parameterizations.tex 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378
  1. % set global definitions
  2. %
  3. \newcommand{\D}{\displaystyle}
  4. %
  5. \begin{center}
  6. {\large PUMA-II Parameterizations} \\
  7. \end{center}
  8. \begin{center}
  9. {\Large Very draft version} \\
  10. \end{center}
  11. \begin{center}
  12. {\LARGE WARNING:} \\
  13. \end{center}
  14. \begin{center}
  15. {\Large This is a very preliminary and unfinished
  16. documentation and parts of it may be
  17. inconsistent with the actual code}
  18. \end{center}
  19. \newpage
  20. %\tableofcontents
  21. \section{Parameterizations}
  22. \subsection{Surface Fluxes and Vertical Diffusion}
  23. \subsubsection{Surface Fluxes \label{surflux}}
  24. The bulk aerodynamic formulas are used to
  25. parameterize
  26. surface
  27. fluxes of zonal and meridional momentum (wind
  28. stress)
  29. $F_u$ and
  30. $F_v$,
  31. sensible heat $F_T$ and latent heat $L \, F_q$, where
  32. $F_q$ is the surface flux of moisture and $L$ is the
  33. latent heat of vaporisation $L_v$, or, depending on
  34. temperature, the latent heat of sublimation $L_s$:
  35. \begin{equation}\label{fluxes}
  36. \begin{array}{rcl}
  37. \D F_u & = & \D \rho \, C_m \, |\vec{v}| \, u \\
  38. && \\
  39. \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v \\
  40. && \\
  41. \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
  42. (\gamma
  43. T
  44. - T_S ) \\
  45. && \\
  46. \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
  47. \,
  48. (\delta
  49. q - q_S )
  50. \end{array}
  51. \end{equation}
  52. All fluxes are positive
  53. in downward direction. $\rho$ denotes the density,
  54. $c_p$ is the specific
  55. heat for moist air at constant pressure ($c_p= c_{pd} \,
  56. [1+(c_{pv}/c_{pd}-1)\, q]$, where
  57. $c_{pd}$ and $c_{pv}$ are the specific heats at
  58. constant pressure for dry air and water vapor,
  59. respectively). $C_m$ is the drag
  60. coefficient, $C_h$ is the transfer coefficient for heat,
  61. $T_S$ is
  62. the surface temperature, $q_S$ is the surface specific
  63. humidity
  64. and $|\vec{v}|$ is the absolute value of the horizontal
  65. velocity at the lowermost level. The wetness factor
  66. $C_w$
  67. accounts
  68. for different evaporation efficiencies due to surface
  69. characteristics (Section \ref{hydro}). $u$, $v$,
  70. $T$ and $q$ are the zonal and meridional wind
  71. components, the
  72. temperature and the specific humidity, respectively,
  73. of the lowermost model level. The factors $\gamma$
  74. and ${\delta}$ are used to relate the model quantities
  75. to
  76. the respective near surface
  77. values. $\delta$ is set to 1 and $\gamma$ is set to
  78. give a potential temperature:
  79. \begin{equation}\label{gamma}
  80. \gamma = \left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
  81. \end{equation}
  82. where p is the pressure of the lowermost
  83. model level, $p_S$ is the surface pressure and $R_d$
  84. is the gas constant for dry air.
  85. While $\gamma$, $\rho$,
  86. $C_m$, $C_h$,
  87. $|\vec{v}|$,
  88. $T_S$ and $q_S$ apply to time level $t - \Delta t$,
  89. values
  90. for $u^{t+ \Delta t}$, $v^{t+ \Delta t}$, $T^{t+ \Delta
  91. t}$
  92. and $q^{t+ \Delta t}$ are computed implicitly
  93. from the discretized tendency equations:
  94. \begin{equation}
  95. \begin{array}{rcccl}
  96. \D \frac{u^{t+\Delta t}-u^{t-\Delta t}}{2 \Delta
  97. t} & = & \D -
  98. \,
  99. \frac{1}{\rho \, \Delta z}\, F_u^{t+\Delta t} & = & \D
  100. - \,
  101. \frac
  102. {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
  103. u^{t +
  104. \Delta t} \\
  105. &&&& \\
  106. \D \frac{v^{t+\Delta t}-v^{t-\Delta t}}{2 \Delta t} & =
  107. &
  108. \D
  109. - \,
  110. \frac{1}{\rho \, \Delta z}\, F_v^{t+\Delta t} & = & \D
  111. - \,
  112. \frac
  113. {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
  114. v^{t +
  115. \Delta t} \\
  116. &&&& \\
  117. \D \frac{T^{t+\Delta t}-T^{t-\Delta t}}{2 \Delta t} &
  118. = &
  119. \D
  120. -\,
  121. \frac{1}{c_p \, \rho \, \Delta z} \, F_T^{t+\Delta t} &
  122. = & \D -
  123. \,
  124. \frac{g \, \rho \, C_h \, |\vec{v}|} {p_S \, \Delta
  125. \sigma} \,
  126. (\gamma T^{t + \Delta t} - T_S) \\
  127. &&&& \\
  128. \D \frac{q^{t+\Delta t}-q^{t-\Delta t}}{2 \Delta t} & =
  129. &
  130. \D -
  131. \,
  132. \frac{1}{\rho \, \Delta z} \, F_q^{t+\Delta t}& = & \D
  133. - \,
  134. \frac{g \, \rho \, C_h \, C_w \, |\vec{v}|} {p_S \, \Delta
  135. \sigma} \,
  136. (\delta q^{t + \Delta t} - q_S)
  137. \end{array}
  138. \end{equation}
  139. where $g$ is the gravitational acceleration and $\Delta
  140. \sigma = \Delta p/p_S $ is the thickness of the
  141. lowermost model layer.
  142. In addition to the tendencies, the surface fluxes of
  143. momentum, sensible and latent heat and the
  144. partial derivative of the sensible and the latent heat flux
  145. with respect to the surface temperature
  146. are computed:
  147. \begin{equation}\label{fluxes2}
  148. \begin{array}{rcl}
  149. \D F_u & = & \D \rho \, C_m \, |\vec{v}| \,
  150. u^{t+\Delta t} \\
  151. && \\
  152. \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v^{t+
  153. \Delta t}\\
  154. && \\
  155. \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
  156. (\gamma
  157. T^{t + \Delta t}
  158. - T_S ) \\
  159. && \\
  160. \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
  161. \,
  162. (\delta
  163. q^{t+\Delta t} - q_S ) \\
  164. && \\
  165. \D \frac{\partial F_T}{\partial T_S} & = & \D - c_p \,
  166. \rho \, C_h \, |\vec{v}| \\
  167. && \\
  168. \D \frac{\partial (L \, F_q)}{\partial T_S} & = & \D -
  169. L\, \rho \, C_h \, C_w \, |\vec{v}| \,
  170. \frac{\partial q_S(T_S)}{\partial T_S}
  171. \end{array}
  172. \end{equation}
  173. The derivatives of the fluxes may be used, for
  174. examples, for an implicit calculation of the
  175. surface temperature (see Section \ref{surtemp}).
  176. \subsubsection*{ Drag and transfer coefficients}
  177. The calculation of the drag and the transfer
  178. coefficient $C_m$ and $C_h$ follows the method
  179. described in Roeckner et al.~(1992) for the ECHAM-3
  180. model, which bases on the work of Louis (1979) and
  181. Louis et al.~(1982). A Richardson number dependence
  182. of
  183. $C_m$ and $C_h$ in accordance to the
  184. Monin-Obukhov
  185. similarity theory is given by
  186. \begin{equation}
  187. \begin{array}{rcl}
  188. C_m & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \,
  189. f_m
  190. (Ri, z/z_0) \\
  191. &&\\
  192. C_h & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \, f_h
  193. (Ri, z/z_0)
  194. \end{array}
  195. \end{equation}
  196. where $k$ is the von Karman constant ($k$ = 0.4) and
  197. $z_0$ is the roughness length, which depends on the
  198. surface characteristics (Section~\ref{landsurf} and
  199. Section~\ref{seasurf}). The Richardson
  200. number $Ri$ is
  201. defined as
  202. \begin{equation}
  203. Ri=\frac{g\, \Delta z \,(\gamma_E T - \gamma_E T_S)}{\gamma T
  204. \, |\vec{v}|^2}
  205. \end{equation}
  206. with $\gamma$ from Eq.~\ref{gamma} and $\gamma_E$ transfers temperatures to virtual
  207. potential temperatures to include the effect of moisture.
  208. \begin{equation}\label{gammaE}
  209. \gamma_E = \left(1- \left(\frac{R_v}{R_d}-1\right)\, q
  210. \right)
  211. \,\left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
  212. \end{equation}
  213. where $q$ refers to the respective specific humidities and
  214. $R_v$ is the gas constant for water
  215. vapor.
  216. Different empirical formulas for stable ($Ri \ge 0$)
  217. and
  218. unstable ($Ri < 0$) situations are used. For the stable
  219. case, $f_m$ and $f_h$ are given by
  220. \begin{equation}\label{fmfh1}
  221. \begin{array}{rcl}
  222. \D f_m & = &\D \frac{1}{1+(2\,b\,Ri) /\sqrt{\,1+ d\,
  223. Ri}}
  224. \\
  225. && \\
  226. \D f_h & = &\D \frac{1}{1+(3\,b\,Ri) /\sqrt{\,1+ d\,
  227. Ri}}
  228. \end{array}
  229. \end{equation}
  230. while for the unstable case, $f_m$ and $f_h$ are
  231. \begin{equation}\label{fmfh2}
  232. \begin{array}{rcl}
  233. \D f_m & = & \D 1- \frac{2\,b\,Ri}{1+3\,b\,c\, [
  234. \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}} \\
  235. && \\
  236. \D f_h & = &\D 1- \frac{3\,b\,Ri}{1+3\,b\,c\, [
  237. \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}}
  238. \end{array}
  239. \end{equation}
  240. where $b$, $c$, and $d$ are prescribed constants and
  241. set
  242. to
  243. default values of $b$ = 5, $c$ = 5 and $d$ = 5.
  244. \subsubsection{Vertical Diffusion}
  245. Vertical diffusion representing the non resolved
  246. turbulent exchange is applied to the horizontal wind
  247. components $u$ and $v$, the potential temperature
  248. $\theta$ ($= T (p_S/p)^{R_d/c_{pd}}$) and the
  249. specific
  250. humidity
  251. $q$. The
  252. tendencies due to the turbulent transports are given by
  253. \begin{equation}
  254. \begin{array}{rcccl}
  255. \D
  256. \frac{\partial u}{\partial t} & = & \D \frac
  257. {1}{\rho}\frac{\partial J_u}{\partial z} & = & \D \frac
  258. {1}{\rho}\frac{\partial }{\partial z} ( \rho\, K_m \,
  259. \frac{\partial u}{\partial z}) \\
  260. &&&& \\
  261. \D \frac{\partial v}{\partial t} & = & \D \frac
  262. {1}{\rho}\frac{\partial J_v}{\partial z} & = & \D \frac
  263. {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_m \,
  264. \frac{\partial v}{\partial z} )\\
  265. &&&& \\
  266. \D \frac{\partial T}{\partial t} & = &\D \frac
  267. {1}{\rho}\frac{\partial J_T}{\partial z} & = & \D \frac
  268. {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_h \,
  269. (\frac{p}{p_S})^{R_d/c_{pd}}\,\frac{\partial
  270. \theta}{\partial
  271. z})
  272. \\
  273. &&&& \\
  274. \D \frac{\partial q}{\partial t} & = & \D \frac
  275. {1}{\rho}\frac{\partial J_q}{\partial z} & = & \D \frac
  276. {1}{\rho}\frac{\partial }{\partial z}( \rho\, K_h \,
  277. \frac{\partial q}{\partial z} )
  278. \end{array}
  279. \end{equation}
  280. where p is the
  281. pressure, $p_S$ is the
  282. surface pressure, $R_d$ is the gas constant
  283. for dry air and $c_{pd}$ is
  284. the specific heat for dry air at constant pressure. Here,
  285. the turbulent
  286. fluxes (positive downward) of zonal and meridional
  287. momentum $J_u$ and
  288. $J_v$,
  289. heat $c_{pd} \, J_T$
  290. and moisture $J_q$ are parameterized by a linear
  291. diffusion along the vertical gradient with the exchange
  292. coefficients $K_m$ and $K_h$ for momentum and
  293. heat,
  294. respectively. $K_m$ and $K_h$ depend on the actual
  295. state (see below).
  296. As the effect of the surface fluxes are computed
  297. separately (Section \ref{surflux}), no flux boundary
  298. conditions for the vertical diffusion scheme are
  299. assumed
  300. at the top and the bottom of the atmosphere but the
  301. vertical diffusion is computed starting with
  302. initial values for $u$, $v$, $q$ and $T$ which include
  303. the tendencies due to the surface fluxes.
