------------------------------
  18. !! sbc_init : read namsbc namelist
  19. !! sbc : surface ocean momentum, heat and freshwater boundary conditions
  20. !!----------------------------------------------------------------------
  21. USE oce ! ocean dynamics and tracers
  22. USE dom_oce ! ocean space and time domain
  23. USE phycst ! physical constants
  24. USE sbc_oce ! Surface boundary condition: ocean fields
  25. USE trc_oce ! shared ocean-passive tracers variables
  26. USE sbc_ice ! Surface boundary condition: ice fields
  27. USE sbcdcy ! surface boundary condition: diurnal cycle
  28. USE sbcssm ! surface boundary condition: sea-surface mean variables
  29. USE sbcapr ! surface boundary condition: atmospheric pressure
  30. USE sbcana ! surface boundary condition: analytical formulation
  31. USE sbcflx ! surface boundary condition: flux formulation
  32. USE sbcblk_clio ! surface boundary condition: bulk formulation : CLIO
  33. USE sbcblk_core ! surface boundary condition: bulk formulation : CORE
  34. USE sbcblk_mfs ! surface boundary condition: bulk formulation : MFS
  35. USE sbcice_if ! surface boundary condition: ice-if sea-ice model
  36. USE sbcice_lim ! surface boundary condition: LIM 3.0 sea-ice model
  37. USE sbcice_lim_2 ! surface boundary condition: LIM 2.0 sea-ice model
  38. USE sbcice_cice ! surface boundary condition: CICE sea-ice model
  39. USE sbccpl ! surface boundary condition: coupled florulation
  40. USE cpl_oasis3 ! OASIS routines for coupling
  41. USE sbcssr ! surface boundary condition: sea surface restoring
  42. USE sbcrnf ! surface boundary condition: runoffs
  43. USE sbcisf ! surface boundary condition: ice shelf
  44. USE sbcfwb ! surface boundary condition: freshwater budget
  45. USE closea ! closed sea
  46. USE icbstp ! Icebergs!
  47. USE prtctl ! Print control (prt_ctl routine)
  48. USE iom ! IOM library
  49. USE in_out_manager ! I/O manager
  50. USE lib_mpp ! MPP library
  51. USE timing ! Timing
  52. USE sbcwave ! Wave module
  53. USE bdy_par ! Require lk_bdy
  54. IMPLICIT NONE
  55. PRIVATE
  56. PUBLIC sbc ! routine called by step.F90
  57. PUBLIC sbc_init ! routine called by opa.F90
  58. INTEGER :: nsbc ! type of surface boundary condition (deduced from namsbc informations)
  59. !! * Substitutions
  60. # include "domzgr_substitute.h90"
  61. !!----------------------------------------------------------------------
  62. !! NEMO/OPA 4.0 , NEMO-consortium (2011)
  63. !! $Id: sbcmod.F90 5628 2015-07-22 20:26:35Z mathiot $
  64. !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
  65. !!----------------------------------------------------------------------
  66. CONTAINS
  67. SUBROUTINE sbc_init
  68. !!---------------------------------------------------------------------
  69. !! *** ROUTINE sbc_init ***
  70. !!
  71. !! ** Purpose : Initialisation of the ocean surface boundary computation
  72. !!
  73. !! ** Method : Read the namsbc namelist and set derived parameters
  74. !! Call init routines for all other SBC modules that have one
  75. !!
  76. !! ** Action : - read namsbc parameters
  77. !! - nsbc: type of sbc
  78. !!----------------------------------------------------------------------
  79. INTEGER :: icpt ! local integer
  80. !!
