12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378 |
- % set global definitions
- %
- \newcommand{\D}{\displaystyle}
- %
- \begin{center}
- {\large PUMA-II Parameterizations} \\
- \end{center}
- \begin{center}
- {\Large Very draft version} \\
- \end{center}
- \begin{center}
- {\LARGE WARNING:} \\
- \end{center}
- \begin{center}
- {\Large This is a very preliminary and unfinished
- documentation and parts of it may be
- inconsistent with the actual code}
- \end{center}
- \newpage
- %\tableofcontents
- \section{Parameterizations}
- \subsection{Surface Fluxes and Vertical Diffusion}
- \subsubsection{Surface Fluxes \label{surflux}}
- The bulk aerodynamic formulas are used to
- parameterize
- surface
- fluxes of zonal and meridional momentum (wind
- stress)
- $F_u$ and
- $F_v$,
- sensible heat $F_T$ and latent heat $L \, F_q$, where
- $F_q$ is the surface flux of moisture and $L$ is the
- latent heat of vaporisation $L_v$, or, depending on
- temperature, the latent heat of sublimation $L_s$:
- \begin{equation}\label{fluxes}
- \begin{array}{rcl}
- \D F_u & = & \D \rho \, C_m \, |\vec{v}| \, u \\
- && \\
- \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v \\
- && \\
- \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
- (\gamma
- T
- - T_S ) \\
- && \\
- \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
- \,
- (\delta
- q - q_S )
- \end{array}
- \end{equation}
- All fluxes are positive
- in downward direction. $\rho$ denotes the density,
- $c_p$ is the specific
- heat for moist air at constant pressure ($c_p= c_{pd} \,
- [1+(c_{pv}/c_{pd}-1)\, q]$, where
- $c_{pd}$ and $c_{pv}$ are the specific heats at
- constant pressure for dry air and water vapor,
- respectively). $C_m$ is the drag
- coefficient, $C_h$ is the transfer coefficient for heat,
- $T_S$ is
- the surface temperature, $q_S$ is the surface specific
- humidity
- and $|\vec{v}|$ is the absolute value of the horizontal
- velocity at the lowermost level. The wetness factor
- $C_w$
- accounts
- for different evaporation efficiencies due to surface
- characteristics (Section \ref{hydro}). $u$, $v$,
- $T$ and $q$ are the zonal and meridional wind
- components, the
- temperature and the specific humidity, respectively,
- of the lowermost model level. The factors $\gamma$
- and ${\delta}$ are used to relate the model quantities
- to
- the respective near surface
- values. $\delta$ is set to 1 and $\gamma$ is set to
- give a potential temperature:
- \begin{equation}\label{gamma}
- \gamma = \left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
- \end{equation}
- where p is the pressure of the lowermost
- model level, $p_S$ is the surface pressure and $R_d$
- is the gas constant for dry air.
- While $\gamma$, $\rho$,
- $C_m$, $C_h$,
- $|\vec{v}|$,
- $T_S$ and $q_S$ apply to time level $t - \Delta t$,
- values
- for $u^{t+ \Delta t}$, $v^{t+ \Delta t}$, $T^{t+ \Delta
- t}$
- and $q^{t+ \Delta t}$ are computed implicitly
- from the discretized tendency equations:
- \begin{equation}
- \begin{array}{rcccl}
- \D \frac{u^{t+\Delta t}-u^{t-\Delta t}}{2 \Delta
- t} & = & \D -
- \,
- \frac{1}{\rho \, \Delta z}\, F_u^{t+\Delta t} & = & \D
- - \,
- \frac
- {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
- u^{t +
- \Delta t} \\
- &&&& \\
- \D \frac{v^{t+\Delta t}-v^{t-\Delta t}}{2 \Delta t} & =
- &
- \D
- - \,
- \frac{1}{\rho \, \Delta z}\, F_v^{t+\Delta t} & = & \D
- - \,
- \frac
- {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
- v^{t +
- \Delta t} \\
- &&&& \\
- \D \frac{T^{t+\Delta t}-T^{t-\Delta t}}{2 \Delta t} &
- = &
- \D
- -\,
- \frac{1}{c_p \, \rho \, \Delta z} \, F_T^{t+\Delta t} &
- = & \D -
- \,
- \frac{g \, \rho \, C_h \, |\vec{v}|} {p_S \, \Delta
- \sigma} \,
- (\gamma T^{t + \Delta t} - T_S) \\
- &&&& \\
- \D \frac{q^{t+\Delta t}-q^{t-\Delta t}}{2 \Delta t} & =
- &
- \D -
- \,
- \frac{1}{\rho \, \Delta z} \, F_q^{t+\Delta t}& = & \D
- - \,
- \frac{g \, \rho \, C_h \, C_w \, |\vec{v}|} {p_S \, \Delta
- \sigma} \,
- (\delta q^{t + \Delta t} - q_S)
- \end{array}
- \end{equation}
- where $g$ is the gravitational acceleration and $\Delta
- \sigma = \Delta p/p_S $ is the thickness of the
- lowermost model layer.
- In addition to the tendencies, the surface fluxes of
- momentum, sensible and latent heat and the
- partial derivative of the sensible and the latent heat flux
- with respect to the surface temperature
- are computed:
- \begin{equation}\label{fluxes2}
- \begin{array}{rcl}
- \D F_u & = & \D \rho \, C_m \, |\vec{v}| \,
- u^{t+\Delta t} \\
- && \\
- \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v^{t+
- \Delta t}\\
- && \\
- \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
- (\gamma
- T^{t + \Delta t}
- - T_S ) \\
- && \\
- \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
- \,
- (\delta
- q^{t+\Delta t} - q_S ) \\
- && \\
- \D \frac{\partial F_T}{\partial T_S} & = & \D - c_p \,
- \rho \, C_h \, |\vec{v}| \\
- && \\
- \D \frac{\partial (L \, F_q)}{\partial T_S} & = & \D -
- L\, \rho \, C_h \, C_w \, |\vec{v}| \,
- \frac{\partial q_S(T_S)}{\partial T_S}
- \end{array}
- \end{equation}
- The derivatives of the fluxes may be used, for
- examples, for an implicit calculation of the
- surface temperature (see Section \ref{surtemp}).
- \subsubsection*{ Drag and transfer coefficients}
- The calculation of the drag and the transfer
- coefficient $C_m$ and $C_h$ follows the method
- described in Roeckner et al.~(1992) for the ECHAM-3
- model, which bases on the work of Louis (1979) and
- Louis et al.~(1982). A Richardson number dependence
- of
- $C_m$ and $C_h$ in accordance to the
- Monin-Obukhov
- similarity theory is given by
- \begin{equation}
- \begin{array}{rcl}
- C_m & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \,
- f_m
- (Ri, z/z_0) \\
- &&\\
- C_h & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \, f_h
- (Ri, z/z_0)
- \end{array}
- \end{equation}
- where $k$ is the von Karman constant ($k$ = 0.4) and
- $z_0$ is the roughness length, which depends on the
- surface characteristics (Section~\ref{landsurf} and
- Section~\ref{seasurf}). The Richardson
- number $Ri$ is
- defined as
- \begin{equation}
- Ri=\frac{g\, \Delta z \,(\gamma_E T - \gamma_E T_S)}{\gamma T
- \, |\vec{v}|^2}
- \end{equation}
- with $\gamma$ from Eq.~\ref{gamma} and $\gamma_E$ transfers temperatures to virtual
- potential temperatures to include the effect of moisture.