  304. As for the surface fluxes, the equations are formulated
  305. implicitely with exchange coefficients applying to the
  306. old time level. This leads to sets of linear equations for
  307. $u^{t+\Delta t}$, $v^{t+\Delta t}$, $T^{t+\Delta t}$
  308. and $q^{t+\Delta t}$, which are solved by a back
  309. substitution method.
  310. \subsubsection*{Exchange coefficients}
  311. The calculation of the exchange coefficient $K_m$ and
  312. $K_h$ follows the mixing length
  313. approach as an extension of the similarity theory used
  314. to
  315. define the drag and transfere
  316. coefficients (Section \ref{surflux} and Roeckner et
  317. al.~1992):
  318. \begin{equation}
  319. \begin{array}{rcl}
  320. \D K_m & = & \D l_m^2\, \left|
  321. \frac{\partial\vec{v}}{\partial
  322. z}
  323. \right| \, f_m(Ri) \\
  324. &&\\
  325. \D K_h & = & \D l_h^2\, \left|
  326. \frac{\partial\vec{v}}{\partial
  327. z}
  328. \right| \, f_h(Ri)
  329. \end{array}
  330. \end{equation}
  331. where the functional dependencies of $f_m$ and $f_h$
  332. on
  333. $Ri$ are the same as for $C_m$ and $C_h$
  334. (Eq.~\ref{fmfh1} and Eq.~\ref{fmfh2}), except that
  335. the
  336. term
  337. \begin{equation}
  338. \left[\frac{k}{\ln(z/z_0+1)}\right]^2\sqrt{(z/z_0+1)}
  339. \end{equation}
  340. is replaced by
  341. \begin{equation}
  342. \frac{l^2}{(\Delta z)^{3/2} \, z^{1/2}}\left[ \left(
  343. \frac{z+\Delta z}{z}\right)^{1/3} -1 \right]^{3/2}
  344. \end{equation}
  345. The Richardson number $Ri$ is defined as
  346. \begin{equation}
  347. Ri=\frac{g}{\gamma T} \frac{\partial (\gamma_E
  348. T)}{\partial z} \left| \frac{\partial \vec{v}}{\partial z}
  349. \right|^{-2}
  350. \end{equation}
  351. with $\gamma$ from Eq.~\ref{gamma} and $\gamma_E$ from Eq.~\ref{gammaE}. According
  352. to
  353. Blackadar (1962), the mixing lengths $l_m$ and $l_h$
  354. are
  355. given by
  356. \begin{equation}
  357. \begin{array}{rcl}
  358. \D \frac{1}{l_m} & = & \D \frac{1}{k\, z}
  359. +\frac{1}{\lambda_m} \\
  360. &&\\
  361. \D \frac{1}{l_h} & = & \D \frac{1}{k\, z}
  362. +\frac{1}{\lambda_h}
  363. \end{array}
  364. \end{equation}
  365. with $\lambda_h = \lambda_m\sqrt{(3 d)/2}$. The
  366. parameters $\lambda_m$ and $d$ are set to default
  367. values
  368. of $\lambda_m = 160~m$ and $d= 5$.
  369. \newpage
  370. \subsection{Horizontal Diffusion}
  371. The horizontal diffusion parameterization based on the
  372. ideas of Laursen and Eliasen (1989),
  373. which, in the ECHAM-3 model (Roeckner et al.~1992),
  374. improves the results compared with a
  375. ${\nabla}^k$ horizontal diffusion. The diffusion is
  376. done in spectral space. The contribution to
  377. the tendency of a spectral prognostic variable $X_n$ is
  378. \begin{equation}
  379. \frac{\partial X_n}{\partial t} = -k_X L_n X_n
  380. \end{equation}
  381. where $n$ defines the total wave number. $L_n$ is a
  382. scale selective function of the total wave
  383. number and is chosen such that large scales are not
  384. damped while the damping gets stronger
  385. with increasing $n$:
  386. \begin{equation}
  387. L_n = \left\{ \begin{array}{lcl} (n-n_{\star})^{\alpha}
  388. & \mbox{for} & n > n_{\star} \\
  389. &&\\
  390. 0 & \mbox{for} & n
  391. \le n_{\star} \end{array}
  392. \right.
  393. \end{equation}
  394. where $n_{\star}$ is a cut-off wave number. The
  395. parameters $n_{\star}$ and $\alpha$ are set
  396. to default values of $n_{\star}$~=~15 and
  397. $\alpha$~=~2 similar to the ECHAM-3 model in T21
  398. resolution (Roeckner et al.~1992). The diffusion
  399. coefficient $k_X$ defines the timescale of the
  400. damping and depends on the variable. In the model,
  401. $k_X$ is computed from prescribed
  402. damping time scales $\tau_X$ for the smallest waves.
  403. Default values of
  404. $\tau_D$~=~0.2~days for divergence,
  405. $\tau_{\xi}$~=~1.1~days for vorticity and
  406. $\tau_T$~=~15.6~days for temperature and humidity
  407. are chosen, which are comparable with
  408. the respective values in the T21 ECHAM-3 model. In
  409. contrast to ECHAM-3, however, no level or
  410. velocity dependent additional damping is applied.
  411. \newpage
  412. \subsection{Radiation}
  413. \subsubsection{Short Wave Radiation}
  414. The short wave radiation scheme bases
  415. on the ideas of Lacis and Hansen (1974) for the cloud
  416. free
  417. atmosphere. For the cloudy part, either constant
  418. albedos and
  419. transmissivities for high- middle- and low-level clouds
  420. may be prescribed or parameterizations
  421. following Stephens (1978) and Stephens et al.~(1984)
  422. may be used.
  423. The downward radiation flux density
  424. $F^{\downarrow SW}$ is assumed to be the
  425. product of the extrateristical solar flux density
  426. $E_0$ with different transmission factors for various
  427. processes:
  428. \begin{equation}
  429. F^{\downarrow SW}= \mu_0 \, E_0 \cdot {\cal T}_R \cdot {\cal T}_O
  430. \cdot {\cal T}_W \cdot {\cal T}_D \cdot
  431. {\cal T}_C \cdot
  432. {\cal R}_S
  433. \end{equation}
  434. Here, $\mu_0$ refers to the cosine of the solar zenith
  435. angle and the factor ${\cal R}_S$ incorporates
  436. different surface
  437. albedo values. The Indices of the transmissivities ${\cal T}$
  438. denote Rayleigh scattering ($R$), ozone
  439. absorption ($O$), water vapor absorption ($W$) and
  440. absorption and scattering by aerosols
  441. (dust; $D$) and cloud droplets ($C$), respectively.
  442. $E_0$ and $\mu_0$ are computed following
  443. Berger (1978a, 1978b). The algorithm used is valid to
  444. 1,000,000 years past or hence. The numeric to compute
  445. $E_0$ and
  446. $\mu_0$ is adopted from the
  447. CCM3 climate model (Kiehl et al.~1996, coding by E.~Kluzek 1997).
  448. The
  449. calculation accounts
  450. for earths orbital parameters and the earths distance
  451. to the sun, both depending on the year and the time
  452. of the year.
  453. Following, for example, Stephens (1984) the solar
  454. spectral range
  455. is divided into two regions: (1) A visible and
  456. ultraviolet
  457. part for wavelengths $\lambda < 0.75$ $\mu$m with
  458. pure cloud
  459. scattering, ozone absorption and
  460. Rayleigh scattering, and without water vapor
  461. absorption. (2) A
  462. near infrared part for
  463. wavelengths $\lambda > 0.75$ $\mu$m with cloud
  464. scattering and
  465. absorption and with water vapor absorption. Absorption
  466. and
  467. scattering by aerosols is neglected in the present
  468. scheme. Dividing
  469. the total solar energy $E_0$ into the two spectral
  470. regions results in the
  471. fractions ${E_1}$~=~0.517 and $E_2$~=~0.483 for
  472. spectral
  473. ranges 1 and 2, respectively.
  474. \subsubsection*{Clear sky}
  475. For the clear sky part of the atmospheric column
  476. parameterizations following Lacis and Hansen
  477. (1974) are used for Rayleigh scattering, ozone
  478. absorption and water vapor absorption.
  479. {\bf Visible and ultraviolet spectral range ($\lambda <
  480. 0.75$
  481. $\mu$m)}
  482. In the visible and ultraviolet range, Rayleigh
  483. scattering and ozone absorption are considered for
  484. the clear sky part. Rayleigh scattering is confined to
  485. the lowermost atmospheric layer. The
  486. transmissivity for this layer is given by
  487. \begin{equation}
  488. {\cal T}_{R1}=1 - \frac{0.219}{1+0.816\mu_0}
  489. \end{equation}
  490. for the direct beam, and
  491. \begin{equation}
  492. {\cal T}_{R1}=1 - 0.144
  493. \end{equation}
  494. for the scattered part.
  495. Ozone absorption is considered for the Chappuis band
  496. in the visible ${\cal A}^{vis}$ and for the
  497. ultraviolet range ${\cal A}^{uv}$. The total transmissivity
  498. due to ozone is given by
  499. \begin{equation}
  500. {\cal T}_{O1} = 1 - {\cal A}^{vis}_O - {\cal A}^{uv}_O
  501. \end{equation}
  502. with
  503. \begin{equation}
  504. {\cal A}^{vis}_O = \frac{
  505. 0.02118x}{1+0.042x+0.000323x^2}
  506. \end{equation}
  507. and
  508. \begin{equation}
  509. {\cal A}^{uv}_O=\frac{1.082x}{(1+138.6x)^{0.805}}+\frac{
  510. 0.0658x}{1+(103.6x)^3}
  511. \end{equation}
  512. where the ozone amount traversed by the direct solar
  513. beam, $x$, is
  514. \begin{equation}
  515. x=M \; u_{O_3}
  516. \end{equation}
  517. with $u_{O_3}$ being the ozone amount [cm] in the
  518. vertical column above the considered
  519. layer, and $M$ is the magnification factor after
  520. Rodgers (1967)
  521. \begin{equation}
  522. M= \frac{35}{(1224 {\mu_0}^2 +1)^{\frac{1}{2}}}
  523. \end{equation}
  524. The ozone path traversed by diffuse radiation from
  525. below is
  526. \begin{equation}
  527. x^{*}=M \; u_{O_3}+\overline{M} \; (u_t -u_{O_3})
  528. \end{equation}
  529. where $u_t$ is the total ozone amount above the main
  530. reflecting layer and $\overline{M}$=1.9
  531. is the effective magnification factor for diffusive
  532. upward radiation.
  533. {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
  534. In the near infrared solar region absorption by water
  535. vapor
  536. is considered only. The transmissivity is given by
  537. \begin{equation}
  538. {\cal T}_{W2}=1-\frac{2.9 y}{(1+141.5y)^{0.635} +
  539. 5.925y}
  540. \end{equation}
  541. where $y$ is the effective water vapor amount [cm]
  542. including an approximate correction for the
  543. pressure and temperature dependence of the absorption
  544. and the magnification factor $M$. For
  545. the direct solar beam, $y$ is given by
  546. \begin{equation}
  547. y=\frac{M}{g}
  548. \int\limits^p_0 0.1 \; q
  549. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  550. {\frac{1}{2}} dp
  551. \end{equation}
  552. while for the reflected radiation reaching the layer from
  553. below, $y$ is
  554. \begin{equation}
  555. y=\frac{M}{g}
  556. \int\limits^{p_S}_0
  557. 0.1 \; q
  558. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  559. {\frac{1}{2}} dp
  560. +
  561. \frac{\beta_d}{g} \int\limits^{p_S}_{p}
  562. 0.1 \; q
  563. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  564. {\frac{1}{2}} dp
  565. \end{equation}
  566. with the acceleration of gravity $g$, the surface
  567. pressure $p_S$, a reference pressure
  568. $p_0$~=~1000~hPa, a reference temperature
  569. $T_0$~=~273~K, the specific humidity $q$
  570. [kg/kg] and the magnification factor for diffuse
  571. radiation $\beta_d$~=~1.66.
  572. \subsubsection*{Clouds}
  573. Two possibilities for the parameterization of the effect
  574. of clouds on the short wave radiative fluxes are
  575. implemented: (1) prescribed cloud properties and (2) a
  576. parameterization following Stephens (1978) and
  577. Stephens et al. (1984), which is the default setup.
  578. {\bf Prescribed cloud properties}
  579. Radiative properties of clouds are prescribed
  580. depending on
  581. the cloud level. Albedos ${\cal R}_{C1}$ for cloud
  582. scattering in
  583. the visible spectral range ($\lambda < 0.75$ $\mu$m),
  584. and
  585. albedos ${\cal R}_{C2}$ for cloud scattering and
  586. absorptivities
  587. ${\cal A}_{C2}$ for cloud absorption in the near infrared
  588. part
  589. ($\lambda > 0.75$ $\mu$m) are defined for high,
  590. middle
  591. and low level clouds. The default values are listed in Table \ref{tabcl1}.