  81. NAMELIST/namsbc/ nn_fsbc , ln_ana , ln_flx, ln_blk_clio, ln_blk_core, ln_mixcpl, &
  82. & ln_blk_mfs, ln_apr_dyn, nn_ice, nn_ice_embd, ln_dm2dc , ln_rnf , &
  83. & ln_ssr , nn_isf , nn_fwb, ln_cdgw , ln_wave , ln_sdw , &
  84. & nn_lsm , nn_limflx , nn_components, ln_cpl
  85. INTEGER :: ios
  86. INTEGER :: ierr, ierr0, ierr1, ierr2, ierr3, jpm
  87. LOGICAL :: ll_purecpl
  88. !!----------------------------------------------------------------------
  89. IF(lwp) THEN
  90. WRITE(numout,*)
  91. WRITE(numout,*) 'sbc_init : surface boundary condition setting'
  92. WRITE(numout,*) '~~~~~~~~ '
  93. ENDIF
  94. REWIND( numnam_ref ) ! Namelist namsbc in reference namelist : Surface boundary
  95. READ ( numnam_ref, namsbc, IOSTAT = ios, ERR = 901)
  96. 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist', lwp )
  97. REWIND( numnam_cfg ) ! Namelist namsbc in configuration namelist : Parameters of the run
  98. READ ( numnam_cfg, namsbc, IOSTAT = ios, ERR = 902 )
  99. 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist', lwp )
  100. IF(lwm) WRITE ( numond, namsbc )
  101. ! ! overwrite namelist parameter using CPP key information
  102. IF( Agrif_Root() ) THEN ! AGRIF zoom
  103. IF( lk_lim2 ) nn_ice = 2
  104. IF( lk_lim3 ) nn_ice = 3
  105. IF( lk_cice ) nn_ice = 4
  106. ENDIF
  107. IF( cp_cfg == 'gyre' ) THEN ! GYRE configuration
  108. ln_ana = .TRUE.
  109. nn_ice = 0
  110. ENDIF
  111. IF(lwp) THEN ! Control print
  112. WRITE(numout,*) ' Namelist namsbc (partly overwritten with CPP key setting)'
  113. WRITE(numout,*) ' frequency update of sbc (and ice) nn_fsbc = ', nn_fsbc
  114. WRITE(numout,*) ' Type of sbc : '
  115. WRITE(numout,*) ' analytical formulation ln_ana = ', ln_ana
  116. WRITE(numout,*) ' flux formulation ln_flx = ', ln_flx
  117. WRITE(numout,*) ' CLIO bulk formulation ln_blk_clio = ', ln_blk_clio
  118. WRITE(numout,*) ' CORE bulk formulation ln_blk_core = ', ln_blk_core
  119. WRITE(numout,*) ' MFS bulk formulation ln_blk_mfs = ', ln_blk_mfs
  120. WRITE(numout,*) ' ocean-atmosphere coupled formulation ln_cpl = ', ln_cpl
  121. WRITE(numout,*) ' forced-coupled mixed formulation ln_mixcpl = ', ln_mixcpl
  122. WRITE(numout,*) ' OASIS coupling (with atm or sas) lk_oasis = ', lk_oasis
  123. WRITE(numout,*) ' components of your executable nn_components = ', nn_components
  124. WRITE(numout,*) ' Multicategory heat flux formulation (LIM3) nn_limflx = ', nn_limflx
  125. WRITE(numout,*) ' Misc. options of sbc : '
  126. WRITE(numout,*) ' Patm gradient added in ocean & ice Eqs. ln_apr_dyn = ', ln_apr_dyn
  127. WRITE(numout,*) ' ice management in the sbc (=0/1/2/3) nn_ice = ', nn_ice
  128. WRITE(numout,*) ' ice-ocean embedded/levitating (=0/1/2) nn_ice_embd = ', nn_ice_embd
  129. WRITE(numout,*) ' daily mean to diurnal cycle qsr ln_dm2dc = ', ln_dm2dc
  130. WRITE(numout,*) ' runoff / runoff mouths ln_rnf = ', ln_rnf
  131. WRITE(numout,*) ' iceshelf formulation nn_isf = ', nn_isf
  132. WRITE(numout,*) ' Sea Surface Restoring on SST and/or SSS ln_ssr = ', ln_ssr
  133. WRITE(numout,*) ' FreshWater Budget control (=0/1/2) nn_fwb = ', nn_fwb
  134. WRITE(numout,*) ' closed sea (=0/1) (set in namdom) nn_closea = ', nn_closea
  135. WRITE(numout,*) ' n. of iterations if land-sea-mask applied nn_lsm = ', nn_lsm
  136. ENDIF
  137. ! LIM3 Multi-category heat flux formulation
  138. SELECT CASE ( nn_limflx)
  139. CASE ( -1 )
  140. IF(lwp) WRITE(numout,*) ' Use of per-category fluxes (nn_limflx = -1) '
  141. CASE ( 0 )
  142. IF(lwp) WRITE(numout,*) ' Average per-category fluxes (nn_limflx = 0) '
  143. CASE ( 1 )
  144. IF(lwp) WRITE(numout,*) ' Average then redistribute per-category fluxes (nn_limflx = 1) '
  145. CASE ( 2 )
  146. IF(lwp) WRITE(numout,*) ' Redistribute a single flux over categories (nn_limflx = 2) '
  147. END SELECT
  148. !