- \begin{equation}\label{gammaE}
- \gamma_E = \left(1- \left(\frac{R_v}{R_d}-1\right)\, q
- \right)
- \,\left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
- \end{equation}
-
- where $q$ refers to the respective specific humidities and
- $R_v$ is the gas constant for water
- vapor.
- Different empirical formulas for stable ($Ri \ge 0$)
- and
- unstable ($Ri < 0$) situations are used. For the stable
- case, $f_m$ and $f_h$ are given by
- \begin{equation}\label{fmfh1}
- \begin{array}{rcl}
- \D f_m & = &\D \frac{1}{1+(2\,b\,Ri) /\sqrt{\,1+ d\,
- Ri}}
- \\
- && \\
- \D f_h & = &\D \frac{1}{1+(3\,b\,Ri) /\sqrt{\,1+ d\,
- Ri}}
- \end{array}
- \end{equation}
- while for the unstable case, $f_m$ and $f_h$ are
- \begin{equation}\label{fmfh2}
- \begin{array}{rcl}
- \D f_m & = & \D 1- \frac{2\,b\,Ri}{1+3\,b\,c\, [
- \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}} \\
- && \\
- \D f_h & = &\D 1- \frac{3\,b\,Ri}{1+3\,b\,c\, [
- \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}}
- \end{array}
- \end{equation}
- where $b$, $c$, and $d$ are prescribed constants and
- set
- to
- default values of $b$ = 5, $c$ = 5 and $d$ = 5.
- \subsubsection{Vertical Diffusion}
- Vertical diffusion representing the non resolved
- turbulent exchange is applied to the horizontal wind
- components $u$ and $v$, the potential temperature
- $\theta$ ($= T (p_S/p)^{R_d/c_{pd}}$) and the
- specific
- humidity
- $q$. The
- tendencies due to the turbulent transports are given by
- \begin{equation}
- \begin{array}{rcccl}
- \D
- \frac{\partial u}{\partial t} & = & \D \frac
- {1}{\rho}\frac{\partial J_u}{\partial z} & = & \D \frac
- {1}{\rho}\frac{\partial }{\partial z} ( \rho\, K_m \,
- \frac{\partial u}{\partial z}) \\
- &&&& \\
- \D \frac{\partial v}{\partial t} & = & \D \frac
- {1}{\rho}\frac{\partial J_v}{\partial z} & = & \D \frac
- {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_m \,
- \frac{\partial v}{\partial z} )\\
- &&&& \\
- \D \frac{\partial T}{\partial t} & = &\D \frac
- {1}{\rho}\frac{\partial J_T}{\partial z} & = & \D \frac
- {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_h \,
- (\frac{p}{p_S})^{R_d/c_{pd}}\,\frac{\partial
- \theta}{\partial
- z})
- \\
- &&&& \\
- \D \frac{\partial q}{\partial t} & = & \D \frac
- {1}{\rho}\frac{\partial J_q}{\partial z} & = & \D \frac
- {1}{\rho}\frac{\partial }{\partial z}( \rho\, K_h \,
- \frac{\partial q}{\partial z} )
- \end{array}
- \end{equation}
- where p is the
- pressure, $p_S$ is the
- surface pressure, $R_d$ is the gas constant
- for dry air and $c_{pd}$ is
- the specific heat for dry air at constant pressure. Here,
- the turbulent
- fluxes (positive downward) of zonal and meridional
- momentum $J_u$ and
- $J_v$,
- heat $c_{pd} \, J_T$
- and moisture $J_q$ are parameterized by a linear
- diffusion along the vertical gradient with the exchange
- coefficients $K_m$ and $K_h$ for momentum and
- heat,
- respectively. $K_m$ and $K_h$ depend on the actual
- state (see below).
- As the effect of the surface fluxes are computed
- separately (Section \ref{surflux}), no flux boundary
- conditions for the vertical diffusion scheme are
- assumed
- at the top and the bottom of the atmosphere but the
- vertical diffusion is computed starting with
- initial values for $u$, $v$, $q$ and $T$ which include
- the tendencies due to the surface fluxes.
- As for the surface fluxes, the equations are formulated
- implicitely with exchange coefficients applying to the
- old time level. This leads to sets of linear equations for
- $u^{t+\Delta t}$, $v^{t+\Delta t}$, $T^{t+\Delta t}$
- and $q^{t+\Delta t}$, which are solved by a back
- substitution method.
-
- \subsubsection*{Exchange coefficients}
- The calculation of the exchange coefficient $K_m$ and
- $K_h$ follows the mixing length
- approach as an extension of the similarity theory used
- to
- define the drag and transfere
- coefficients (Section \ref{surflux} and Roeckner et
- al.~1992):
- \begin{equation}
- \begin{array}{rcl}
- \D K_m & = & \D l_m^2\, \left|
- \frac{\partial\vec{v}}{\partial
- z}
- \right| \, f_m(Ri) \\
- &&\\
- \D K_h & = & \D l_h^2\, \left|
- \frac{\partial\vec{v}}{\partial
- z}
- \right| \, f_h(Ri)
- \end{array}
- \end{equation}
- where the functional dependencies of $f_m$ and $f_h$
- on
- $Ri$ are the same as for $C_m$ and $C_h$
- (Eq.~\ref{fmfh1} and Eq.~\ref{fmfh2}), except that
- the
- term
- \begin{equation}
- \left[\frac{k}{\ln(z/z_0+1)}\right]^2\sqrt{(z/z_0+1)}
- \end{equation}
- is replaced by
- \begin{equation}
- \frac{l^2}{(\Delta z)^{3/2} \, z^{1/2}}\left[ \left(
- \frac{z+\Delta z}{z}\right)^{1/3} -1 \right]^{3/2}
- \end{equation}
- The Richardson number $Ri$ is defined as
- \begin{equation}
- Ri=\frac{g}{\gamma T} \frac{\partial (\gamma_E
- T)}{\partial z} \left| \frac{\partial \vec{v}}{\partial z}
- \right|^{-2}
- \end{equation}
- with $\gamma$ from Eq.~\ref{gamma} and $\gamma_E$ from Eq.~\ref{gammaE}. According
- to
- Blackadar (1962), the mixing lengths $l_m$ and $l_h$
- are
- given by
- \begin{equation}
- \begin{array}{rcl}
- \D \frac{1}{l_m} & = & \D \frac{1}{k\, z}
- +\frac{1}{\lambda_m} \\
- &&\\
- \D \frac{1}{l_h} & = & \D \frac{1}{k\, z}
- +\frac{1}{\lambda_h}
- \end{array}
- \end{equation}
- with $\lambda_h = \lambda_m\sqrt{(3 d)/2}$. The
- parameters $\lambda_m$ and $d$ are set to default
- values
- of $\lambda_m = 160~m$ and $d= 5$.