  592. {\protect
  593. \begin{table}[h]
  594. \begin{center}
  595. \begin{tabular}{|c|c|c|c|}\hline
  596. Cloud & Visible range
  597. &\multicolumn{2}{c|}{Near
  598. infrared} \\
  599. Level & ${\cal R}_{C1}$ & ${\cal R}_{C2}$ &
  600. ${\cal A}_{C1}$ \\
  601. \hline
  602. &&& \\
  603. High & 0.15 & 0.15 & 0.05 \\
  604. Middle & 0.30 & 0.30 & 0.10 \\
  605. Low & 0.60 & 0.60 & 0.20 \\
  606. \hline
  607. \end{tabular}
  608. \end{center}
  609. \caption{\label{tabcl1} Prescribed cloud albedos
  610. ${\cal R}_{C}$
  611. and absorptivities ${\cal A}_{C}$} for spectral range 1 and 2
  612. \end{table}
  613. }
  614. {\bf Default: Parameterization according to Stephens
  615. (1978) and Stephens et al. (1984)}
  616. Following Stephens (1978) and Stephens et al. (1984)
  617. cloud parameters are derived from the cloud liquid
  618. water path $W_L$ [g/m$^2$] and the cosine of the solar zenith
  619. angel $\mu_0$. In the visible and ultraviolet range
  620. cloud scattering is present only while in the near
  621. infrared both, cloud scattering and absorption, are
  622. parameterized.
  623. {\bf Visible and ultraviolet spectral range ($\lambda <
  624. 0.75$
  625. $\mu$m)}
  626. For the cloud transmissivity ${\cal T}_{C1}$ Stephens
  627. parameterization for a non absorbing medium is
  628. applied:
  629. \begin{equation}
  630. {\cal T}_{C1}=1-
  631. \frac{\beta_1\tau_{N1}/\mu_0}{1+\beta_1\tau_{N1}
  632. /\mu_0} = \frac{1}{ 1+\beta_1 \tau_{N1}/\mu_0}
  633. \end{equation}
  634. $\beta_1$ is the backscatter coefficient, which is
  635. available in tabular form. In order to avoid interpolation
  636. of tabular values the following interpolation formula is
  637. used
  638. \begin{equation}
  639. \beta_1 = f_{b1} \; \sqrt{\mu_0}
  640. \end{equation}
  641. where the factor $f_{b1}$ comprises a tuning
  642. opportunity for the cloud albedo and is set to a default
  643. value of 0.035.
  644. $\tau_{N1}$ is an effective optical depth for which
  645. Stephens (1979) provided the interpolation formula
  646. \begin{equation}
  647. \tau_{N1}= 1.8336 \; (\log{W_L})^{3.963}
  648. \end{equation}
  649. which is approximated by
  650. \begin{equation}
  651. \tau_{N1}= 2\; (\log{W_L})^{3.9}
  652. \end{equation}
  653. to be used also for the near infrared range (see below).
  654. {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
  655. The transmissivity due to scattering and absorption of
  656. a cloud layer in the near infrared spectral range is
  657. \begin{equation}
  658. {\cal T}_{C2}=\frac{4u}{R}
  659. \end{equation}
  660. where u is given by
  661. \begin{equation}
  662. u^2=\frac{(1-
  663. \tilde{\omega}_0+2\; \beta_2 \; \tilde{\omega}_0)}{(1-
  664. \tilde{\omega}_0)}
  665. \end{equation}
  666. and R by
  667. \begin{equation}
  668. R=(u+1)^2 \exp{(\tau_{eff})}
  669. -(u-1)^2 \exp{(-\tau_{eff})}
  670. \end{equation}
  671. with
  672. \begin{equation}
  673. \tau_{eff}=\frac{\tau_{N2}}{\mu_0}\sqrt{(1-
  674. \tilde{\omega}_0)(1-\tilde{\omega}_0 + 2 \; \beta_2 \;
  675. \tilde{\omega}_0)}
  676. \end{equation}
  677. where the original formulation for the optical depth
  678. $\tau_{N2}$ by Stephens (1978)
  679. \begin{equation}
  680. \tau_{N2}=2.2346 \; (\log{W_L})^{3.8034}
  681. \end{equation}
  682. is, as for the visible range, approximated by
  683. \begin{equation}
  684. \tau_{N2}= 2 \; (\log{W_L})^{3.9}
  685. \end{equation}
  686. Approximations for the table values of the back
  687. scattering coefficient $\beta_2$ and the single
  688. scattering albedo $\tilde{\omega}_0$ are
  689. \begin{equation}
  690. \beta_2=\frac{f_{b2}\; \sqrt{\mu_0}}{\ln{(3+0.1\;
  691. \tau_{N2})}}
  692. \end{equation}
  693. and
  694. \begin{equation}
  695. \tilde{\omega}_0=1-
  696. f_{o2}\;\mu_0^2\;\ln{(1000/\tau_{N2})}
  697. \end{equation}
  698. where $f_{b2}$ and $f_{o2}$ provide a tuning of the
  699. cloud
  700. properties and are set to default values of $f_{b2}$=0.04
  701. and $f_{o2}$=0.006.
  702. The scattered flux is computed from the cloud albedo
  703. ${\cal R}_{C2}$ which is given by
  704. \begin{equation}
  705. {\cal R}_{C2}=[\exp{(\tau_{eff})}-\exp{(-\tau_{eff})}]
  706. \; \frac{u^2-
  707. 1}{R}
  708. \end{equation}
  709. \subsubsection*{Vertical integration}
  710. For the vertical integration, the adding method is used
  711. (e.g. Lacis and Hansen 1974, Stephens 1984). The
  712. adding method calculates the reflection ${\cal R}_{ab}$
  713. and transmission ${\cal T}_{ab}$ functions for a
  714. composite layer formed by combining two layers one
  715. (layer $a$) on top of the other (layer $b$). For the
  716. downward beam ${\cal R}_{ab}$ and ${\cal T}_{ab}$ are given by
  717. \begin{eqnarray}\label{LH31}
  718. {\cal R}_{ab} & = &{\cal R}_{a}+{\cal T}_{a}{\cal R}_b{\cal T}^{*}_a/(1-
  719. {\cal R}^*_a{\cal R}_b) \nonumber \\
  720. {\cal T}_{ab} & = &{\cal T}_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
  721. \end{eqnarray}
  722. where the denominator accounts for multiple
  723. reflections between the two layers. For illumination
  724. form below ${\cal R}^*_{ab}$ and ${\cal T}^*_{ab}$ are given by
  725. \begin{eqnarray}\label{LH32}
  726. {\cal R}^*_{ab} & = &{\cal R}^*_b+{\cal T}^*_b{\cal R}^*_a{\cal T}_b/(1-
  727. {\cal R}^*_a{\cal R}_b) \nonumber \\
  728. {\cal T}^*_{ab} & = &{\cal T}^*_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
  729. \end{eqnarray}
  730. The following four steps are carried out to obtain the
  731. radiative upward and downward fluxes at the boundary
  732. between two layers from which the total flux and the
  733. absorption (heating rates) are calculated:
  734. 1) ${\cal R}_l$ and ${\cal T}_l$, $l=1, L$ are computed for each
  735. layer and both spectral regions according to the
  736. parameterizations.
  737. 2) The layers are added, going down, to obtain
  738. ${\cal R}_{1,l}$ and ${\cal T}_{1,l}$ for $L=2,L+1$ and
  739. ${\cal R}^*_{1,l}$ and ${\cal T}^*_{1,l}$ for $L=2,L$.
  740. 3) Layers are added one at the time, going up, to obtain
  741. ${\cal R}_{L+1-l,L+1}$, $l=1,L-1$ starting with the ground
  742. layer, ${\cal R}_{L+1} = {\cal R}_S$ which is the surface albedo and
  743. ${\cal T}_{L+1}$=0.
  744. 4) The upward $F^{\uparrow SW}_l$ and downward
  745. $F^{\downarrow SW}_l$ short wave radiative fluxes at
  746. the interface of layer
  747. ($1,l$) and layer (l+1,L+1) are determined from
  748. \begin{eqnarray}
  749. F^{\uparrow SW}_l & = &{\cal T}_{1,l}\;{\cal R}_{l+1,L+1}/(1-
  750. {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1}) \nonumber \\
  751. F^{\downarrow SW}_l & = &{\cal T}_{1,l}/(1-
  752. {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1})
  753. \end{eqnarray}
  754. The net downward flux at
  755. level
  756. $l$, $F_l^{\updownarrow SW}$, is given by
  757. \begin{equation}
  758. F_l^{\updownarrow SW}=F_l^{\downarrow SW}-F_l^{\uparrow SW}
  759. \end{equation}
  760. Finally, the temperature tendency for the layer between
  761. $l$ and $l+1$ is computed:
  762. \begin{equation}
  763. \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
  764. \frac{g}{c_p
  765. \, p_S}\frac{F_{l+1}^{\updownarrow SW}-F_{l}^{\updownarrow SW}}{\Delta
  766. \sigma}
  767. \end{equation}
  768. \newpage
  769. \subsubsection{Long Wave Radiation}
  770. {\bf Clear sky}
  771. For the clear sky long wave radiation, the broad band
  772. emissivity method is employed (see, for example,
  773. Manabe and M\"oller 1961, Rodgers 1967, Sasamori
  774. 1968, Katayama 1972, Boer et al. 1984).
  775. Using the broad band transmissivities
  776. ${\cal T}_{(z,z^{\prime})}$ between level $z$ and level
  777. $z^{\prime}$, the upward and downward fluxes at
  778. level
  779. $z$, $F^{\uparrow LW}(z)$ and
  780. $F^{\downarrow LW}(z)$, are
  781. \begin{equation}
  782. \begin{array}{rcl}
  783. \D F^{\uparrow LW}(z) & = &\D {\cal A}_S \, B(T_S)
  784. {\cal T}_{(z,0)} +
  785. \int\limits_0^z B(T^{\prime}) \frac{\partial
  786. {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
  787. \\
  788. & & \\
  789. \D F^{\downarrow LW}(z) & = & \D \int\limits_{\infty}^z
  790. B(T^{\prime}) \frac{\partial
  791. {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
  792. \end{array}
  793. \end{equation}
  794. where $B(T)$ denotes the black body flux ($ B(T) = \sigma_{SB}
  795. T^4$) and
  796. ${\cal A}_S$ is the surface emissivity. The effect
  797. of water vapor, carbon dioxide and ozone is included in the
  798. calculations of the transmissivities ${\cal T}$
  799. (with ${\cal T} = 1 - {\cal A}$, where ${\cal A}$ is the
  800. absoroptivity/emissivity). The transmissivities for water vapor
  801. ${\cal T}_{H_2O}$, carbon dioxide ${\cal T}_{CO_2}$ and
  802. ozone ${\cal T}_{O_3}$ are taken from Sasamori (1968):
  803. \begin{equation}\label{taus}
  804. \begin{array}{lcl}
  805. \D {\cal T}_{H_2O}& = & \D 1-0.846\;(u_{H_2O}+3.59 \cdot 10^{-5})^{0.243}
  806. -6.90\cdot 10^{-2} \\
  807. && \\
  808. \multicolumn{3}{l}{\mbox{for } u_{H_2O} < 0.01\mbox{ g, and }}\\
  809. && \\
  810. \D {\cal T}_{H_2O}& = & \D 1-0.240\log{(u_{H_2O}+0.010)}+0.622 \\
  811. && \\
  812. \multicolumn{3}{l}{\mbox{else.}}\\
  813. &&\\
  814. &&\\
  815. \D {\cal T}_{CO_2}& = & \D 1-0.0825\;u_{CO_2}^{0.456}\\
  816. && \\
  817. \multicolumn{3}{l}{\mbox{for } u_{CO_2} \le 0.5 \mbox{ cm, and }}\\
  818. && \\
  819. \D {\cal T}_{CO_2}& = & \D 1-0.0461\log{(u_{CO_2})}+0.074 \\
  820. && \\
  821. \multicolumn{3}{l}{\mbox{else.}}\\
  822. &&\\
  823. &&\\
  824. \D {\cal T}_{O_3} & = & \D 1-0.0122\log{(u_{O_3}+6.5 \cdot 10^{-4})}+0.0385
  825. \end{array}
  826. \end{equation}
  827. where $u_{H_2O}$, $u_{CO_2}$ and $u_{O_3}$ are the effective
  828. amounts of water vapor, carbon
  829. dioxide and ozone, respectively, which are obtained from:
  830. \begin{equation}
  831. u(p, p^{\prime}) =
  832. \frac{f}{g}
  833. \int\limits_{p}^{p^{\prime}} q_X
  834. \left(\frac{p^{\prime\prime}}{p_0}\right)
  835. dp^{\prime\prime}
  836. \end{equation}
  837. where $q_X$ denotes the mixing
  838. ratios [kg/kg] of water vapor, carbon dioxide and ozone,
  839. respectively, $g$ is the gravitational acceleration, $p$
  840. is pressure and $p_0$~=~1000 hPa is the reference
  841. pressure. The factor $f$ is used to transfer the units to g/cm$^2$
  842. for $u_{H_2O}$ and cm-STP for
  843. $u_{CO_2}$ and cm-STP for $u_{O_3}$, which are used in Eq.~\ref{taus}.