  149. IF ( nn_components /= jp_iam_nemo .AND. .NOT. lk_oasis ) &
  150. & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but key_oasis3 disabled' )
  151. IF ( nn_components == jp_iam_opa .AND. ln_cpl ) &
  152. & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_cpl = T in OPA' )
  153. IF ( nn_components == jp_iam_opa .AND. ln_mixcpl ) &
  154. & CALL ctl_stop( 'STOP', 'sbc_init : OPA-SAS coupled via OASIS, but ln_mixcpl = T in OPA' )
  155. IF ( ln_cpl .AND. .NOT. lk_oasis ) &
  156. & CALL ctl_stop( 'STOP', 'sbc_init : OASIS-coupled atmosphere model, but key_oasis3 disabled' )
  157. IF( ln_mixcpl .AND. .NOT. lk_oasis ) &
  158. & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires the cpp key key_oasis3' )
  159. IF( ln_mixcpl .AND. .NOT. ln_cpl ) &
  160. & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) requires ln_cpl = T' )
  161. IF( ln_mixcpl .AND. nn_components /= jp_iam_nemo ) &
  162. & CALL ctl_stop( 'the forced-coupled mixed mode (ln_mixcpl) is not yet working with sas-opa coupling via oasis' )
  163. ! ! allocate sbc arrays
  164. IF( sbc_oce_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_oce arrays' )
  165. ! ! Checks:
  166. IF( nn_isf .EQ. 0 ) THEN ! variable initialisation if no ice shelf
  167. IF( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_init : unable to allocate sbc_isf arrays' )
  168. fwfisf (:,:) = 0.0_wp ; fwfisf_b (:,:) = 0.0_wp
  169. risf_tsc(:,:,:) = 0.0_wp ; risf_tsc_b(:,:,:) = 0.0_wp
  170. rdivisf = 0.0_wp
  171. END IF
  172. IF( nn_ice == 0 .AND. nn_components /= jp_iam_opa ) fr_i(:,:) = 0.e0 ! no ice in the domain, ice fraction is always zero
  173. sfx(:,:) = 0.0_wp ! the salt flux due to freezing/melting will be computed (i.e. will be non-zero)
  174. ! only if sea-ice is present
  175. fmmflx(:,:) = 0.0_wp ! freezing-melting array initialisation
  176. taum(:,:) = 0.0_wp ! Initialise taum for use in gls in case of reduced restart
  177. ! ! restartability
  178. IF( ( nn_ice == 2 .OR. nn_ice ==3 ) .AND. .NOT.( ln_blk_clio .OR. ln_blk_core .OR. ln_cpl ) ) &
  179. & CALL ctl_stop( 'LIM sea-ice model requires a bulk formulation or coupled configuration' )
  180. IF( nn_ice == 4 .AND. .NOT.( ln_blk_core .OR. ln_cpl ) ) &
  181. & CALL ctl_stop( 'CICE sea-ice model requires ln_blk_core or ln_cpl' )
  182. IF( nn_ice == 4 .AND. lk_agrif ) &
  183. & CALL ctl_stop( 'CICE sea-ice model not currently available with AGRIF' )
  184. IF( ( nn_ice == 3 .OR. nn_ice == 4 ) .AND. nn_ice_embd == 0 ) &
  185. & CALL ctl_stop( 'LIM3 and CICE sea-ice models require nn_ice_embd = 1 or 2' )