- \newpage
- \subsection{Horizontal Diffusion}
- The horizontal diffusion parameterization based on the
- ideas of Laursen and Eliasen (1989),
- which, in the ECHAM-3 model (Roeckner et al.~1992),
- improves the results compared with a
- ${\nabla}^k$ horizontal diffusion. The diffusion is
- done in spectral space. The contribution to
- the tendency of a spectral prognostic variable $X_n$ is
- \begin{equation}
- \frac{\partial X_n}{\partial t} = -k_X L_n X_n
- \end{equation}
- where $n$ defines the total wave number. $L_n$ is a
- scale selective function of the total wave
- number and is chosen such that large scales are not
- damped while the damping gets stronger
- with increasing $n$:
-
- \begin{equation}
- L_n = \left\{ \begin{array}{lcl} (n-n_{\star})^{\alpha}
- & \mbox{for} & n > n_{\star} \\
- &&\\
- 0 & \mbox{for} & n
- \le n_{\star} \end{array}
- \right.
- \end{equation}
- where $n_{\star}$ is a cut-off wave number. The
- parameters $n_{\star}$ and $\alpha$ are set
- to default values of $n_{\star}$~=~15 and
- $\alpha$~=~2 similar to the ECHAM-3 model in T21
- resolution (Roeckner et al.~1992). The diffusion
- coefficient $k_X$ defines the timescale of the
- damping and depends on the variable. In the model,
- $k_X$ is computed from prescribed
- damping time scales $\tau_X$ for the smallest waves.
- Default values of
- $\tau_D$~=~0.2~days for divergence,
- $\tau_{\xi}$~=~1.1~days for vorticity and
- $\tau_T$~=~15.6~days for temperature and humidity
- are chosen, which are comparable with
- the respective values in the T21 ECHAM-3 model. In
- contrast to ECHAM-3, however, no level or
- velocity dependent additional damping is applied.
-
- \newpage
- \subsection{Radiation}
- \subsubsection{Short Wave Radiation}
- The short wave radiation scheme bases
- on the ideas of Lacis and Hansen (1974) for the cloud
- free
- atmosphere. For the cloudy part, either constant
- albedos and
- transmissivities for high- middle- and low-level clouds
- may be prescribed or parameterizations
- following Stephens (1978) and Stephens et al.~(1984)
- may be used.
- The downward radiation flux density
- $F^{\downarrow SW}$ is assumed to be the
- product of the extrateristical solar flux density
- $E_0$ with different transmission factors for various
- processes:
- \begin{equation}
- F^{\downarrow SW}= \mu_0 \, E_0 \cdot {\cal T}_R \cdot {\cal T}_O
- \cdot {\cal T}_W \cdot {\cal T}_D \cdot
- {\cal T}_C \cdot
- {\cal R}_S
- \end{equation}
- Here, $\mu_0$ refers to the cosine of the solar zenith
- angle and the factor ${\cal R}_S$ incorporates
- different surface
- albedo values. The Indices of the transmissivities ${\cal T}$
- denote Rayleigh scattering ($R$), ozone
- absorption ($O$), water vapor absorption ($W$) and
- absorption and scattering by aerosols
- (dust; $D$) and cloud droplets ($C$), respectively.
- $E_0$ and $\mu_0$ are computed following
- Berger (1978a, 1978b). The algorithm used is valid to
- 1,000,000 years past or hence. The numeric to compute
- $E_0$ and
- $\mu_0$ is adopted from the
- CCM3 climate model (Kiehl et al.~1996, coding by E.~Kluzek 1997).
- The
- calculation accounts
- for earths orbital parameters and the earths distance
- to the sun, both depending on the year and the time
- of the year.
- Following, for example, Stephens (1984) the solar
- spectral range
- is divided into two regions: (1) A visible and
- ultraviolet
- part for wavelengths $\lambda < 0.75$ $\mu$m with
- pure cloud
- scattering, ozone absorption and
- Rayleigh scattering, and without water vapor
- absorption. (2) A
- near infrared part for
- wavelengths $\lambda > 0.75$ $\mu$m with cloud
- scattering and
- absorption and with water vapor absorption. Absorption
- and
- scattering by aerosols is neglected in the present
- scheme. Dividing
- the total solar energy $E_0$ into the two spectral
- regions results in the
- fractions ${E_1}$~=~0.517 and $E_2$~=~0.483 for
- spectral
- ranges 1 and 2, respectively.
- \subsubsection*{Clear sky}
- For the clear sky part of the atmospheric column
- parameterizations following Lacis and Hansen
- (1974) are used for Rayleigh scattering, ozone
- absorption and water vapor absorption.
- {\bf Visible and ultraviolet spectral range ($\lambda <
- 0.75$
- $\mu$m)}
- In the visible and ultraviolet range, Rayleigh
- scattering and ozone absorption are considered for
- the clear sky part. Rayleigh scattering is confined to
- the lowermost atmospheric layer. The
- transmissivity for this layer is given by
- \begin{equation}
- {\cal T}_{R1}=1 - \frac{0.219}{1+0.816\mu_0}
- \end{equation}
- for the direct beam, and
- \begin{equation}
- {\cal T}_{R1}=1 - 0.144
- \end{equation}
- for the scattered part.
- Ozone absorption is considered for the Chappuis band
- in the visible ${\cal A}^{vis}$ and for the
- ultraviolet range ${\cal A}^{uv}$. The total transmissivity
- due to ozone is given by
- \begin{equation}
- {\cal T}_{O1} = 1 - {\cal A}^{vis}_O - {\cal A}^{uv}_O
- \end{equation}
- with
- \begin{equation}
- {\cal A}^{vis}_O = \frac{
- 0.02118x}{1+0.042x+0.000323x^2}
- \end{equation}
- and
- \begin{equation}
- {\cal A}^{uv}_O=\frac{1.082x}{(1+138.6x)^{0.805}}+\frac{
- 0.0658x}{1+(103.6x)^3}
- \end{equation}
- where the ozone amount traversed by the direct solar
- beam, $x$, is
- \begin{equation}
- x=M \; u_{O_3}
- \end{equation}
- with $u_{O_3}$ being the ozone amount [cm] in the
- vertical column above the considered
- layer, and $M$ is the magnification factor after
- Rodgers (1967)
- \begin{equation}
- M= \frac{35}{(1224 {\mu_0}^2 +1)^{\frac{1}{2}}}
- \end{equation}
- The ozone path traversed by diffuse radiation from
- below is
- \begin{equation}
- x^{*}=M \; u_{O_3}+\overline{M} \; (u_t -u_{O_3})
- \end{equation}
- where $u_t$ is the total ozone amount above the main
- reflecting layer and $\overline{M}$=1.9
- is the effective magnification factor for diffusive
- upward radiation.