  844. To account for the overlap between
  845. the water vapor and the carbon dioxide bands near
  846. 15~$\mu$m, the CO$_2$ absorption is
  847. corrected by a H$_2$O transmission at 15~$\mu$m,
  848. ${\cal T}_{H_2O}^{15\mu m}$, with
  849. ${\cal T}_{H_2O}^{15\mu
  850. m}$ given by
  851. \begin{equation}
  852. {\cal T}_{H_2O}^{15\mu m} = 1.33-0.832 \, (u_{H_2O}
  853. +
  854. 0.0286)^{0.26}
  855. \end{equation}
  856. {\bf Clouds}
  857. Clouds can be either treated as gray bodies with a prescribed cloud flux emissivity (grayness) or
  858. the cloud flux emissivity is obtained from the cloud liquid water contend. If the cloud flux
  859. emissivity (grayness) ${\cal A}^{cl}$ is externally prescribed, the value is
  860. attributed to each cloud layer. Otherwise, which is the default, ${\cal A}^{cl}$ is calculated
  861. from the cloud liquid water (e.g. Stephens 1984)
  862. \begin{equation}
  863. {\cal A}^{cl}=1.-\exp{(-\beta_d \; k^{cl} \; W_L)}
  864. \end{equation}
  865. where $\beta_d$~=~1.66 is the diffusivity factor, $k^{cl}$ is the mass absorption coefficent
  866. (with
  867. is set to a default value of 0.1~m$^2$/g (Slingo and Slingo 1991)) and $W_L$ is the
  868. cloud liquid water path.
  869. For a single layer
  870. between $z$ and $z^{\prime}$ with fractional cloud
  871. cover
  872. $cc$, the total transmissivity ${\cal T}^*_{(z, z^{\prime})}$
  873. is
  874. given by
  875. \begin{equation}
  876. {\cal T}^*_{(z, z^{\prime})} = {\cal T}_{(z, z^{\prime})} \, (1 - cc \,
  877. {\cal A}^{cl})
  878. \end{equation}
  879. where ${\cal T}_{(z, z^{\prime})}$ is the clear sky
  880. transmissivity. When there is more than one cloud
  881. layer
  882. with fractional cover, random overlapping of the
  883. clouds is
  884. assumed and ${\cal T}^*_{(z, z^{\prime})}$ becomes
  885. \begin{equation}
  886. {\cal T}^*_{(z, z^{\prime})} ={\cal T}_{(z, z^{\prime})} \, \prod_j (1
  887. - cc_j \, {\cal A}^{cl}_{j})
  888. \end{equation}
  889. where the subscript $j$ denotes the cloud layers.
  890. \subsubsection*{Vertical discretization}
  891. To compute the temperature tendency for a model
  892. layer resulting form the divergence of the radiative
  893. fluxes, the vertical discretization scheme of Chou et al. (2002) is used. The upward and
  894. downward fluxes, $F_l^{\uparrow LW}$ and $F_l^{\downarrow LW}$, at
  895. level $l$, which is the interface between two model
  896. layers, are computed from
  897. \begin{equation}\label{rad1}
  898. \begin{array}{rcllcl}
  899. \D F_l^{\uparrow LW}& = &\D \sum\limits_{l^\prime =
  900. l}^{L} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l ,
  901. l^\prime)}-
  902. {\cal T}^*_{(l^\prime+1,l)}] & & \D \;\; l=1, \cdots , L\\
  903. &&&&\\
  904. && \D +{\cal T}^*_{(l ,L+1)} \; F_{L+1}^{\uparrow LW} & &\\
  905. & & & &\\
  906. &&&&\\
  907. \D F_l^{\downarrow LW}& = &\D
  908. \sum\limits_{l^\prime=1}^{l-
  909. 1} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l^\prime+1,l)}-{\cal T}^*_{(l^\prime,l)}] & & \D
  910. \;\; l=2,
  911. \cdots , L+1
  912. \end{array}
  913. \end{equation}
  914. where ${\cal T}^*_{(l,l^{\prime})}$ denotes the
  915. transmissivity of
  916. the layer from level $l$ to level $ l^{\prime}$ (see
  917. above)
  918. and $B_{l+\frac{1}{2}}$ is the black body flux for
  919. level
  920. $l+\frac{1}{2}$. The downward flux at the top of the atmosphere, $F_0^{\downarrow
  921. LW}$, and the upward flux at the surface ,$F_{L+1}^{\uparrow LW}$, are given by
  922. \begin{equation}
  923. \begin{array}{rcl}
  924. \D F_0^{\downarrow LW} & = & \D 0 \\
  925. &&\\
  926. \D F_{L+1}^{\uparrow LW} & = & \D {\cal A}_S \; B(T_S) + (1-{\cal A}_S) \;
  927. F_{L+1}^{\downarrow LW}
  928. \end{array}
  929. \end{equation}
  930. where ${\cal A}_S$ denotes the surface emissivity and $T_S$ is the surface temperature. Note,
  931. that for a more convenient discription of the scheme,
  932. $l+\frac{1}{2}$
  933. denotes a so called full level, where the temperatures
  934. are
  935. defined. This may be in contrast to the convention in
  936. most of the other sections where a full
  937. level is indicated by $l$.
  938. Eqs.~\ref{rad1} can be rearranged to give
  939. \begin{equation}\label{vertical1}
  940. \begin{array}{rclcl}
  941. \D F_l^{\uparrow LW}& = &\D B_{l+\frac{1}{2}} +
  942. \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
  943. l)} \,
  944. [B_{l^\prime+\frac{1}{2}} - B_{l^\prime-
  945. \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
  946. &&&&\\
  947. & & + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
  948. & & & & \\
  949. &&&&\\
  950. \D F_{l^\prime}^{\downarrow LW}& = & \D
  951. B_{l^\prime-
  952. \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1}{\cal T}^*_{(l^\prime , l)} \,
  953. [B_{l+\frac{1}{2}} -
  954. B_{l-\frac{1}{2}}]
  955. & & \D \;\; l^\prime=2, \cdots , L+1
  956. \end{array}
  957. \end{equation}
  958. with the boundary conditions
  959. \begin{equation}
  960. \begin{array}{rcl}
  961. \D B_{L+\frac{3}{2}}& = & \D {\cal A}_S \,
  962. B(T_S) \\
  963. &&\\
  964. \D B_{\frac{1}{2}} & = & \D 0
  965. \end{array}
  966. \end{equation}
  967. The net downward flux at
  968. level
  969. $l$, $F_l^{\updownarrow LW}$, is given by
  970. \begin{equation}
  971. F_l^{\updownarrow LW}=F_l^{\downarrow LW}-F_l^{\uparrow LW}
  972. \end{equation}
  973. Finally, the temperature tendency for the layer between
  974. $l$ and $l+1$ is computed:
  975. \begin{equation}
  976. \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
  977. \frac{g}{c_p
  978. \, p_S}\frac{F_{l+1}^{\updownarrow LW}-F_{l}^{\updownarrow LW}}{\Delta
  979. \sigma}
  980. \end{equation}
  981. {\bf Emission of a layer}
  982. As pointed out by Chou et al.~(2002), the difference between the upward and downward
  983. emission of a layer will be large, if the layer is rather opaque and the temperature range across
  984. the layer is large. This, in particular, holds for coarse vertical resolution as in the default version
  985. of the model. Therefore, the upward and the downward emission of a layer is computed
  986. separately following the ideas of Chou et al.~(2002):
  987. The contribution of the upward flux at level $p$ from the adjecant layer below can be written as
  988. \begin{equation} \label{FUPLW}
  989. \Delta F^{\uparrow LW}(p) = -\int\limits^{p+\Delta p}_{p} B(p^{\prime}) \; \frac{\partial
  990. {\cal T}_{(p,p^{\prime})}}{\partial p^{\prime}} \; dp^{\prime} = B^u \; (1-{\cal T}_{
  991. (p+\Delta p, p)})
  992. \end{equation}
  993. where $\Delta p$ is the thickness of the adjacent layer, $B^u$ is the effective Planck flux for the
  994. adjacent layer, and ${\cal T}_{(p+\Delta p, p)}$ is the flux transmittance between $p$ and $p
  995. +\Delta p$. Assuming that the Planck function varies linearly with pressure and the
  996. transmittance decreases exponentially with pressure away from $p$ it follows
  997. \begin{equation}
  998. B(p^{\prime})= B(p) + \frac{(B(p)-B(p+\Delta p)) (p^{\prime} - p)}{\Delta p}
  999. \end{equation}
  1000. and
  1001. \begin{equation}
  1002. {\cal T}_{(p, p^{\prime})} = \exp{(-c\; (p^{\prime}-p))}
  1003. \end{equation}
  1004. with $c$ ia a constant. From Eq.~\ref{FUPLW} the effective Planck flux for the adjacent layer
  1005. $B^u$ is
  1006. \begin{equation}
  1007. B^u=\frac{B(p)-B(p+\Delta p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
  1008. +\frac{B(p)-
  1009. B(p+\Delta p)}{\ln({\cal T}_{(p+\Delta p, p)})}
  1010. \end{equation}
  1011. Similarly, for the downward flux at the lower boundary of the layer, the effective Planck
  1012. function of the layer $B^d$ is
  1013. \begin{equation}
  1014. B^d=\frac{B(p+\Delta p)-B(p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
  1015. +\frac{B(p+\Delta
  1016. p)-B(p)}{\ln({\cal T}_{(p+\Delta p, p)})}
  1017. \end{equation}
  1018. Replacing the respective Planck functions in Eqs.~\ref{vertical1} by $B^u$ and $B^d$ results
  1019. in
  1020. \begin{equation}\label{vertical2}
  1021. \begin{array}{rclcl}
  1022. \D F_l^{\uparrow LW}& = &\D B^u_{l+\frac{1}{2}} +
  1023. \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
  1024. l)} \,
  1025. [B^u_{l^\prime+\frac{1}{2}} - B^u_{l^\prime-
  1026. \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
  1027. &&&&\\
  1028. & & \D + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
  1029. & & & & \\
  1030. &&&&\\
  1031. \D F_{l^\prime}^{\downarrow LW}& = & \D
  1032. B^d_{l^\prime-
  1033. \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1} {\cal T}^*_{(l^\prime , l)} \,
  1034. [B^d_{l+\frac{1}{2}}
  1035. -
  1036. B^d_{l-\frac{1}{2}}]
  1037. & & \D \;\; l^\prime=2, \cdots , L+1
  1038. \end{array}
  1039. \end{equation}
  1040. where
  1041. \begin{equation}
  1042. \begin{array}{lcl}
  1043. \D B^d_{l^{\prime}-\frac{1}{2}} & = & \D \frac{B_{l^{\prime}}-B_{l^{\prime}-1} \;
  1044. {\cal T}_{(l^{\prime},l^{\prime}-1)}}{1-{\cal T}_{(l^{\prime},l^{\prime}-1)}} +
  1045. \frac{B_{l^{\prime}} - B_{l^{\prime}-1}}{\ln({\cal T}_{(l^{\prime},l^{\prime}-1)})} \\
  1046. && \\
  1047. \D B^u_{l^{\prime}-\frac{1}{2}} & = & \D (B_{l^{\prime}} + B_{l^{\prime}-1} ) -
  1048. B^d_{l^{\prime}-\frac{1}{2}}
  1049. \end{array}
  1050. \end{equation}
  1051. For the calculation of the effective Plank function, the mean transmissivity for a layer partially
  1052. filled with clouds is given by
  1053. \begin{equation}
  1054. {\cal T}_{(l^{\prime},l^{\prime}-1)} = f_{{\cal T}} \; {\cal
  1055. T}^{cs}_{(l^{\prime},l^{\prime}-1)} \; (1 -
  1056. cc_{(l^{\prime},l^{\prime}-1)}{\cal A}^{cl}_{(l^{\prime},l^{\prime}-1)})
  1057. \end{equation}
  1058. with the cloud emissivity ${\cal A}^{cl}$ and the clear sky transmissivity ${\cal T}^{cs}$
  1059. being defined above, and the factor $f_{{\cal T}}$ provides a tuning opportunity.