  186. IF( ( nn_ice /= 3 ) .AND. ( nn_limflx >= 0 ) ) &
  187. & WRITE(numout,*) 'The nn_limflx>=0 option has no effect if sea ice model is not LIM3'
  188. IF( ( nn_ice == 3 ) .AND. ( ln_cpl ) .AND. ( ( nn_limflx == -1 ) .OR. ( nn_limflx == 1 ) ) ) &
  189. & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in coupled mode must be 0 or 2' )
  190. IF( ( nn_ice == 3 ) .AND. ( .NOT. ln_cpl ) .AND. ( nn_limflx == 2 ) ) &
  191. & CALL ctl_stop( 'The chosen nn_limflx for LIM3 in forced mode cannot be 2' )
  192. IF( ln_dm2dc ) nday_qsr = -1 ! initialisation flag
  193. IF( ln_dm2dc .AND. .NOT.( ln_flx .OR. ln_blk_core ) .AND. nn_components /= jp_iam_opa ) &
  194. & CALL ctl_stop( 'diurnal cycle into qsr field from daily values requires a flux or core-bulk formulation' )
  195. IF ( ln_wave ) THEN
  196. !Activated wave module but neither drag nor stokes drift activated
  197. IF ( .NOT.(ln_cdgw .OR. ln_sdw) ) THEN
  198. CALL ctl_warn( 'Ask for wave coupling but nor drag coefficient (ln_cdgw=F) neither stokes drift activated (ln_sdw=F)' )
  199. !drag coefficient read from wave model definable only with mfs bulk formulae and core
  200. ELSEIF (ln_cdgw .AND. .NOT.(ln_blk_mfs .OR. ln_blk_core) ) THEN
  201. CALL ctl_stop( 'drag coefficient read from wave model definable only with mfs bulk formulae and core')
  202. ENDIF
  203. ELSE
  204. IF ( ln_cdgw .OR. ln_sdw ) &
  205. & CALL ctl_stop('Not Activated Wave Module (ln_wave=F) but &
  206. & asked coupling with drag coefficient (ln_cdgw =T) or Stokes drift (ln_sdw=T) ')
  207. ENDIF
  208. ! ! Choice of the Surface Boudary Condition (set nsbc)
  209. ll_purecpl = ln_cpl .AND. .NOT. ln_mixcpl
  210. !
  211. icpt = 0
  212. IF( ln_ana ) THEN ; nsbc = jp_ana ; icpt = icpt + 1 ; ENDIF ! analytical formulation
  213. IF( ln_flx ) THEN ; nsbc = jp_flx ; icpt = icpt + 1 ; ENDIF ! flux formulation
  214. IF( ln_blk_clio ) THEN ; nsbc = jp_clio ; icpt = icpt + 1 ; ENDIF ! CLIO bulk formulation
  215. IF( ln_blk_core ) THEN ; nsbc = jp_core ; icpt = icpt + 1 ; ENDIF ! CORE bulk formulation
  216. IF( ln_blk_mfs ) THEN ; nsbc = jp_mfs ; icpt = icpt + 1 ; ENDIF ! MFS bulk formulation
  217. IF( ll_purecpl ) THEN ; nsbc = jp_purecpl ; icpt = icpt + 1 ; ENDIF ! Pure Coupled formulation
  218. IF( cp_cfg == 'gyre') THEN ; nsbc = jp_gyre ; ENDIF ! GYRE analytical formulation
  219. IF( nn_components == jp_iam_opa ) &
  220. & THEN ; nsbc = jp_none ; icpt = icpt + 1 ; ENDIF ! opa coupling via SAS module
  221. IF( lk_esopa ) nsbc = jp_esopa ! esopa test, ALL formulations
  222. !