- {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
- In the near infrared solar region absorption by water
- vapor
- is considered only. The transmissivity is given by
- \begin{equation}
- {\cal T}_{W2}=1-\frac{2.9 y}{(1+141.5y)^{0.635} +
- 5.925y}
- \end{equation}
- where $y$ is the effective water vapor amount [cm]
- including an approximate correction for the
- pressure and temperature dependence of the absorption
- and the magnification factor $M$. For
- the direct solar beam, $y$ is given by
- \begin{equation}
- y=\frac{M}{g}
- \int\limits^p_0 0.1 \; q
- \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
- {\frac{1}{2}} dp
- \end{equation}
- while for the reflected radiation reaching the layer from
- below, $y$ is
- \begin{equation}
- y=\frac{M}{g}
- \int\limits^{p_S}_0
- 0.1 \; q
- \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
- {\frac{1}{2}} dp
- +
- \frac{\beta_d}{g} \int\limits^{p_S}_{p}
- 0.1 \; q
- \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
- {\frac{1}{2}} dp
- \end{equation}
- with the acceleration of gravity $g$, the surface
- pressure $p_S$, a reference pressure
- $p_0$~=~1000~hPa, a reference temperature
- $T_0$~=~273~K, the specific humidity $q$
- [kg/kg] and the magnification factor for diffuse
- radiation $\beta_d$~=~1.66.
- \subsubsection*{Clouds}
- Two possibilities for the parameterization of the effect
- of clouds on the short wave radiative fluxes are
- implemented: (1) prescribed cloud properties and (2) a
- parameterization following Stephens (1978) and
- Stephens et al. (1984), which is the default setup.
- {\bf Prescribed cloud properties}
- Radiative properties of clouds are prescribed
- depending on
- the cloud level. Albedos ${\cal R}_{C1}$ for cloud
- scattering in
- the visible spectral range ($\lambda < 0.75$ $\mu$m),
- and
- albedos ${\cal R}_{C2}$ for cloud scattering and
- absorptivities
- ${\cal A}_{C2}$ for cloud absorption in the near infrared
- part
- ($\lambda > 0.75$ $\mu$m) are defined for high,
- middle
- and low level clouds. The default values are listed in Table \ref{tabcl1}.
- {\protect
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{|c|c|c|c|}\hline
- Cloud & Visible range
- &\multicolumn{2}{c|}{Near
- infrared} \\
- Level & ${\cal R}_{C1}$ & ${\cal R}_{C2}$ &
- ${\cal A}_{C1}$ \\
- \hline
- &&& \\
- High & 0.15 & 0.15 & 0.05 \\
- Middle & 0.30 & 0.30 & 0.10 \\
- Low & 0.60 & 0.60 & 0.20 \\
- \hline
- \end{tabular}
- \end{center}
- \caption{\label{tabcl1} Prescribed cloud albedos
- ${\cal R}_{C}$
- and absorptivities ${\cal A}_{C}$} for spectral range 1 and 2
- \end{table}
- }
- {\bf Default: Parameterization according to Stephens
- (1978) and Stephens et al. (1984)}
- Following Stephens (1978) and Stephens et al. (1984)
- cloud parameters are derived from the cloud liquid
- water path $W_L$ [g/m$^2$] and the cosine of the solar zenith
- angel $\mu_0$. In the visible and ultraviolet range
- cloud scattering is present only while in the near
- infrared both, cloud scattering and absorption, are
- parameterized.
- {\bf Visible and ultraviolet spectral range ($\lambda <
- 0.75$
- $\mu$m)}
- For the cloud transmissivity ${\cal T}_{C1}$ Stephens
- parameterization for a non absorbing medium is
- applied:
- \begin{equation}
- {\cal T}_{C1}=1-
- \frac{\beta_1\tau_{N1}/\mu_0}{1+\beta_1\tau_{N1}
- /\mu_0} = \frac{1}{ 1+\beta_1 \tau_{N1}/\mu_0}
- \end{equation}
- $\beta_1$ is the backscatter coefficient, which is
- available in tabular form. In order to avoid interpolation
- of tabular values the following interpolation formula is
- used
- \begin{equation}
- \beta_1 = f_{b1} \; \sqrt{\mu_0}
- \end{equation}
- where the factor $f_{b1}$ comprises a tuning
- opportunity for the cloud albedo and is set to a default
- value of 0.035.
- $\tau_{N1}$ is an effective optical depth for which
- Stephens (1979) provided the interpolation formula
- \begin{equation}
- \tau_{N1}= 1.8336 \; (\log{W_L})^{3.963}
- \end{equation}
- which is approximated by
- \begin{equation}
- \tau_{N1}= 2\; (\log{W_L})^{3.9}
- \end{equation}
- to be used also for the near infrared range (see below).
- {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
- The transmissivity due to scattering and absorption of
- a cloud layer in the near infrared spectral range is
- \begin{equation}
- {\cal T}_{C2}=\frac{4u}{R}
- \end{equation}
- where u is given by
- \begin{equation}
- u^2=\frac{(1-
- \tilde{\omega}_0+2\; \beta_2 \; \tilde{\omega}_0)}{(1-
- \tilde{\omega}_0)}
- \end{equation}
- and R by
- \begin{equation}
- R=(u+1)^2 \exp{(\tau_{eff})}
- -(u-1)^2 \exp{(-\tau_{eff})}
- \end{equation}
- with
- \begin{equation}
- \tau_{eff}=\frac{\tau_{N2}}{\mu_0}\sqrt{(1-
- \tilde{\omega}_0)(1-\tilde{\omega}_0 + 2 \; \beta_2 \;
- \tilde{\omega}_0)}
- \end{equation}
- where the original formulation for the optical depth
- $\tau_{N2}$ by Stephens (1978)
- \begin{equation}
- \tau_{N2}=2.2346 \; (\log{W_L})^{3.8034}
- \end{equation}
- is, as for the visible range, approximated by
- \begin{equation}
- \tau_{N2}= 2 \; (\log{W_L})^{3.9}
- \end{equation}
- Approximations for the table values of the back
- scattering coefficient $\beta_2$ and the single
- scattering albedo $\tilde{\omega}_0$ are
- \begin{equation}
- \beta_2=\frac{f_{b2}\; \sqrt{\mu_0}}{\ln{(3+0.1\;
- \tau_{N2})}}
- \end{equation}
- and
- \begin{equation}
- \tilde{\omega}_0=1-
- f_{o2}\;\mu_0^2\;\ln{(1000/\tau_{N2})}
- \end{equation}
- where $f_{b2}$ and $f_{o2}$ provide a tuning of the
- cloud
- properties and are set to default values of $f_{b2}$=0.04
- and $f_{o2}$=0.006.
- The scattered flux is computed from the cloud albedo
- ${\cal R}_{C2}$ which is given by
- \begin{equation}
- {\cal R}_{C2}=[\exp{(\tau_{eff})}-\exp{(-\tau_{eff})}]
- \; \frac{u^2-
- 1}{R}
- \end{equation}
-
- \subsubsection*{Vertical integration}
- For the vertical integration, the adding method is used
- (e.g. Lacis and Hansen 1974, Stephens 1984). The
- adding method calculates the reflection ${\cal R}_{ab}$
- and transmission ${\cal T}_{ab}$ functions for a
- composite layer formed by combining two layers one
- (layer $a$) on top of the other (layer $b$). For the
- downward beam ${\cal R}_{ab}$ and ${\cal T}_{ab}$ are given by
- \begin{eqnarray}\label{LH31}
- {\cal R}_{ab} & = &{\cal R}_{a}+{\cal T}_{a}{\cal R}_b{\cal T}^{*}_a/(1-
- {\cal R}^*_a{\cal R}_b) \nonumber \\
- {\cal T}_{ab} & = &{\cal T}_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
- \end{eqnarray}
- where the denominator accounts for multiple
- reflections between the two layers. For illumination
- form below ${\cal R}^*_{ab}$ and ${\cal T}^*_{ab}$ are given by
- \begin{eqnarray}\label{LH32}
- {\cal R}^*_{ab} & = &{\cal R}^*_b+{\cal T}^*_b{\cal R}^*_a{\cal T}_b/(1-
- {\cal R}^*_a{\cal R}_b) \nonumber \\
- {\cal T}^*_{ab} & = &{\cal T}^*_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
- \end{eqnarray}
- The following four steps are carried out to obtain the
- radiative upward and downward fluxes at the boundary
- between two layers from which the total flux and the
- absorption (heating rates) are calculated:
- 1) ${\cal R}_l$ and ${\cal T}_l$, $l=1, L$ are computed for each
- layer and both spectral regions according to the
- parameterizations.