  1060. When a model layer spans a region where the temperature lapse rate changes signs, the linearity
  1061. of $B$ with respect to $p$ can not longer be assumed and $B^d$ and $B^u$ are simply
  1062. computed from
  1063. \begin{equation}
  1064. B^u_{l+\frac{1}{2}}=B^d_{l-\frac{1}{2}}= 0.5 \; B_{l+\frac{1}{2}} + 0.25 \; (B_{l} +
  1065. B_{l^{\prime}})
  1066. \end{equation}
  1067. \subsubsection{Ozone}
  1068. Ozone concentration is prescribed. Either a three dimensional ozone distribution can be
  1069. externally provided or an idealized annual cycle of ozone concentration can be used. The
  1070. idealized distribution bases on the analytic ozone distribution of Green (1964):
  1071. \begin{equation}
  1072. u_{O_3}(h)=\frac{a+a \; \exp{(-b/c)}}{1+\exp((h-b)/c)}
  1073. \end{equation}
  1074. where $u_{O_3}(h)$ is the ozone amount [cm-STP] in a vertical column above the altitude $h$,
  1075. $a$ is the total ozone amount in a vertical column above the ground, $b$ the altitude at which
  1076. the ozone concentration has its maximum. While for $a$~=~0.4~cm, $b$~=~20~km and
  1077. $c$~=~5~km
  1078. this distribution fits close to the mid-latitude winter ozone distribution, an annual cycle and a
  1079. latitudinal dependence is introduced by varying $a$ with time and latitude.
  1080. \subsubsection{Additional Newtonian cooling}
  1081. For the standard setup with a vertical resolution of five equally spaced sigma-levels, the model
  1082. produces a strong bias in the stratospheric (uppermost level) temperatures. This may be
  1083. attributed to the insufficient representation of the stratosphere and its radiative and dynamical
  1084. processes. The bias also effects the tropospheric circulation leading, for example, to a
  1085. misplacement of the dominant pressure centers. To enable the simulation of a more realistic
  1086. tropospheric climate, a Newtonian cooling can be applied to the uppermost level. Using this
  1087. method, the model temperature $T$ is relaxed towards a externally given distribution of the
  1088. temperature $T_{NC}$ which results in additional temperature tendencies $\dot{T}$ for the
  1089. uppermost model level of
  1090. \begin{equation}
  1091. \dot{T}=\frac{T_{NC}-T}{\tau_{NC}}
  1092. \end{equation}
  1093. where $\tau_{NC}$ is the time scale of the relaxation, which has a default value of ten days.
  1094. \newpage
  1095. \subsection{Moist Processes and Dry Convection}
  1096. \subsubsection{Correction of Negative Humidity}
  1097. Local negative values of specific humidity are an
  1098. artifact of spectral models. In the model, a simple
  1099. procedure corrects these negative values by
  1100. conserving the global amount of water. The correction of negative moisture is performed at the
  1101. beginning of the grid-point
  1102. parameterization scheme. A negative
  1103. value of specific humidity is reset to zero.
  1104. Accumulation of all corrections defines a correction
  1105. factor. A hierarchical scheme of three steps is used. First, the correction is done within an
  1106. atmospheric column only. If there are atmospheric columns without sufficient moisture, a
  1107. second correction step is done using all grid points of the respective latitude. Finally, if there is
  1108. still negative humidity remaining, a global correction is performed.
  1109. \subsubsection{Saturation Specific Humidity}
  1110. For parameterizations of moist processes like cumulus
  1111. convection and large scale condensation
  1112. the computation of the saturation specific humidity
  1113. $q_{sat}(T)$ and its derivative with respect
  1114. to temperature $dq_{sat}(T)/dT$ is needed at several
  1115. places. In
  1116. the model, the Tetens formula (Lowe 1977) is used to
  1117. calculate the saturation pressure
  1118. $e_{sat} (T)$ and its derivative with respect to
  1119. temperature $de_{sat}(T)/dT$:
  1120. \begin{equation}
  1121. \begin{array}{rcl}
  1122. \D e_{sat}(T) & = & \D a_1 \exp{\left(a_2 \,
  1123. \frac{T-T_0}{T-a_3}\right)} \\
  1124. && \\
  1125. \D \frac{de_{sat}(T)}{dT} & = & \D \frac{a_2 \, (T_0
  1126. - a_3)}{(T-a_3)^2} \, e_{sat}(T)
  1127. \end{array}
  1128. \end{equation}
  1129. with the constants $a_1$~=~610.78,
  1130. $a_2$~=~17.2693882, $a_3$~=~35.86 and
  1131. $T_0$~=~273.16. The
  1132. saturation specific humidity $q_{sat}(T)$ and its
  1133. derivative $dq_{sat}(T)/dT$ are given by
  1134. \begin{equation}\label{qsat}
  1135. \begin{array}{rcl}
  1136. \D q_{sat}(T) & = & \D \frac{\epsilon \,
  1137. e_{sat}(T)}{p-(1-\epsilon )\, e_{sat}
  1138. (T)} \\
  1139. &&\\
  1140. \D \frac{dq_{sat}(T)}{dT} & = & \D \frac{p \,
  1141. q_{sat}(T)}{p-(1-\epsilon)\, e_{sat}
  1142. (T)} \frac{de_{sat}(T)}{dT}\\
  1143. \end{array}
  1144. \end{equation}
  1145. where $p$ is the pressure and $\epsilon$ is the ration
  1146. of the gas constants
  1147. for dry air $R_d$ and water vapor $R_v$ ($\epsilon =
  1148. R_d / R_v$).
  1149. \subsubsection{Cumulus Convection}
  1150. The cumulus convection is parameterized by a
  1151. Kuo-type convection scheme (Kuo 1965, 1974)
  1152. with some modifications to the original Kuo-scheme.
  1153. The Kuo-scheme considers the effect of
  1154. cumulus convection on the large scale flow applying
  1155. the following assumptions. Cumulus
  1156. clouds are forced by mean low level convergence in
  1157. regions of conditionally unstable
  1158. stratification. The production of cloud air is
  1159. proportional to the net amount of moisture
  1160. convergence into one grid box column plus the
  1161. moisture supply by surface evaporation. In a
  1162. modification to the original scheme, the implemented
  1163. scheme also considers clouds which
  1164. originate at upper levels where moisture convergence
  1165. is observed. This type of cloud may occur
  1166. in mid-latitude frontal regions. Therefore, only the
  1167. moisture contribution which takes place in
  1168. the layer between the lifting level and the top of the
  1169. cloud is used instead of the whole column.
  1170. Thus, the total moisture supply $I$ in a period $2
  1171. \Delta t$ is given by
  1172. \begin{equation}\label{cli}
  1173. I= \frac{2 \Delta t \, p_S}{g}
  1174. \int\limits_{\sigma_{Top}}^{\sigma_{Lift}} A_q \, d
  1175. \sigma
  1176. \end{equation}
  1177. where $A_q$ is the moisture convergence plus the
  1178. surface evaporation if the lifting level
  1179. $\sigma_{Lift}$ is the lowermost model level.
  1180. $\sigma_{Top}$ is the cloud top level, $p_S$ is
  1181. the surface pressure and $g$ is the gravitational
  1182. acceleration. Lifting level, cloud base and cloud
  1183. top are determined as follows. Starting form the
  1184. lowermost level, the first level with positive
  1185. moisture supply $A_q$ is considered as a lifting level. If the lowermost level $L$ is considered
  1186. to be a lifting level and the surface layer is dry adiabatic unstable ($\theta_S > \theta_L$
  1187. where $\theta$ denotes the potential temperature), the convection starts from the surface.
  1188. Air from the lifting level ($l+1$) is lifted dry
  1189. adiabatically up to the next level ($l$) by keeping its
  1190. specific humidity. A cloud base is
  1191. assumed to coincide with level $l+\frac{1}{2}$ if the
  1192. air is saturated at $l$. Above the cloud
  1193. base the air is lifted moist adiabatically. Distribution of
  1194. temperature $T_{cl}$ and of moisture
  1195. $q_{cl}$ in the cloud is found by first lifting the air
  1196. dry adiabatically
  1197. \begin{equation}\label{clad}
  1198. \begin{array}{rcl}
  1199. \D (T_{cl})_l^{Ad} & = & \D (T_{cl})_{l+1}
  1200. \left(\frac{\sigma_l}{\sigma_{l+1}}\right)^{\frac{R_
  1201. d}{c_{pd}}} \\
  1202. &&\\
  1203. \D (q_{cl})_l^{Ad} & = & \D (q_{cl})_{l+1}
  1204. \end{array}
  1205. \end{equation}
  1206. and then by correcting temperature and moisture values
  1207. due to the condensation of water vapor
  1208. \begin{equation}\label{ccc1}
  1209. \begin{array}{rcl}
  1210. \D (T_{cl})_l & = & \D (T_{cl})_l^{Ad} +
  1211. \frac{L}{c_p} \, \frac{(q_{cl})_l^{Ad} - q_{sat}
  1212. [(T_{cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
  1213. \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}} \\
  1214. &&\\
  1215. \D (q_{cl})_l & = & \D (q_{cl})_l^{Ad}
  1216. -\frac{(q_{cl})_l^{Ad} - q_{sat}[(T_
  1217. {cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
  1218. \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}}
  1219. \end{array}
  1220. \end{equation}
  1221. where the suturation specific humidity $q_{sat}$ and
  1222. its derivative with respect to temperature
  1223. $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
  1224. $L$ is
  1225. either the latent heat of vapourisation $L_v$ or
  1226. the latent heat of sublimation $L_s$ depending on the
  1227. temperature.
  1228. $c_p$ is the specific
  1229. heat for moist air at constant pressure ($c_p= c_{pd} \,
  1230. [1+(c_{pv}/c_{pd}-1)\, q]$ where
  1231. $c_{pd}$ and $c_{pv}$ are the specific heats at
  1232. constant pressure for dry air and water vapor,
  1233. respectively) and $R_d$ in Eq.~\ref{clad} is the gas
  1234. constant for dry air.
  1235. For reasons of accuracy the calculation (\ref{ccc1}) is
  1236. repeated once where $(T_{cl})^{Ad}$
  1237. and $(q_{cl})^{Ad}$ are now replaced by the results
  1238. of the first iteration.
  1239. Cumulus clouds are assumed to exist only if the
  1240. environmental air with temperature $T_e$ and
  1241. moisture $q_e$ is unstable stratified with regard to the
  1242. rising cloud parcel:
  1243. \begin{equation}
  1244. (T_{cl})_l > (T_e)_l
  1245. \end{equation}
  1246. The top of the cloud $\sigma_{Top}$ is then defined
  1247. as
  1248. \begin{equation}
  1249. \sigma_{Top}=\sigma_{l+\frac{1}{2}} \; \mbox{if }
  1250. \left\{ \begin{array}{lcll} (T_{cl})_l &
  1251. \le &
  1252. (T_{e})_l & \mbox{and} \\ &&& \\ (T_{cl})_{l+1} &
  1253. > & (T_{e})_{l+1} & \end{array}
  1254. \right.
  1255. \end{equation}
  1256. Cumulus clouds do exist only if the net moisture
  1257. accession $I$ as given by Eq.~\ref{cli} is
  1258. positive.
  1259. Once this final check has been done, the heating and
  1260. moistening of the environmental air and
  1261. the
  1262. convective rain are computed.
  1263. In the model either the original scheme proposed by
  1264. Kuo (1968) or the modified scheme with
  1265. the parameter $\beta$ (Kuo 1974) can be chosen,
  1266. where $\beta$ determines the partitioning of
  1267. heating and moistening of the environmental air. In the
  1268. scheme without $\beta$ the surplus $P$
  1269. of total energy of the cloud against the environmental
  1270. air is given by
  1271. \begin{equation}
  1272. P=\frac{p_s}{g}
  1273. \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (c_p\,
  1274. (T_{cl} -T_{e}) + L\,
  1275. (q_{sat}(T_e)-q_{e})) d\sigma
  1276. \end{equation}
  1277. The clouds produced dissolve instantaneously by
  1278. artificial mixing with the environmental air,
  1279. whereby the environment is heated and moistened by
  1280. \begin{equation}\label{handm}
  1281. \begin{array}{rcl}
  1282. \D (\Delta T)^{cl} & = & \D a \, (T_{cl} -T _e) \\
  1283. &&\\
  1284. \D (\Delta q)^{cl} & = & \D a \, (q_{sat}(T_e) -q _e)
  1285. \end{array}
  1286. \end{equation}
  1287. where $a$ is the fractional cloud area being produced
  1288. by the moisture supply:
  1289. \begin{equation}
  1290. a=L\, \frac{I}{P}
  1291. \end{equation}
  1292. In the scheme with $\beta$ the fraction 1-$\beta$ of the
  1293. moisture is condensed, while the
  1294. remaining fraction $\beta$ is stored in the atmosphere.