  223. IF( icpt /= 1 .AND. .NOT.lk_esopa ) THEN
  224. WRITE(numout,*)
  225. WRITE(numout,*) ' E R R O R in setting the sbc, one and only one namelist/CPP key option '
  226. WRITE(numout,*) ' must be choosen. You choose ', icpt, ' option(s)'
  227. WRITE(numout,*) ' We stop'
  228. nstop = nstop + 1
  229. ENDIF
  230. IF(lwp) THEN
  231. WRITE(numout,*)
  232. IF( nsbc == jp_esopa ) WRITE(numout,*) ' ESOPA test All surface boundary conditions'
  233. IF( nsbc == jp_gyre ) WRITE(numout,*) ' GYRE analytical formulation'
  234. IF( nsbc == jp_ana ) WRITE(numout,*) ' analytical formulation'
  235. IF( nsbc == jp_flx ) WRITE(numout,*) ' flux formulation'
  236. IF( nsbc == jp_clio ) WRITE(numout,*) ' CLIO bulk formulation'
  237. IF( nsbc == jp_core ) WRITE(numout,*) ' CORE bulk formulation'
  238. IF( nsbc == jp_purecpl ) WRITE(numout,*) ' pure coupled formulation'
  239. IF( nsbc == jp_mfs ) WRITE(numout,*) ' MFS Bulk formulation'
  240. IF( nsbc == jp_none ) WRITE(numout,*) ' OPA coupled to SAS via oasis'
  241. IF( ln_mixcpl ) WRITE(numout,*) ' + forced-coupled mixed formulation'
  242. IF( nn_components/= jp_iam_nemo ) &
  243. & WRITE(numout,*) ' + OASIS coupled SAS'
  244. ENDIF
  245. !
  246. IF( lk_oasis ) CALL sbc_cpl_init (nn_ice) ! OASIS initialisation. must be done before: (1) first time step
  247. ! ! (2) the use of nn_fsbc
  248. ! nn_fsbc initialization if OPA-SAS coupling via OASIS
  249. ! sas model time step has to be declared in OASIS (mandatory) -> nn_fsbc has to be modified accordingly
  250. IF ( nn_components /= jp_iam_nemo ) THEN
  251. IF ( nn_components == jp_iam_opa ) nn_fsbc = cpl_freq('O_SFLX') / NINT(rdt)
  252. IF ( nn_components == jp_iam_sas ) nn_fsbc = cpl_freq('I_SFLX') / NINT(rdt)
  253. !
  254. IF(lwp)THEN
  255. WRITE(numout,*)
  256. WRITE(numout,*)" OPA-SAS coupled via OASIS : nn_fsbc re-defined from OASIS namcouple ", nn_fsbc
  257. WRITE(numout,*)
  258. ENDIF
  259. ENDIF
  260. IF( MOD( nitend - nit000 + 1, nn_fsbc) /= 0 .OR. &
  261. MOD( nstock , nn_fsbc) /= 0 ) THEN
  262. WRITE(ctmp1,*) 'experiment length (', nitend - nit000 + 1, ') or nstock (', nstock, &
  263. & ' is NOT a multiple of nn_fsbc (', nn_fsbc, ')'
  264. CALL ctl_stop( ctmp1, 'Impossible to properly do model restart' )
  265. ENDIF
  266. !
  267. IF( MOD( rday, REAL(nn_fsbc, wp) * rdt ) /= 0 ) &
  268. & CALL ctl_warn( 'nn_fsbc is NOT a multiple of the number of time steps in a day' )
  269. !
  270. IF( ln_dm2dc .AND. ( ( NINT(rday) / ( nn_fsbc * NINT(rdt) ) ) < 8 ) ) &
  271. & CALL ctl_warn( 'diurnal cycle for qsr: the sampling of the diurnal cycle is too small...' )
  272. CALL sbc_ssm_init ! Sea-surface mean fields initialisation
  273. !
  274. IF( ln_ssr ) CALL sbc_ssr_init ! Sea-Surface Restoring initialisation
  275. !
  276. IF( nn_isf /= 0 ) CALL sbc_isf_init ! Compute iceshelves
  277. CALL sbc_rnf_init ! Runof initialisation
  278. !
  279. IF( nn_ice == 3 ) CALL sbc_lim_init ! LIM3 initialisation
  280. IF( nn_ice == 4 ) CALL cice_sbc_init( nsbc ) ! CICE initialisation
  281. END SUBROUTINE sbc_init
  282. SUBROUTINE sbc( kt )
  283. !!---------------------------------------------------------------------
  284. !! *** ROUTINE sbc ***
  285. !!
  286. !! ** Purpose : provide at each time-step the ocean surface boundary
  287. !! condition (momentum, heat and freshwater fluxes)
  288. !!
  289. !! ** Method : blah blah to be written ?????????
  290. !! CAUTION : never mask the surface stress field (tke sbc)
  291. !!