- 2) The layers are added, going down, to obtain
- ${\cal R}_{1,l}$ and ${\cal T}_{1,l}$ for $L=2,L+1$ and
- ${\cal R}^*_{1,l}$ and ${\cal T}^*_{1,l}$ for $L=2,L$.
- 3) Layers are added one at the time, going up, to obtain
- ${\cal R}_{L+1-l,L+1}$, $l=1,L-1$ starting with the ground
- layer, ${\cal R}_{L+1} = {\cal R}_S$ which is the surface albedo and
- ${\cal T}_{L+1}$=0.
- 4) The upward $F^{\uparrow SW}_l$ and downward
- $F^{\downarrow SW}_l$ short wave radiative fluxes at
- the interface of layer
- ($1,l$) and layer (l+1,L+1) are determined from
- \begin{eqnarray}
- F^{\uparrow SW}_l & = &{\cal T}_{1,l}\;{\cal R}_{l+1,L+1}/(1-
- {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1}) \nonumber \\
- F^{\downarrow SW}_l & = &{\cal T}_{1,l}/(1-
- {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1})
- \end{eqnarray}
- The net downward flux at
- level
- $l$, $F_l^{\updownarrow SW}$, is given by
- \begin{equation}
- F_l^{\updownarrow SW}=F_l^{\downarrow SW}-F_l^{\uparrow SW}
- \end{equation}
- Finally, the temperature tendency for the layer between
- $l$ and $l+1$ is computed:
- \begin{equation}
- \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
- \frac{g}{c_p
- \, p_S}\frac{F_{l+1}^{\updownarrow SW}-F_{l}^{\updownarrow SW}}{\Delta
- \sigma}
- \end{equation}
- \newpage
- \subsubsection{Long Wave Radiation}
- {\bf Clear sky}
- For the clear sky long wave radiation, the broad band
- emissivity method is employed (see, for example,
- Manabe and M\"oller 1961, Rodgers 1967, Sasamori
- 1968, Katayama 1972, Boer et al. 1984).
- Using the broad band transmissivities
- ${\cal T}_{(z,z^{\prime})}$ between level $z$ and level
- $z^{\prime}$, the upward and downward fluxes at
- level
- $z$, $F^{\uparrow LW}(z)$ and
- $F^{\downarrow LW}(z)$, are
- \begin{equation}
- \begin{array}{rcl}
- \D F^{\uparrow LW}(z) & = &\D {\cal A}_S \, B(T_S)
- {\cal T}_{(z,0)} +
- \int\limits_0^z B(T^{\prime}) \frac{\partial
- {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
- \\
- & & \\
- \D F^{\downarrow LW}(z) & = & \D \int\limits_{\infty}^z
- B(T^{\prime}) \frac{\partial
- {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
- \end{array}
- \end{equation}
- where $B(T)$ denotes the black body flux ($ B(T) = \sigma_{SB}
- T^4$) and
- ${\cal A}_S$ is the surface emissivity. The effect
- of water vapor, carbon dioxide and ozone is included in the
- calculations of the transmissivities ${\cal T}$
- (with ${\cal T} = 1 - {\cal A}$, where ${\cal A}$ is the
- absoroptivity/emissivity). The transmissivities for water vapor
- ${\cal T}_{H_2O}$, carbon dioxide ${\cal T}_{CO_2}$ and
- ozone ${\cal T}_{O_3}$ are taken from Sasamori (1968):
- \begin{equation}\label{taus}
- \begin{array}{lcl}
- \D {\cal T}_{H_2O}& = & \D 1-0.846\;(u_{H_2O}+3.59 \cdot 10^{-5})^{0.243}
- -6.90\cdot 10^{-2} \\
- && \\
- \multicolumn{3}{l}{\mbox{for } u_{H_2O} < 0.01\mbox{ g, and }}\\
- && \\
- \D {\cal T}_{H_2O}& = & \D 1-0.240\log{(u_{H_2O}+0.010)}+0.622 \\
- && \\
- \multicolumn{3}{l}{\mbox{else.}}\\
- &&\\
- &&\\
- \D {\cal T}_{CO_2}& = & \D 1-0.0825\;u_{CO_2}^{0.456}\\
- && \\
- \multicolumn{3}{l}{\mbox{for } u_{CO_2} \le 0.5 \mbox{ cm, and }}\\
- && \\
- \D {\cal T}_{CO_2}& = & \D 1-0.0461\log{(u_{CO_2})}+0.074 \\
- && \\
- \multicolumn{3}{l}{\mbox{else.}}\\
- &&\\
- &&\\
- \D {\cal T}_{O_3} & = & \D 1-0.0122\log{(u_{O_3}+6.5 \cdot 10^{-4})}+0.0385
- \end{array}
- \end{equation}
- where $u_{H_2O}$, $u_{CO_2}$ and $u_{O_3}$ are the effective
- amounts of water vapor, carbon
- dioxide and ozone, respectively, which are obtained from:
- \begin{equation}
- u(p, p^{\prime}) =
- \frac{f}{g}
- \int\limits_{p}^{p^{\prime}} q_X
- \left(\frac{p^{\prime\prime}}{p_0}\right)
- dp^{\prime\prime}
- \end{equation}
- where $q_X$ denotes the mixing
- ratios [kg/kg] of water vapor, carbon dioxide and ozone,
- respectively, $g$ is the gravitational acceleration, $p$
- is pressure and $p_0$~=~1000 hPa is the reference
- pressure. The factor $f$ is used to transfer the units to g/cm$^2$
- for $u_{H_2O}$ and cm-STP for
- $u_{CO_2}$ and cm-STP for $u_{O_3}$, which are used in Eq.~\ref{taus}.