  1295. The parameter $\beta$ depends on the
  1296. mean relative humidity and, in the present scheme, is
  1297. given by
  1298. \begin{equation}
  1299. \beta = \left( 1 -
  1300. \frac{1}{\sigma_{Base}-\sigma_{Top}}
  1301. \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
  1302. \frac{q_e}{q_{sat}(T_e)} d\sigma \right)^3
  1303. \end{equation}
  1304. Instead of Eq.~\ref{handm}, the temperature and
  1305. moisture tendencies are now
  1306. \begin{equation}\label{handm2}
  1307. \begin{array}{rcl}
  1308. \D (\Delta T)^{cl} & = & \D a_T \, (T_{cl} -T _e) \\
  1309. &&\\
  1310. \D (\Delta q)^{cl} & = & \D a_q \, (q_{sat}(T_e) -q
  1311. _e)
  1312. \end{array}
  1313. \end{equation}
  1314. where $a_T$ and $a_q$ are given by
  1315. \begin{equation}
  1316. \begin{array}{rcl}
  1317. \D a_T & = & \D \frac{(1-\beta )\, L\, I }{c_p\,
  1318. \frac{p_S}{g}\,
  1319. \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (T_{cl}
  1320. - T_e)\, d\sigma} \\
  1321. &&\\
  1322. \D a_q & = & \D \frac{\beta \, I }{\frac{p_S}{g}\,
  1323. \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
  1324. (q_{sat}(T_e) - q_e) \, d\sigma}
  1325. \end{array}
  1326. \end{equation}
  1327. The final tendencies for moisture $\partial q / \partial
  1328. t$ and temperature $\partial T / \partial t$
  1329. which enter the diabatic leap frog time step are given
  1330. by
  1331. \begin{equation}
  1332. \begin{array}{rcl}
  1333. \D \frac{\partial q}{\partial t} & = & \D \frac{(\Delta
  1334. q)^{cl}}{2 \Delta t} - {\delta}^{cl} A_q
  1335. \\
  1336. && \\
  1337. \D \frac{\partial T}{\partial t} & = & \D \frac{(\Delta
  1338. T)^{cl}}{2 \Delta t}
  1339. \end{array}
  1340. \end{equation}
  1341. where ${\delta}^{cl}$ is specified by
  1342. \begin{equation}
  1343. {\delta}^{cl} = \left\{ \begin{array}{ll} 1 & \mbox{if
  1344. } \; \sigma_{Top} \le \sigma \le
  1345. \sigma_{Lift} \\ & \\ 0 & \mbox{otherwise}
  1346. \end{array} \right.
  1347. \end{equation}
  1348. and $2\Delta t$ is the leap frog time step of the model.
  1349. The convective precipitation rate
  1350. $P_{c}$ [m/s] of each cloud layer is
  1351. \begin{equation}
  1352. P_{c} = \frac{c_p\, \Delta p}{L\, g \, \rho_{H_2O}}
  1353. \frac{(\Delta T)^{cl}}{2\Delta t}
  1354. \end{equation}
  1355. where $\Delta p$ is the pressure thickness of the layer
  1356. and $\rho_{H_2O}$ is the density of
  1357. water. $(\Delta T)^{cl}$ is computed from
  1358. Eq.~\ref{handm} or Eq.~\ref{handm2},
  1359. respectively.
  1360. \subsubsection{Large Scale Precipitation}
  1361. Large scale condensation occurs if the air is
  1362. supersaturated ($q > q_{sat}(T)$). Condensed water
  1363. falls out
  1364. instantaneously as precipitation. No storage of water
  1365. in clouds is considered. An iterative procedure is used
  1366. to compute final
  1367. values ($T^*$, $q^*$) starting from the
  1368. supersaturated state ($T$, $q$):
  1369. \begin{equation}\label{lsp1}
  1370. \begin{array}{rcl}
  1371. \D T^* & = & \D T + \frac{L}{c_p} \, \frac{q -
  1372. q_{sat}
  1373. (T)}{1+\frac{L}{c_p}\, \frac{dq_{sat}(T)}{dT}} \\
  1374. &&\\
  1375. \D q^* & = & \D q -\frac{q -
  1376. q_{sat}(T)}{1+\frac{L}{c_p}\,
  1377. \frac{dq_{sat}(T)}{dT}}
  1378. \end{array}
  1379. \end{equation}
  1380. where the suturation specific humidity $q_{sat}$ and
  1381. its derivative with respect to temperature
  1382. $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
  1383. $L$ is
  1384. either the latent heat of vapourisation or
  1385. the latent heat of sublimation depending on the
  1386. temperature.
  1387. $c_p$ is the specific
  1388. heat for moist air at constant pressure ($c_p= c_{pd} \,
  1389. [1+(c_{pv}/c_{pd}-1)\, q]$ where
  1390. $c_{pd}$ and $c_{pv}$ are the specific heats at
  1391. constant pressure for dry air and water vapor,
  1392. respectively). This calculation is repeated once using
  1393. ($T^*$,
  1394. $q^*$) as the new initial state. Finally, The
  1395. temperature
  1396. and moisture tendencies and the precipitation rate
  1397. $P_{l}$ [m/s] are computed:
  1398. \begin{equation}
  1399. \begin{array}{rcl}
  1400. \D \frac{\partial T}{\partial t} & = &
  1401. \D \frac{T^*-T}{2\Delta t} \\
  1402. &&\\
  1403. \D \frac{\partial q}{\partial t} & = &
  1404. \D \frac{q^*-q}{2\Delta t} \\
  1405. && \\
  1406. \D P_{l} & = & \D \frac{p_S \, \Delta \sigma}{g \,
  1407. {\rho}_{H_2O}} \frac{ (q-q^*)}{2\Delta t}
  1408. \end{array}
  1409. \end{equation}
  1410. where $p_S$ is the surface pressure, $\rho_{H_2O}$
  1411. is
  1412. the density of water, $\Delta \sigma$ is the layer
  1413. thickness and $2\Delta t$ is the leap frog time step of
  1414. the model.
  1415. \subsubsection{Cloud Formation}
  1416. Cloud cover and cloud liquid water content are
  1417. diagnostic quantities. The fractional cloud cover
  1418. of a grid box, $cc$, is parameterized following the ideas of Slingo and Slingo (1991) using the
  1419. relative humidity for the stratiform cloud amount $cc_s$ and the convective precipitation rate
  1420. $P_{c}$ [mm/d] for the convective cloud amount $cc_c$. The latter is given by
  1421. \begin{equation}
  1422. cc_c= 0.245 + 0.125 \ln{(P_c)}
  1423. \end{equation}
  1424. where $0.05 \le cc_c \le 0.8$.
  1425. Before computing the amount of stratiform clouds, the relative humidity $rh$ is multiplied by
  1426. $(1-cc_c)$ to account for the fraction of the grid box covered by convective clouds. If $cc_c \ge
  1427. 0.3$ and the cloud top is higher than $\sigma = 0.4$ ($\sigma=p/p_S)$, anvil cirrus is present
  1428. and the cloud amount is
  1429. \begin{equation}
  1430. cc_s=2\; (cc_c-0.3)
  1431. \end{equation}
  1432. High-, middle- and low-level stratiform cloud amounts are computed from
  1433. \begin{equation}
  1434. cc_s=f_{\omega} \left(\frac{rh-rh_c}{1-rh_c}\right)^2
  1435. \end{equation}
  1436. where $rh_c$ is a level depending critical relative
  1437. humidity. Optionally, a restriction of low-level stratiform cloud amount due to subsidence can
  1438. by introduced by the factor $f_{\omega}$ where $f_{\omega}$ depends on the vertical
  1439. velocity
  1440. $\omega$. In the default version, $f_{\omega}$~=~1.
  1441. Cloud liquid water content $q_{H_2O}$ [kg/kg] is computed according to Kiehl et al. (1996):
  1442. \begin{equation}
  1443. q_{H_2O} = \frac{q^0_{H_2O}}{\rho} \exp{(-z/h_l)}
  1444. \end{equation}
  1445. where the reference value $q^0_{H_2O}$ is $0.21\cdot 10^{-3}$~kg/m$^3$, $\rho$ is the air
  1446. density, $z$ is the height
  1447. and the local cloud water scale height $h_l$~[m] is given by vertically integrated water vapor
  1448. (precipitable water)
  1449. \begin{equation}
  1450. h_l= 700 \ln{\left(1 + \frac{1}{g} \int\limits^{p_s}_0 q dp \; \right)}
  1451. \end{equation}
  1452. \subsubsection{Evaporation of Precipitation and Snow
  1453. Fall}
  1454. Possible phase changes of convective or large scale
  1455. precipitation within the atmosphere or the
  1456. condensational growth of cloud droplets are not
  1457. considered in the model. However, a distinction
  1458. between rain and snow fall at the surface is made. If
  1459. the temperature of the lowermost level
  1460. exceeds the freezing point ($T$~$>$~273.16~K),
  1461. convective and large scale precipitation is
  1462. assumed to be rain, otherwise all precipitation fall out
  1463. as snow.
  1464. \newpage
  1465. \subsubsection{Dry Convective Adjustment}
  1466. Dry convective adjustment is performed for layers which are dry adiabatically unstable, e.g.
  1467. $\partial \theta / \partial p > 0$ where $\theta$ denotes the potential temperature. The adjustment
  1468. is done so that the total sensible heat of the respective column is conserved. Wherever dry
  1469. convection occurs, it is assumed that the moisture is completely mixed by the convective
  1470. process as well. The adjustment is done iteratively. The atmospheric column is scanned for
  1471. unstable regions. A new neutral stable state for the unstable region is computed which consists
  1472. of a potential temperature $\theta_N$ and specific humidity $q_N$:
  1473. \begin{equation}
  1474. \begin{array}{lcl}
  1475. \D \theta_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} T_l \; \Delta\sigma_l}
  1476. {\sum\limits_{l=l_1}^{l_2} \sigma_l^{\kappa} \; \Delta\sigma_l} \\
  1477. &&\\
  1478. \D q_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} q_l \; \Delta\sigma_l}
  1479. {\sum\limits_{l=l_1}^{l_2} \Delta\sigma_l} \\
  1480. \end{array}
  1481. \end{equation}
  1482. where $l_1$ and $l_2$ define the unstable region, $\sigma = (p/p_S)$ is the vertical coordinate,
  1483. $T$ and $q$ are temperature and specific humidity, respectively, and $\kappa$ is
  1484. $R_d$/$c_{pd}$ where $R_d$ and $c_{pd}$ are the gas constant and the specific heat for dry
  1485. air,
  1486. respectively.
  1487. The procedure is repeated starting from the new potential temperatures und moistures until all
  1488. unstable regions are removed. The temperature and moisture tendencies which enter the diabatic
  1489. time steps are then computed from the final $\theta_N$ and $q_N$
  1490. \begin{equation}
  1491. \begin{array}{lcl}
  1492. \D \frac{T_l^{t+\Delta t}-T_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{\theta_N
  1493. \; \sigma_l^{\kappa} -T_l^{t-\Delta t}}{2\Delta t} \\
  1494. &&\\
  1495. \D \frac{q_l^{t+\Delta t}-q_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{q_N - q_l^{t-\Delta
  1496. t}}{2\Delta t}
  1497. \end{array}
  1498. \end{equation}
  1499. \newpage
  1500. \subsection{Land Surface and Soil \label{landmod}}
  1501. The parameterizations for the land surface and the soil
  1502. include the calculation of temperatures
  1503. for the surface and the soil, a soil hydrology and a river
  1504. transport scheme. In addition, surface
  1505. properties like the albedo, the roughness length or the
  1506. evaporation efficiency are provided.
  1507. As, at the moment, coupling to an extra glacier
  1508. module is not available, glaciers are treated like
  1509. other land points, but with surface and soil properties
  1510. appropriate for ice. Optionally, A simple biome model can be used (see AXEL).
  1511. \subsubsection{Temperatures}\label{surtemp}
  1512. The surface temperature $T_S$ is computed from
  1513. the linearized energy balance of the
  1514. uppermost $z_{top}$ meters of the ground:
  1515. \begin{equation} \label{land.1}
  1516. c_{top} \; z_{top} \; \frac{\Delta T_S}{\Delta t}
  1517. = F_S - G + \Delta T_S \; \frac{\partial (Q_a
  1518. -F_g)}{\partial T_S} - F_m
  1519. \end{equation}
  1520. $z_{top}$ is a prescribed parameter and set to a default
  1521. value of $z_{top}$~=~0.20~m.