  292. !! ** Action : - set the ocean surface boundary condition at before and now
  293. !! time step, i.e.
  294. !! utau_b, vtau_b, qns_b, qsr_b, emp_n, sfx_b, qrp_b, erp_b
  295. !! utau , vtau , qns , qsr , emp , sfx , qrp , erp
  296. !! - updte the ice fraction : fr_i
  297. !!----------------------------------------------------------------------
  298. INTEGER, INTENT(in) :: kt ! ocean time step
  299. !!---------------------------------------------------------------------
  300. !
  301. IF( nn_timing == 1 ) CALL timing_start('sbc')
  302. !
  303. ! ! ---------------------------------------- !
  304. IF( kt /= nit000 ) THEN ! Swap of forcing fields !
  305. ! ! ---------------------------------------- !
  306. utau_b(:,:) = utau(:,:) ! Swap the ocean forcing fields
  307. vtau_b(:,:) = vtau(:,:) ! (except at nit000 where before fields
  308. qns_b (:,:) = qns (:,:) ! are set at the end of the routine)
  309. ! The 3D heat content due to qsr forcing is treated in traqsr
  310. ! qsr_b (:,:) = qsr (:,:)
  311. emp_b(:,:) = emp(:,:)
  312. sfx_b(:,:) = sfx(:,:)
  313. IF ( ln_rnf ) THEN
  314. rnf_b (:,: ) = rnf (:,: )
  315. rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
  316. ENDIF
  317. IF( nn_isf /= 0 ) THEN
  318. fwfisf_b (:,: ) = fwfisf (:,: )
  319. risf_tsc_b(:,:,:) = risf_tsc(:,:,:)
  320. ENDIF
  321. ENDIF
  322. ! ! ---------------------------------------- !
  323. ! ! forcing field computation !
  324. ! ! ---------------------------------------- !
  325. !
  326. IF ( .NOT. lk_bdy ) then
  327. IF( ln_apr_dyn ) CALL sbc_apr( kt ) ! atmospheric pressure provided at kt+0.5*nn_fsbc
  328. ENDIF
  329. ! (caution called before sbc_ssm)
  330. !
  331. IF( nn_components /= jp_iam_sas ) CALL sbc_ssm( kt ) ! ocean sea surface variables (sst_m, sss_m, ssu_m, ssv_m)
  332. ! ! averaged over nf_sbc time-step
  333. IF (ln_wave) CALL sbc_wave( kt )
  334. !== sbc formulation ==!
  335. SELECT CASE( nsbc ) ! Compute ocean surface boundary condition
  336. ! ! (i.e. utau,vtau, qns, qsr, emp, sfx)
  337. CASE( jp_gyre ) ; CALL sbc_gyre ( kt ) ! analytical formulation : GYRE configuration
  338. CASE( jp_ana ) ; CALL sbc_ana ( kt ) ! analytical formulation : uniform sbc
  339. CASE( jp_flx ) ; CALL sbc_flx ( kt ) ! flux formulation
  340. CASE( jp_clio ) ; CALL sbc_blk_clio( kt ) ! bulk formulation : CLIO for the ocean
  341. CASE( jp_core )
  342. IF( nn_components == jp_iam_sas ) &
  343. & CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: SAS receiving fields from OPA
  344. CALL sbc_blk_core( kt ) ! bulk formulation : CORE for the ocean
  345. ! from oce: sea surface variables (sst_m, sss_m, ssu_m, ssv_m)
  346. CASE( jp_purecpl ) ; CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! pure coupled formulation
  347. !
  348. CASE( jp_mfs ) ; CALL sbc_blk_mfs ( kt ) ! bulk formulation : MFS for the ocean
  349. CASE( jp_none )
  350. IF( nn_components == jp_iam_opa ) &
  351. CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! OPA-SAS coupling: OPA receiving fields from SAS
  352. CASE( jp_esopa )
  353. CALL sbc_ana ( kt ) ! ESOPA, test ALL the formulations
  354. CALL sbc_gyre ( kt ) !
  355. CALL sbc_flx ( kt ) !
  356. CALL sbc_blk_clio( kt ) !
  357. CALL sbc_blk_core( kt ) !
  358. CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) !
  359. END SELECT
  360. IF( ln_mixcpl ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice ) ! forced-coupled mixed formulation after forcing
  361. ! !== Misc. Options ==!