- To account for the overlap between
- the water vapor and the carbon dioxide bands near
- 15~$\mu$m, the CO$_2$ absorption is
- corrected by a H$_2$O transmission at 15~$\mu$m,
- ${\cal T}_{H_2O}^{15\mu m}$, with
- ${\cal T}_{H_2O}^{15\mu
- m}$ given by
- \begin{equation}
- {\cal T}_{H_2O}^{15\mu m} = 1.33-0.832 \, (u_{H_2O}
- +
- 0.0286)^{0.26}
- \end{equation}
- {\bf Clouds}
- Clouds can be either treated as gray bodies with a prescribed cloud flux emissivity (grayness) or
- the cloud flux emissivity is obtained from the cloud liquid water contend. If the cloud flux
- emissivity (grayness) ${\cal A}^{cl}$ is externally prescribed, the value is
- attributed to each cloud layer. Otherwise, which is the default, ${\cal A}^{cl}$ is calculated
- from the cloud liquid water (e.g. Stephens 1984)
- \begin{equation}
- {\cal A}^{cl}=1.-\exp{(-\beta_d \; k^{cl} \; W_L)}
- \end{equation}
-
- where $\beta_d$~=~1.66 is the diffusivity factor, $k^{cl}$ is the mass absorption coefficent
- (with
- is set to a default value of 0.1~m$^2$/g (Slingo and Slingo 1991)) and $W_L$ is the
- cloud liquid water path.
- For a single layer
- between $z$ and $z^{\prime}$ with fractional cloud
- cover
- $cc$, the total transmissivity ${\cal T}^*_{(z, z^{\prime})}$
- is
- given by
- \begin{equation}
- {\cal T}^*_{(z, z^{\prime})} = {\cal T}_{(z, z^{\prime})} \, (1 - cc \,
- {\cal A}^{cl})
- \end{equation}
- where ${\cal T}_{(z, z^{\prime})}$ is the clear sky
- transmissivity. When there is more than one cloud
- layer
- with fractional cover, random overlapping of the
- clouds is
- assumed and ${\cal T}^*_{(z, z^{\prime})}$ becomes
- \begin{equation}
- {\cal T}^*_{(z, z^{\prime})} ={\cal T}_{(z, z^{\prime})} \, \prod_j (1
- - cc_j \, {\cal A}^{cl}_{j})
- \end{equation}
- where the subscript $j$ denotes the cloud layers.
- \subsubsection*{Vertical discretization}
- To compute the temperature tendency for a model
- layer resulting form the divergence of the radiative
- fluxes, the vertical discretization scheme of Chou et al. (2002) is used. The upward and
- downward fluxes, $F_l^{\uparrow LW}$ and $F_l^{\downarrow LW}$, at
- level $l$, which is the interface between two model
- layers, are computed from
- \begin{equation}\label{rad1}
- \begin{array}{rcllcl}
- \D F_l^{\uparrow LW}& = &\D \sum\limits_{l^\prime =
- l}^{L} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l ,
- l^\prime)}-
- {\cal T}^*_{(l^\prime+1,l)}] & & \D \;\; l=1, \cdots , L\\
- &&&&\\
- && \D +{\cal T}^*_{(l ,L+1)} \; F_{L+1}^{\uparrow LW} & &\\
- & & & &\\
- &&&&\\
- \D F_l^{\downarrow LW}& = &\D
- \sum\limits_{l^\prime=1}^{l-
- 1} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l^\prime+1,l)}-{\cal T}^*_{(l^\prime,l)}] & & \D
- \;\; l=2,
- \cdots , L+1
- \end{array}
- \end{equation}
- where ${\cal T}^*_{(l,l^{\prime})}$ denotes the
- transmissivity of
- the layer from level $l$ to level $ l^{\prime}$ (see
- above)
- and $B_{l+\frac{1}{2}}$ is the black body flux for
- level
- $l+\frac{1}{2}$. The downward flux at the top of the atmosphere, $F_0^{\downarrow
- LW}$, and the upward flux at the surface ,$F_{L+1}^{\uparrow LW}$, are given by
- \begin{equation}
- \begin{array}{rcl}
- \D F_0^{\downarrow LW} & = & \D 0 \\
- &&\\
- \D F_{L+1}^{\uparrow LW} & = & \D {\cal A}_S \; B(T_S) + (1-{\cal A}_S) \;
- F_{L+1}^{\downarrow LW}
- \end{array}
- \end{equation}
- where ${\cal A}_S$ denotes the surface emissivity and $T_S$ is the surface temperature. Note,
- that for a more convenient discription of the scheme,
- $l+\frac{1}{2}$
- denotes a so called full level, where the temperatures
- are
- defined. This may be in contrast to the convention in
- most of the other sections where a full
- level is indicated by $l$.
- Eqs.~\ref{rad1} can be rearranged to give
- \begin{equation}\label{vertical1}
- \begin{array}{rclcl}
- \D F_l^{\uparrow LW}& = &\D B_{l+\frac{1}{2}} +
- \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
- l)} \,
- [B_{l^\prime+\frac{1}{2}} - B_{l^\prime-
- \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
- &&&&\\
- & & + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
- & & & & \\
- &&&&\\
- \D F_{l^\prime}^{\downarrow LW}& = & \D
- B_{l^\prime-
- \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1}{\cal T}^*_{(l^\prime , l)} \,
- [B_{l+\frac{1}{2}} -
- B_{l-\frac{1}{2}}]
- & & \D \;\; l^\prime=2, \cdots , L+1
- \end{array}
- \end{equation}
- with the boundary conditions
- \begin{equation}
- \begin{array}{rcl}
- \D B_{L+\frac{3}{2}}& = & \D {\cal A}_S \,
- B(T_S) \\
- &&\\
- \D B_{\frac{1}{2}} & = & \D 0
- \end{array}
- \end{equation}
- The net downward flux at
- level
- $l$, $F_l^{\updownarrow LW}$, is given by
- \begin{equation}
- F_l^{\updownarrow LW}=F_l^{\downarrow LW}-F_l^{\uparrow LW}
- \end{equation}
- Finally, the temperature tendency for the layer between
- $l$ and $l+1$ is computed:
- \begin{equation}
- \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
- \frac{g}{c_p
- \, p_S}\frac{F_{l+1}^{\updownarrow LW}-F_{l}^{\updownarrow LW}}{\Delta
- \sigma}
- \end{equation}
- {\bf Emission of a layer}
- As pointed out by Chou et al.~(2002), the difference between the upward and downward
- emission of a layer will be large, if the layer is rather opaque and the temperature range across
- the layer is large. This, in particular, holds for coarse vertical resolution as in the default version
- of the model. Therefore, the upward and the downward emission of a layer is computed
- separately following the ideas of Chou et al.~(2002):
- The contribution of the upward flux at level $p$ from the adjecant layer below can be written as
- \begin{equation} \label{FUPLW}
- \Delta F^{\uparrow LW}(p) = -\int\limits^{p+\Delta p}_{p} B(p^{\prime}) \; \frac{\partial
- {\cal T}_{(p,p^{\prime})}}{\partial p^{\prime}} \; dp^{\prime} = B^u \; (1-{\cal T}_{
- (p+\Delta p, p)})
- \end{equation}
- where $\Delta p$ is the thickness of the adjacent layer, $B^u$ is the effective Planck flux for the
- adjacent layer, and ${\cal T}_{(p+\Delta p, p)}$ is the flux transmittance between $p$ and $p
- +\Delta p$. Assuming that the Planck function varies linearly with pressure and the
- transmittance decreases exponentially with pressure away from $p$ it follows
- \begin{equation}
- B(p^{\prime})= B(p) + \frac{(B(p)-B(p+\Delta p)) (p^{\prime} - p)}{\Delta p}
- \end{equation}
- and
- \begin{equation}
- {\cal T}_{(p, p^{\prime})} = \exp{(-c\; (p^{\prime}-p))}
- \end{equation}
- with $c$ ia a constant. From Eq.~\ref{FUPLW} the effective Planck flux for the adjacent layer
- $B^u$ is
- \begin{equation}
- B^u=\frac{B(p)-B(p+\Delta p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