  1522. $Q_a$ denotes the total heat flux from the atmosphere,
  1523. which consists of the sensible heat flux,
  1524. the latent heat flux, the net short wave radiation and the
  1525. net long wave radiation. $Q_g$ is the flux
  1526. into the deep soil. $Q_a$ and $Q_g$ are defined positive
  1527. downwards. $Q_m$ is the
  1528. snow melt heat flux and $c_{top}$ is the
  1529. volumetric heat capacity. Depending on the snow
  1530. pack, $z_{top}$ can partly or totally consist
  1531. of snow or soil solids:
  1532. $z_{top}=z_{snow}+z_{soil}$. Thus, the heat
  1533. capacity $c_{top}$ is a
  1534. combination of snow and soil heat capacities:
  1535. \begin{equation}
  1536. c_{top} =\frac{ c_{snow} \; c_{soil} \; z_{top}}{c_{snow} \; z_{soil} +
  1537. c_{soil} \; z_{snow}}
  1538. \end{equation}
  1539. The default value of
  1540. $c_{snow}$ is
  1541. 0.6897~$\cdot$~10$^{6}$~J/(kg K) using a snow
  1542. density
  1543. of 330~kg/m$^3$. $c_{soil}$ is set to a default value
  1544. of 2.07~$\cdot$~10$^{6}$~J/(kg K) for
  1545. glaciers and to a value of 2.4~$\cdot$~10$^{6}$~J/(kgK) otherweise.
  1546. Below $z_{top}$ the soil column is discretized into
  1547. $N$ layers with thickness $\Delta z_i$,
  1548. where layer $1$ is the uppermost of the soil
  1549. layers. The default values for the model are $N$~=~5
  1550. and $\Delta z$~=~(0.4~m, 0.8~m, 1.6~m,
  1551. 3.2~m, 6.4~m). The heat flux into layer 1, $Q_g$, is
  1552. given by
  1553. \begin{equation}
  1554. Q_g=\frac{2 k_{1}}{\Delta z_{1}} (T_S - T_{1})
  1555. \end{equation}
  1556. where $k_{1}$ and $T_{1}$ are the thermal
  1557. conductivity and the temperature.
  1558. If the snow depth is greater than $z_{top}$, the
  1559. thermal properties of snow are blended with the
  1560. first soil layer to create a snow/soil layer with
  1561. thickness $z_{snow}-z_{top}+\Delta z_1$. The
  1562. thermal conductivity $k_1$ and heat capacity
  1563. $c_1$ of a snow/soil layer are
  1564. \begin{equation}
  1565. \begin{array}{rcl}
  1566. \D k_1 & = & \D \frac{k_{snow}\; k_{soil}\; (\Delta
  1567. z_1+z_{snow}-z_{top})}{k_{snow}\; \Delta z_1 +
  1568. k_{soil}\; (z_{snow}-z_{top})} \\
  1569. &&\\
  1570. \D c_1 & = & \D \frac{c_{snow}\; c_{soil}\; (\Delta
  1571. z_1+z_{snow}-z_{top})}{c_{snow}\; \Delta z_1 +
  1572. c_{soil}\; (z_{snow}-z_{top})}
  1573. \end{array}
  1574. \end{equation}
  1575. with default values of $k_{snow}$~=~0.31~W/(m K),
  1576. $k_{soil}$~=~2.03~W/(m K) for
  1577. glaciers and $k_{soil}$~=~7~W/(m K) otherweise.
  1578. After the surface temperature $T_S$ has been
  1579. calculated
  1580. from Eq.~\ref{land.1}, snow melts when $T_S$ is
  1581. greater than the freezing temperature $T_{melt}$. In this
  1582. case, $T_S$ is set to $T_{melt}$ and a new atmospheric
  1583. heat
  1584. flux $Q_a(T_{melt})$ is calculated from $Q_a$ and
  1585. $\partial Q_a/\partial T_S$. If the energy inbalance is
  1586. positive ($Q_a(T_{melt}) > c_{top} \; z_{top}\; (T_{melt} -
  1587. T_S^{t})/\Delta t$; where $T_S^{t}$ is the surface
  1588. temperature at
  1589. the previous time step), the
  1590. snow melt heat flux $Q_m$ is
  1591. \begin{equation}\label{melt}
  1592. Q_m=\max(Q_a(T_{melt}) - \frac{c_{top} \; z_{top}}{\Delta
  1593. t} \; (T_{melt} - T_S^{t}), \; \frac{W_{snow} \; L_f}{\Delta t})
  1594. \end{equation}
  1595. where $W_{snow}$ is the mass of the snow water of
  1596. the
  1597. total snow pack and $L_f$ is the latent heat of fusion.
  1598. Any excess of energy is used to warm the soil.
  1599. With the heat flux $F_z$ at depth $z$ of the soil
  1600. \begin{equation}
  1601. F_z = -k \; \frac{\partial T}{\partial z}
  1602. \end{equation}
  1603. one dimensional energy conservation requires
  1604. \begin{equation}
  1605. c\; \frac{\partial T} {\partial t} = - \frac{\partial
  1606. F_z}{\partial
  1607. z}= \frac{\partial}{\partial z} \left [ k \;
  1608. \frac{\partial T}{\partial z} \right]
  1609. \end{equation}
  1610. where $c$ is the volumetric soil heat capacity, $T$
  1611. is the soil temperature, and $k$ is the
  1612. thermal conductivity.
  1613. In the model, thermal properties (temperature,
  1614. thermal conductivity, volumetric heat capacity) are
  1615. defined at the center of each layer. Assuming the
  1616. heat flux from $i$ to the interface $i$ and $i+1$
  1617. equals the heat flux from the interface to $i+1$, the
  1618. heat flux $F_i$ from layer $i$ to layer $i+1$
  1619. (positive downwards) is given by
  1620. \begin{equation}
  1621. F_i= - \frac{2\; k_i\; k_{i+1} (T_i -
  1622. T_{i+1})}{k_{i+1} \; \Delta z_i + k_i\; \Delta z_{i+1}}
  1623. \end{equation}
  1624. The energy balance for layer $i$ is
  1625. \begin{equation}
  1626. \frac{c_i\; \Delta z_i}{\Delta t} \; (T_i^{t+\Delta t} -
  1627. T_i ^{t}) = F_i - F_{i-1}
  1628. \end{equation}
  1629. The boundary conditions are zero flux at the bottom
  1630. of the soil column and heat flux $F_g$ at the top.
  1631. This equation is solved implicitly using fluxes
  1632. $F_i$ evaluated at $t+\Delta t$
  1633. \begin{equation}
  1634. \begin{array}{lclcl}
  1635. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1636. T_i ^{t}) & = &\D \frac{k_i k_{i+1}
  1637. (T_{i+1}^{t+\Delta
  1638. t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
  1639. \Delta z_{i+1}} + G & for & \D i = 1 \\
  1640. & & & & \\
  1641. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1642. T_i ^{t}) & = &\D \frac{k_i k_{i+1}
  1643. (T_{i+1}^{t+\Delta
  1644. t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
  1645. \Delta z_{i+1}} + \frac{k_i k_{i-1} (T_{i-
  1646. 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
  1647. z_i + k_i \Delta z_{i-1}} & for & \D 1 < i < N \\
  1648. & & & & \\
  1649. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1650. T_i ^{t}) & = &\D \frac{k_i k_{i-1} (T_{i-
  1651. 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
  1652. z_i + k_i \Delta z_{i-1}} & for & \D i = N
  1653. \end{array}
  1654. \end{equation}
  1655. resulting in a linear system for the $T_i^{t+\Delta
  1656. t}$.
  1657. \subsubsection{Soil Hydrology}\label{hydro}
  1658. The parameterization of soil hydrology comprises the
  1659. budgets for snow amount and the soil
  1660. water amount. The water equivalent of the snow layer
  1661. $z_{snow}^{H_2O}$ is computed over
  1662. land and glacier areas from
  1663. \begin{equation}
  1664. \frac{\partial z_{snow}^{H_2O}}{\partial t} = F_q +
  1665. P_{snow}-M_{snow}
  1666. \end{equation}
  1667. where $F_q$ is the evaporation rate over snow
  1668. computed from Eq.~\ref{fluxes2}, $P_{snow}$ is the
  1669. snow fall and $M_{snow}$ is the snow
  1670. melt rate (all fluxes are positive downward and in m/s).
  1671. $M_{snow}$ is related to the snow melt
  1672. heat flux $Q_m$ (Eq.~\ref{melt}) by
  1673. \begin{equation}
  1674. M_{snow}=\frac{Q_m}{\rho_{H_2O}\, L_f}
  1675. \end{equation}
  1676. where $L_f$ is the latent heat of fusion.
  1677. The soil water reservoir $W_{soil}$ [m] is
  1678. represented by a single-layer bucket model
  1679. (Manabe 1969). Soil water is increased by precipitation
  1680. $P$ and snow melt $M_{snow}$
  1681. and is depleted by the surface evaporation $F_q$:
  1682. \begin{equation}
  1683. \frac{\partial W_{soil}}{\partial t} = P + M + F_q
  1684. \end{equation}
  1685. where all fluxes are defined positive downwards and in
  1686. m/s.
  1687. Soil water is limited by a field capacity $W_{max}$
  1688. which geographical distribution can be prescribed via an external input or is set to a default
  1689. value of
  1690. 0.5~m everywhere. If the soil water
  1691. exceeds $W_{max}$ the excessive
  1692. water builds the runoff $R$ and is provided to the river
  1693. transport scheme
  1694. (Section~\ref{runoff}). The ratio of the soil water and
  1695. the field capacity defines the wetness
  1696. factor $C_w$ which is used in Eq.~\ref{fluxes2} to
  1697. compute the surface evaporation:
  1698. \begin{equation}\label{cwgl}
  1699. C_w=\frac{W_{soil}}{f_{Cw} \; W_{max}}
  1700. \end{equation}
  1701. where the factor $f_{Cw}$ (with a default value of 0.25) takes into account that maximum
  1702. evaporation will take place even if the bucket is not completely filled. For land points covered
  1703. by glaciers, $C_w$ is set to a
  1704. constant value of 1.
  1705. \subsubsection{River Transport}\label{runoff}
  1706. The local runoff is transported to the ocean by a river
  1707. transport scheme with linear advection
  1708. (Sausen et al.~1994). For each grid box (both, land and
  1709. ocean costal points) the river water
  1710. amount $W_{river}$ [m$^3$] is computed from
  1711. \begin{equation}
  1712. \frac{\partial W_{river}}{\partial t}= ADV + area \; (R - S)
  1713. \end{equation}
  1714. where $R$ is the local runoff (Section~\ref{hydro}),
  1715. $S$ is the input into the ocean, $ADV$
  1716. is the advection of river water and $area$ is the area of the
  1717. respective grid box. The input into
  1718. the ocean $S$ is given by
  1719. \begin{equation}
  1720. S=\left\{ \begin{array}{ll} 0 & \mbox{for land points}
  1721. \\
  1722. &\\
  1723. ADV & \mbox{for ocean points} \end{array}
  1724. \right.
  1725. \end{equation}
  1726. This ensures that $S$ is non-zero only for ocean costal
  1727. points. The advection from grid box
  1728. $(i,j)$ into grid box $(i',j')$, $ADV_{(i,j)\rightarrow
  1729. (i',j')}$, is formulated using an upstream
  1730. scheme:
  1731. \begin{equation}
  1732. \begin{array}{rcl}
  1733. \D ADV_{(i,j)\rightarrow (i+1,j)} & = & \D \left\{
  1734. \begin{array}{ll} u_{i,j} W_{i,j}, & \mbox{if } \;
  1735. u_{i,j} \ge 0 \\
  1736. & \\
  1737. u_{i,j} W_{i+1,j}, & \mbox{if } \;
  1738. u_{i,j} < 0 \end{array} \right. \\
  1739. && \\
  1740. \D ADV_{(i,j)\rightarrow (i,j+1)} & = & \D \left\{
  1741. \begin{array}{ll} -v_{i,j} W_{i,j}, & \mbox{if } \;
  1742. v_{i,j} \le 0 \\
  1743. & \\
  1744. -v_{i,j} W_{i,j+1}, & \mbox{if } \;
  1745. v_{i,j} > 0 \end{array} \right. \\
  1746. \end{array}
  1747. \end{equation}
  1748. where $i$ and $j$ are the zonal and meridional indices
  1749. of the grid box, which are counted
  1750. from the west to the east and from the north to the
  1751. south, respectively. The zonal and
  1752. meridional advection rates $u_{i,j}$ and $v_{i,j}$ are
  1753. defined at the interface of two grid
  1754. boxes and depend on the slope of the orography:
  1755. \begin{equation}
  1756. \begin{array}{rcl}
  1757. \D u_{i,j} & = & \D \frac{c}{\Delta
  1758. x}\left[\frac{h_{i,j}-h_{i+1,j}}{\Delta
  1759. x}\right]^{\alpha} \\
  1760. && \\
  1761. \D v_{i,j} & = & \D \frac{c}{\Delta
  1762. y}\left[\frac{h_{i,j+1}-h{i,j}}{\Delta
  1763. y}\right]^{\alpha}
  1764. \end{array}
  1765. \end{equation}
  1766. where $\Delta x$ and $\Delta y$ are the distances
  1767. between the grid points in the longitudinal
  1768. and the meridional direction. $h$ is the height of the
  1769. orography, which is modified in
  1770. order to omit local minima at land grid points. The
  1771. empirical constants $c$ and $\alpha$ are
  1772. set to the values given by Sausen et al.~(1994) for T21
  1773. resolution ($c = $~4.2~m/s and
  1774. $\alpha =$~0.18).