  362. SELECT CASE( nn_ice ) ! Update heat and freshwater fluxes over sea-ice areas
  363. CASE( 1 ) ; CALL sbc_ice_if ( kt ) ! Ice-cover climatology ("Ice-if" model)
  364. CASE( 2 ) ; CALL sbc_ice_lim_2( kt, nsbc ) ! LIM-2 ice model
  365. CASE( 3 ) ; CALL sbc_ice_lim ( kt, nsbc ) ! LIM-3 ice model
  366. CASE( 4 ) ; CALL sbc_ice_cice ( kt, nsbc ) ! CICE ice model
  367. END SELECT
  368. IF( ln_icebergs ) CALL icb_stp( kt ) ! compute icebergs
  369. IF( nn_isf /= 0 ) CALL sbc_isf( kt ) ! compute iceshelves
  370. IF( ln_rnf ) CALL sbc_rnf( kt ) ! add runoffs to fresh water fluxes
  371. IF( ln_ssr ) CALL sbc_ssr( kt ) ! add SST/SSS damping term
  372. IF( nn_fwb /= 0 ) CALL sbc_fwb( kt, nn_fwb, nn_fsbc ) ! control the freshwater budget
  373. IF( nn_closea == 1 ) CALL sbc_clo( kt ) ! treatment of closed sea in the model domain
  374. ! ! (update freshwater fluxes)
  375. !RBbug do not understand why see ticket 667
  376. !clem: it looks like it is necessary for the north fold (in certain circumstances). Don't know why.
  377. CALL lbc_lnk( emp, 'T', 1. )
  378. !
  379. IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
  380. ! ! ---------------------------------------- !
  381. IF( ln_rstart .AND. & !* Restart: read in restart file
  382. & iom_varid( numror, 'utau_b', ldstop = .FALSE. ) > 0 ) THEN
  383. IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields red in the restart file'
  384. CALL iom_get( numror, jpdom_autoglo, 'utau_b', utau_b ) ! before i-stress (U-point)
  385. CALL iom_get( numror, jpdom_autoglo, 'vtau_b', vtau_b ) ! before j-stress (V-point)
  386. CALL iom_get( numror, jpdom_autoglo, 'qns_b' , qns_b ) ! before non solar heat flux (T-point)
  387. ! The 3D heat content due to qsr forcing is treated in traqsr
  388. ! CALL iom_get( numror, jpdom_autoglo, 'qsr_b' , qsr_b ) ! before solar heat flux (T-point)
  389. CALL iom_get( numror, jpdom_autoglo, 'emp_b', emp_b ) ! before freshwater flux (T-point)
  390. ! To ensure restart capability with 3.3x/3.4 restart files !! to be removed in v3.6
  391. IF( iom_varid( numror, 'sfx_b', ldstop = .FALSE. ) > 0 ) THEN
  392. CALL iom_get( numror, jpdom_autoglo, 'sfx_b', sfx_b ) ! before salt flux (T-point)
  393. ELSE
  394. sfx_b (:,:) = sfx(:,:)
  395. ENDIF
  396. ELSE !* no restart: set from nit000 values
  397. IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields set to nit000'
  398. utau_b(:,:) = utau(:,:)
  399. vtau_b(:,:) = vtau(:,:)
  400. qns_b (:,:) = qns (:,:)
  401. emp_b (:,:) = emp(:,:)
  402. sfx_b (:,:) = sfx(:,:)
  403. ENDIF
  404. ENDIF
  405. ! ! ---------------------------------------- !
  406. IF( lrst_oce ) THEN ! Write in the ocean restart file !
  407. ! ! ---------------------------------------- !