- +\frac{B(p)-
- B(p+\Delta p)}{\ln({\cal T}_{(p+\Delta p, p)})}
- \end{equation}
- Similarly, for the downward flux at the lower boundary of the layer, the effective Planck
- function of the layer $B^d$ is
- \begin{equation}
- B^d=\frac{B(p+\Delta p)-B(p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
- +\frac{B(p+\Delta
- p)-B(p)}{\ln({\cal T}_{(p+\Delta p, p)})}
- \end{equation}
- Replacing the respective Planck functions in Eqs.~\ref{vertical1} by $B^u$ and $B^d$ results
- in
- \begin{equation}\label{vertical2}
- \begin{array}{rclcl}
- \D F_l^{\uparrow LW}& = &\D B^u_{l+\frac{1}{2}} +
- \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
- l)} \,
- [B^u_{l^\prime+\frac{1}{2}} - B^u_{l^\prime-
- \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
- &&&&\\
- & & \D + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
- & & & & \\
- &&&&\\
- \D F_{l^\prime}^{\downarrow LW}& = & \D
- B^d_{l^\prime-
- \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1} {\cal T}^*_{(l^\prime , l)} \,
- [B^d_{l+\frac{1}{2}}
- -
- B^d_{l-\frac{1}{2}}]
- & & \D \;\; l^\prime=2, \cdots , L+1
- \end{array}
- \end{equation}
- where
- \begin{equation}
- \begin{array}{lcl}
- \D B^d_{l^{\prime}-\frac{1}{2}} & = & \D \frac{B_{l^{\prime}}-B_{l^{\prime}-1} \;
- {\cal T}_{(l^{\prime},l^{\prime}-1)}}{1-{\cal T}_{(l^{\prime},l^{\prime}-1)}} +
- \frac{B_{l^{\prime}} - B_{l^{\prime}-1}}{\ln({\cal T}_{(l^{\prime},l^{\prime}-1)})} \\
- && \\
- \D B^u_{l^{\prime}-\frac{1}{2}} & = & \D (B_{l^{\prime}} + B_{l^{\prime}-1} ) -
- B^d_{l^{\prime}-\frac{1}{2}}
- \end{array}
- \end{equation}
- For the calculation of the effective Plank function, the mean transmissivity for a layer partially
- filled with clouds is given by
- \begin{equation}
- {\cal T}_{(l^{\prime},l^{\prime}-1)} = f_{{\cal T}} \; {\cal
- T}^{cs}_{(l^{\prime},l^{\prime}-1)} \; (1 -
- cc_{(l^{\prime},l^{\prime}-1)}{\cal A}^{cl}_{(l^{\prime},l^{\prime}-1)})
- \end{equation}
- with the cloud emissivity ${\cal A}^{cl}$ and the clear sky transmissivity ${\cal T}^{cs}$
- being defined above, and the factor $f_{{\cal T}}$ provides a tuning opportunity.
- When a model layer spans a region where the temperature lapse rate changes signs, the linearity
- of $B$ with respect to $p$ can not longer be assumed and $B^d$ and $B^u$ are simply
- computed from
- \begin{equation}
- B^u_{l+\frac{1}{2}}=B^d_{l-\frac{1}{2}}= 0.5 \; B_{l+\frac{1}{2}} + 0.25 \; (B_{l} +
- B_{l^{\prime}})
- \end{equation}
- \subsubsection{Ozone}
- Ozone concentration is prescribed. Either a three dimensional ozone distribution can be
- externally provided or an idealized annual cycle of ozone concentration can be used. The
- idealized distribution bases on the analytic ozone distribution of Green (1964):
- \begin{equation}
- u_{O_3}(h)=\frac{a+a \; \exp{(-b/c)}}{1+\exp((h-b)/c)}
- \end{equation}
- where $u_{O_3}(h)$ is the ozone amount [cm-STP] in a vertical column above the altitude $h$,
- $a$ is the total ozone amount in a vertical column above the ground, $b$ the altitude at which
- the ozone concentration has its maximum. While for $a$~=~0.4~cm, $b$~=~20~km and
- $c$~=~5~km
- this distribution fits close to the mid-latitude winter ozone distribution, an annual cycle and a
- latitudinal dependence is introduced by varying $a$ with time and latitude.
- \subsubsection{Additional Newtonian cooling}
- For the standard setup with a vertical resolution of five equally spaced sigma-levels, the model
- produces a strong bias in the stratospheric (uppermost level) temperatures. This may be
- attributed to the insufficient representation of the stratosphere and its radiative and dynamical
- processes. The bias also effects the tropospheric circulation leading, for example, to a
- misplacement of the dominant pressure centers. To enable the simulation of a more realistic
- tropospheric climate, a Newtonian cooling can be applied to the uppermost level. Using this
- method, the model temperature $T$ is relaxed towards a externally given distribution of the
- temperature $T_{NC}$ which results in additional temperature tendencies $\dot{T}$ for the
- uppermost model level of
- \begin{equation}
- \dot{T}=\frac{T_{NC}-T}{\tau_{NC}}
- \end{equation}
- where $\tau_{NC}$ is the time scale of the relaxation, which has a default value of ten days.
- \newpage
- \subsection{Moist Processes and Dry Convection}
- \subsubsection{Correction of Negative Humidity}
- Local negative values of specific humidity are an
- artifact of spectral models. In the model, a simple
- procedure corrects these negative values by
- conserving the global amount of water. The correction of negative moisture is performed at the
- beginning of the grid-point
- parameterization scheme. A negative
- value of specific humidity is reset to zero.
- Accumulation of all corrections defines a correction
- factor. A hierarchical scheme of three steps is used. First, the correction is done within an
- atmospheric column only. If there are atmospheric columns without sufficient moisture, a
- second correction step is done using all grid points of the respective latitude. Finally, if there is
- still negative humidity remaining, a global correction is performed.
- \subsubsection{Saturation Specific Humidity}
- For parameterizations of moist processes like cumulus
- convection and large scale condensation
- the computation of the saturation specific humidity
- $q_{sat}(T)$ and its derivative with respect
- to temperature $dq_{sat}(T)/dT$ is needed at several
- places. In
- the model, the Tetens formula (Lowe 1977) is used to
- calculate the saturation pressure
- $e_{sat} (T)$ and its derivative with respect to
- temperature $de_{sat}(T)/dT$:
- \begin{equation}
- \begin{array}{rcl}
- \D e_{sat}(T) & = & \D a_1 \exp{\left(a_2 \,
- \frac{T-T_0}{T-a_3}\right)} \\
- && \\
- \D \frac{de_{sat}(T)}{dT} & = & \D \frac{a_2 \, (T_0
- - a_3)}{(T-a_3)^2} \, e_{sat}(T)
- \end{array}
- \end{equation}
- with the constants $a_1$~=~610.78,
- $a_2$~=~17.2693882, $a_3$~=~35.86 and
- $T_0$~=~273.16. The
- saturation specific humidity $q_{sat}(T)$ and its
- derivative $dq_{sat}(T)/dT$ are given by
- \begin{equation}\label{qsat}
- \begin{array}{rcl}
- \D q_{sat}(T) & = & \D \frac{\epsilon \,
- e_{sat}(T)}{p-(1-\epsilon )\, e_{sat}
- (T)} \\
- &&\\
- \D \frac{dq_{sat}(T)}{dT} & = & \D \frac{p \,
- q_{sat}(T)}{p-(1-\epsilon)\, e_{sat}
- (T)} \frac{de_{sat}(T)}{dT}\\
- \end{array}
- \end{equation}
- where $p$ is the pressure and $\epsilon$ is the ration
- of the gas constants
- for dry air $R_d$ and water vapor $R_v$ ($\epsilon =
- R_d / R_v$).