  1775. \subsubsection{Other Land Surface
  1776. Parameter}\label{landsurf}
  1777. Some additional quantities characterizing the land surface of
  1778. each grid box need to be specified for use in the model. The land-sea mask and the orography
  1779. are read from an external file. Optionally, this file may also include other climatological surface
  1780. parameter: the global distribution of the surface roughness length $z_0$, a background albedo
  1781. ${\cal R}_S^{clim}$, a glacier mask for permanent ice sheets, the bucked size for the soil water
  1782. $W_{max}$ (see section above) and a climatological annual cycle of the soil wetness
  1783. $C^{clim}_w$ (which may be used instead of the computed $C_w$ from Eq.~\ref{cwgl}. If
  1784. there is no input for the particular field in the file, the parameter is set to be horizontal
  1785. homogeneous with a specific value. The following defaults are used: $z_0$~=~ 2~m,
  1786. ${\cal R}_S^{clim}$~=~0.2, no glaciers, $W_{max}$~=~0.5 and $C^{clim}_w$~=~0.25.
  1787. For snow covered areas, the background albedo is modified to give the actual albedo ${\cal
  1788. R}_S$
  1789. which is used in the radiation scheme. For points, which are not covered by glaciers, ${\cal
  1790. R}_S$ is
  1791. given by
  1792. \begin{equation}
  1793. {\cal R}_S={\cal R}_S^{clim} + ({\cal R}_S^{snow}-{\cal R}_S^{clim}) \;
  1794. \frac{z_{snow}}{z_{snow} + 0.01}
  1795. \end{equation}
  1796. where $z_{snow}$ is the snow depth, and the albedo of the snow, ${\cal R}_S^{snow}$,
  1797. depends on
  1798. the surface temperature $T_S$
  1799. \begin{equation}\label{rsnow}
  1800. {\cal R}_S^{snow}={\cal R}_{max}^{snow} + ({\cal R}_{min}^{snow} - {\cal
  1801. R}_{max}^{snow}) \; \frac{T_S -
  1802. 263.16}{10}
  1803. \end{equation}
  1804. with ${\cal R}_{min}^{snow} \le {\cal R}_S^{snow} \le {\cal R}_{max}^{snow}$ and default
  1805. values
  1806. ${\cal R}_{min}^{snow}$~=~0.4 and ${\cal R}_{max}^{snow}$~=~0.8.
  1807. For glaciers, ${\cal R}_S$ is given by ${\cal R}_S^{snow}$ from Eq.~\ref{rsnow} but with a
  1808. default
  1809. ${cal R}_{min}^{snow}$~=~0.6.
  1810. The surface specific humidity $q_S$ is given by the saturation specific humidity at $T_S$:
  1811. \begin{equation}
  1812. q_S =q_{sat}(T_S)
  1813. \end{equation}
  1814. where $q_{sat}(T_S)$ is computed from
  1815. Eq.~\ref{qsat}.
  1816. \subsection{Sea Surface}\label{seasurf}
  1817. Sea surface temperatures $T_{sea}$, sea ice distributions
  1818. $c_{ice}$ and surface temperatures over
  1819. sea ice $T_i$ are provided by the ocean and sea
  1820. ice modules (Section HEIKO). From
  1821. these quantities, the following additional parameter are
  1822. computed which enter the atmospheric
  1823. parameterizations. The prescribed surface albedo ${\cal R_S}$
  1824. for open water is set to a default value of
  1825. 0.069. For sea ice ${\cal R}_S$ is given as a function of the ice
  1826. surface temperature $T_{i}$:
  1827. \begin{equation}
  1828. {\cal R}_S=\min{({\cal R}_S^{max}, \, 0.5 + 0.025 \, (273. - T_{i}))}
  1829. \end{equation}
  1830. where the prescribed maximum sea ice background
  1831. albedo ${\cal R}_S^{max}$ is set to a default value
  1832. of 0.7.
  1833. The surface
  1834. specific humidity $q_S$ is given by the
  1835. saturation specific humidity at the surface
  1836. temperature $T_S$ which is either $T_{sea}$ or
  1837. $T_{i}$:
  1838. \begin{equation}
  1839. q_S =q_{sat}(T_S)
  1840. \end{equation}
  1841. where $q_{sat}(T_S)$ is computed from
  1842. Eq.~\ref{qsat}. The wetness factor $C_w$ which
  1843. enters
  1844. the calculation of the surface evaporation
  1845. (Eq.~\ref{fluxes2}) is set to 1.
  1846. The roughness length $z_0$ over sea ice is set to a
  1847. constant value of $z_0$~=~0.001~m. Over open
  1848. water,
  1849. $z_0$ is computed from the Charnock (1955) formula:
  1850. \begin{equation}
  1851. z_0 = C_{char} \frac{u_{*}^{2}}{g}
  1852. \end{equation}
  1853. with a minimum value of $1.5 \cdot 10^{-5}$~m.
  1854. $C_{char}$ denotes the Charnock constant and is set
  1855. to
  1856. 0.018. $g$ is the gravitational acceleration. The
  1857. friction
  1858. velocity $u_{*}$ is calculated from the surface wind
  1859. stress at the previous time level:
  1860. \begin{equation}
  1861. u_{*}=\sqrt{\frac{|F_u, F_v|}{\rho} }
  1862. \end{equation}
  1863. where $|F_u, F_v| $ is the absolute value of the surface
  1864. wind stress computed from Eq.~\ref{fluxes2} and
  1865. $\rho$
  1866. is the density.
  1867. \newpage
  1868. \subsection{References}
  1869. Berger, A., 1978a: A simple algorithm to compute
  1870. long-term
  1871. variations of daily insolation. Institute of Astronomy
  1872. and
  1873. Geophysic, Universite Catholique de Louvain, {\bf
  1874. Contribution
  1875. 18}, Louvain-la-Neuve, Belgium.
  1876. Berger, A., 1978b: Long-term variations of daily
  1877. insolation
  1878. and quaternary climatic change. {\it J.~Atmos.~Sci.},
  1879. {\bf 35}, 2362-
  1880. 2367.
  1881. Blackadar, A.~K., 1962: The vertical distributionof
  1882. wind and turbulent exchange in a neutral
  1883. atmosphere. {\it J.~Geophys.~Res.}, {\bf 67},
  1884. 3095-3102.
  1885. Boer, G.~J., N.~A.~McFarlane, R.~Laprise,
  1886. J.~Henderson and J.-P.~Blanchet, 1984: The
  1887. Canadian Climate Centre spectral atmospheric general
  1888. circulation model. {\it
  1889. Atmosphere-Ocean},
  1890. {\bf 22}, 397-429.
  1891. Charnock, M., 1955: Wind stress on a water surface.
  1892. {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf
  1893. 81}, 639-640.
  1894. Chou, M.-D., M.~J.~Suarez, X.-Z.~Liang and M.~M.~H.~Yan, 2001 (Revised 2002):
  1895. A thermal infrared radiation
  1896. parameterization for atmospheric studies. {\it Technical Report Series on Global Modelling and
  1897. Data Assimilation, M.~J.~Suarez Ed.}, {\bf NASA/TM-2001-104606, Vol.
  1898. 19}, 55pp.
  1899. Green, A.~E.~S., 1964: Attenuation by ozone and the earth's albedo in the middle ultraviolet.
  1900. {\it AAppl.~Opt.}, {\bf 3}, 203-208.
  1901. Katayama, A., 1972: A simplified scheme for
  1902. computing
  1903. radiative transfer in the troposphere.
  1904. Department
  1905. of Meteorology, {\it Tech.~Report}, {\bf No. 6},
  1906. University of California, Los Angeles, CA,
  1907. 77 pp.
  1908. Kiehl, J.~T., J.~J.~Hack, G.~B.~Bonan, B.~A.~Boville, B.~P.~Briegleb, D.~L.~Williamson
  1909. and
  1910. P.~J.~Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). {\it NCAR
  1911. Technical Note}, {\bf NCAR/TN-420+STR}, 152pp.
  1912. Kuo, H.~L., 1965: On formation and intensification of
  1913. tropical cyclones through latent heat
  1914. release by cumulus convection. {\it J.~Atmos.~Sci.},
  1915. {\bf 22}, 40-63.
  1916. Kuo, H.~L., 1974: Further studies of the
  1917. parameterization of the influence of cumulus
  1918. convection on large-scale flow. {\it J.~Atmos.~Sci.},
  1919. {\bf 31}, 1232-1240.
  1920. Lacis, A.~A., and J.~E.~Hansen, 1974: A parameterization for the absorption of solar
  1921. radiation in the Earth's atmosphere. {\it J.~Atmos.~Sci.}, {\bf 31}, 118-133.
  1922. Laurson, L.~and E.~Eliasen, 1989: On the effects of
  1923. the damping mechanisms in an
  1924. atmospheric general circulation model. {\it Tellus},
  1925. {\bf 41A}, 385-400.
  1926. Louis, J.~F., 1979: A parametric model of vertical
  1927. eddy fluxes in the atmosphere. {\it
  1928. Boundary
  1929. Layer Meteorology}, {\bf 17}, 187-202.
  1930. Louis, J.~F., M.~Tiedtke and M.~Geleyn, 1982: A
  1931. short history of the PBL parameterisation
  1932. at
  1933. ECMWF. Proceedings, ECMWF workshop on
  1934. planetary boundary layer parameterization,
  1935. Reading, 25-27 Nov. 81, 59-80.
  1936. Lowe, P.~R., 1977: An approximating polynomial for
  1937. the computation of saturation vapour
  1938. pressure. {\it J.~Appl.~Met.}, {\bf 16}, 100-103.
  1939. Manabe, S.~and F.~M\"oller, 1961: on the radiative
  1940. equilibrium and heat balance of the
  1941. atmosphere. {\it Mon~Wea.~Rev.}, {\bf 89}, 503-532.
  1942. Manabe, S., 1969: Climate and ocean circulation. I.
  1943. The atmospheric circulation and the
  1944. hydrology of the earth's surface. {\it
  1945. Mon.~Wea.~Rev.}, {\bf 97}, 739-774.
  1946. Rodgers, C.~D., 1967: The use of emissivity in the
  1947. atmospheric radiation calculation.
  1948. {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf 93}, 43-54.
  1949. Roeckner, E., K.~Arpe, L.~Bengtsson, S.~Brinkop,
  1950. L.~D\"umenil, M.~Esch, E.~Kirk,
  1951. F.~Lunkeit, M.~Ponater, B.~Rockel, R.~Sausen,
  1952. U.~Schlese, S.~Schubert and
  1953. M.~Windelband,
  1954. 1992: Simulation of the present-day climate with the
  1955. ECHAM-3 model: Impact of model
  1956. physics
  1957. and resolution. Max-Planck Institut f\"ur Meteorologie,
  1958. {\bf Report No.~93}, 171pp.
  1959. Sasamori, T., 1968: The radiative cooling calculation
  1960. for application to general circulation
  1961. experiments. {\it J.~Appl.~Met.}, {\bf 7}, 721-729.
  1962. Sausen, R., S.~Schubert and L.~D\"umenil, 1994: A
  1963. model of river runoff for use in coupled
  1964. atmosphere-ocean models. {\it Journal of Hydrology},
  1965. {\bf 155}, 337-352.
  1966. Slingo, A., and J.~M.~Slingo, 1991: Response of the National Center for Atmospheric Research
  1967. community climate model to improvements in the representation of clouds. {\it
  1968. J.~Geoph.~Res.}, {\bf 96}, 341-357.
  1969. Stephens, G.~L., 1978: Radiation profiles in extended water clouds. II: Parameterization
  1970. schemes. {\it J.~Atmos.~Sci.}, {\bf 35}, 2123-2132.
  1971. Stephens, G.~L., 1984: The parameterization of
  1972. radiation for numerical weather prediction
  1973. and
  1974. climate models. {\it Mon.~Wea.~Rev.}, {\bf 112},
  1975. 826-867.
  1976. Stephens, G.~L., S.~Ackermann and E.~A.~Smith, 1984: A shortwave parameterization revised
  1977. to improve cloud absorption. {\it J.~Atmos.~Sci.}, {\bf 41}, 687-690.