  408. IF(lwp) WRITE(numout,*)
  409. IF(lwp) WRITE(numout,*) 'sbc : ocean surface forcing fields written in ocean restart file ', &
  410. & 'at it= ', kt,' date= ', ndastp
  411. IF(lwp) WRITE(numout,*) '~~~~'
  412. CALL iom_rstput( kt, nitrst, numrow, 'utau_b' , utau )
  413. CALL iom_rstput( kt, nitrst, numrow, 'vtau_b' , vtau )
  414. CALL iom_rstput( kt, nitrst, numrow, 'qns_b' , qns )
  415. ! The 3D heat content due to qsr forcing is treated in traqsr
  416. ! CALL iom_rstput( kt, nitrst, numrow, 'qsr_b' , qsr )
  417. CALL iom_rstput( kt, nitrst, numrow, 'emp_b' , emp )
  418. CALL iom_rstput( kt, nitrst, numrow, 'sfx_b' , sfx )
  419. ENDIF
  420. ! ! ---------------------------------------- !
  421. ! ! Outputs and control print !
  422. ! ! ---------------------------------------- !
  423. IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN
  424. CALL iom_put( "empmr" , emp - rnf ) ! upward water flux
  425. CALL iom_put( "empbmr" , emp_b - rnf ) ! before upward water flux ( needed to recalculate the time evolution of ssh in offline )
  426. CALL iom_put( "saltflx", sfx ) ! downward salt flux
  427. ! (includes virtual salt flux beneath ice
  428. ! in linear free surface case)
  429. CALL iom_put( "fmmflx", fmmflx ) ! Freezing-melting water flux
  430. CALL iom_put( "qt" , qns + qsr ) ! total heat flux
  431. CALL iom_put( "qns" , qns ) ! solar heat flux
  432. CALL iom_put( "qsr" , qsr ) ! solar heat flux
  433. IF( nn_ice > 0 .OR. nn_components == jp_iam_opa ) CALL iom_put( "ice_cover", fr_i ) ! ice fraction
  434. CALL iom_put( "taum" , taum ) ! wind stress module
  435. CALL iom_put( "wspd" , wndm ) ! wind speed module over free ocean or leads in presence of sea-ice
  436. ENDIF
  437. !
  438. CALL iom_put( "utau", utau ) ! i-wind stress (stress can be updated at
  439. CALL iom_put( "vtau", vtau ) ! j-wind stress each time step in sea-ice)
  440. !
  441. IF(ln_ctl) THEN ! print mean trends (used for debugging)
  442. CALL prt_ctl(tab2d_1=fr_i , clinfo1=' fr_i - : ', mask1=tmask, ovlap=1 )
  443. CALL prt_ctl(tab2d_1=(emp-rnf + fwfisf), clinfo1=' emp-rnf - : ', mask1=tmask, ovlap=1 )
  444. CALL prt_ctl(tab2d_1=(sfx-rnf + fwfisf), clinfo1=' sfx-rnf - : ', mask1=tmask, ovlap=1 )
  445. CALL prt_ctl(tab2d_1=qns , clinfo1=' qns - : ', mask1=tmask, ovlap=1 )
  446. CALL prt_ctl(tab2d_1=qsr , clinfo1=' qsr - : ', mask1=tmask, ovlap=1 )
  447. CALL prt_ctl(tab3d_1=tmask , clinfo1=' tmask - : ', mask1=tmask, ovlap=1, kdim=jpk )
  448. CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_tem), clinfo1=' sst - : ', mask1=tmask, ovlap=1, kdim=1 )
  449. CALL prt_ctl(tab3d_1=tsn(:,:,:,jp_sal), clinfo1=' sss - : ', mask1=tmask, ovlap=1, kdim=1 )
  450. CALL prt_ctl(tab2d_1=utau , clinfo1=' utau - : ', mask1=umask, &
  451. & tab2d_2=vtau , clinfo2=' vtau - : ', mask2=vmask, ovlap=1 )
  452. ENDIF
  453. IF( kt == nitend ) CALL sbc_final ! Close down surface module if necessary
  454. !
  455. IF( nn_timing == 1 ) CALL timing_stop('sbc')
  456. !
  457. END SUBROUTINE sbc
  458. SUBROUTINE sbc_final
  459. !!---------------------------------------------------------------------
  460. !! *** ROUTINE sbc_final ***
  461. !!
  462. !! ** Purpose : Finalize CICE (if used)
  463. !!---------------------------------------------------------------------
  464. !
  465. IF( nn_ice == 4 ) CALL cice_sbc_final
  466. !
  467. END SUBROUTINE sbc_final
  468. !!======================================================================
  469. END MODULE sbcmod