- \subsubsection{Cumulus Convection}
- The cumulus convection is parameterized by a
- Kuo-type convection scheme (Kuo 1965, 1974)
- with some modifications to the original Kuo-scheme.
- The Kuo-scheme considers the effect of
- cumulus convection on the large scale flow applying
- the following assumptions. Cumulus
- clouds are forced by mean low level convergence in
- regions of conditionally unstable
- stratification. The production of cloud air is
- proportional to the net amount of moisture
- convergence into one grid box column plus the
- moisture supply by surface evaporation. In a
- modification to the original scheme, the implemented
- scheme also considers clouds which
- originate at upper levels where moisture convergence
- is observed. This type of cloud may occur
- in mid-latitude frontal regions. Therefore, only the
- moisture contribution which takes place in
- the layer between the lifting level and the top of the
- cloud is used instead of the whole column.
- Thus, the total moisture supply $I$ in a period $2
- \Delta t$ is given by
- \begin{equation}\label{cli}
- I= \frac{2 \Delta t \, p_S}{g}
- \int\limits_{\sigma_{Top}}^{\sigma_{Lift}} A_q \, d
- \sigma
- \end{equation}
- where $A_q$ is the moisture convergence plus the
- surface evaporation if the lifting level
- $\sigma_{Lift}$ is the lowermost model level.
- $\sigma_{Top}$ is the cloud top level, $p_S$ is
- the surface pressure and $g$ is the gravitational
- acceleration. Lifting level, cloud base and cloud
- top are determined as follows. Starting form the
- lowermost level, the first level with positive
- moisture supply $A_q$ is considered as a lifting level. If the lowermost level $L$ is considered
- to be a lifting level and the surface layer is dry adiabatic unstable ($\theta_S > \theta_L$
- where $\theta$ denotes the potential temperature), the convection starts from the surface.
- Air from the lifting level ($l+1$) is lifted dry
- adiabatically up to the next level ($l$) by keeping its
- specific humidity. A cloud base is
- assumed to coincide with level $l+\frac{1}{2}$ if the
- air is saturated at $l$. Above the cloud
- base the air is lifted moist adiabatically. Distribution of
- temperature $T_{cl}$ and of moisture
- $q_{cl}$ in the cloud is found by first lifting the air
- dry adiabatically
- \begin{equation}\label{clad}
- \begin{array}{rcl}
- \D (T_{cl})_l^{Ad} & = & \D (T_{cl})_{l+1}
- \left(\frac{\sigma_l}{\sigma_{l+1}}\right)^{\frac{R_
- d}{c_{pd}}} \\
- &&\\
- \D (q_{cl})_l^{Ad} & = & \D (q_{cl})_{l+1}
- \end{array}
- \end{equation}
- and then by correcting temperature and moisture values
- due to the condensation of water vapor
- \begin{equation}\label{ccc1}
- \begin{array}{rcl}
- \D (T_{cl})_l & = & \D (T_{cl})_l^{Ad} +
- \frac{L}{c_p} \, \frac{(q_{cl})_l^{Ad} - q_{sat}
- [(T_{cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
- \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}} \\
- &&\\
- \D (q_{cl})_l & = & \D (q_{cl})_l^{Ad}
- -\frac{(q_{cl})_l^{Ad} - q_{sat}[(T_
- {cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
- \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}}
- \end{array}
- \end{equation}
- where the suturation specific humidity $q_{sat}$ and
- its derivative with respect to temperature
- $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
- $L$ is
- either the latent heat of vapourisation $L_v$ or
- the latent heat of sublimation $L_s$ depending on the
- temperature.
- $c_p$ is the specific
- heat for moist air at constant pressure ($c_p= c_{pd} \,
- [1+(c_{pv}/c_{pd}-1)\, q]$ where
- $c_{pd}$ and $c_{pv}$ are the specific heats at
- constant pressure for dry air and water vapor,
- respectively) and $R_d$ in Eq.~\ref{clad} is the gas
- constant for dry air.
- For reasons of accuracy the calculation (\ref{ccc1}) is
- repeated once where $(T_{cl})^{Ad}$
- and $(q_{cl})^{Ad}$ are now replaced by the results
- of the first iteration.
- Cumulus clouds are assumed to exist only if the
- environmental air with temperature $T_e$ and
- moisture $q_e$ is unstable stratified with regard to the
- rising cloud parcel:
- \begin{equation}
- (T_{cl})_l > (T_e)_l
- \end{equation}
- The top of the cloud $\sigma_{Top}$ is then defined
- as
- \begin{equation}
- \sigma_{Top}=\sigma_{l+\frac{1}{2}} \; \mbox{if }
- \left\{ \begin{array}{lcll} (T_{cl})_l &
- \le &
- (T_{e})_l & \mbox{and} \\ &&& \\ (T_{cl})_{l+1} &
- > & (T_{e})_{l+1} & \end{array}
- \right.
- \end{equation}
- Cumulus clouds do exist only if the net moisture
- accession $I$ as given by Eq.~\ref{cli} is
- positive.
- Once this final check has been done, the heating and
- moistening of the environmental air and
- the
- convective rain are computed.
- In the model either the original scheme proposed by
- Kuo (1968) or the modified scheme with
- the parameter $\beta$ (Kuo 1974) can be chosen,
- where $\beta$ determines the partitioning of
- heating and moistening of the environmental air. In the
- scheme without $\beta$ the surplus $P$
- of total energy of the cloud against the environmental
- air is given by
- \begin{equation}
- P=\frac{p_s}{g}
- \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (c_p\,
- (T_{cl} -T_{e}) + L\,
- (q_{sat}(T_e)-q_{e})) d\sigma
- \end{equation}
- The clouds produced dissolve instantaneously by
- artificial mixing with the environmental air,
- whereby the environment is heated and moistened by
- \begin{equation}\label{handm}
- \begin{array}{rcl}
- \D (\Delta T)^{cl} & = & \D a \, (T_{cl} -T _e) \\
- &&\\
- \D (\Delta q)^{cl} & = & \D a \, (q_{sat}(T_e) -q _e)
- \end{array}
- \end{equation}
- where $a$ is the fractional cloud area being produced
- by the moisture supply:
- \begin{equation}
- a=L\, \frac{I}{P}
- \end{equation}
- In the scheme with $\beta$ the fraction 1-$\beta$ of the
- moisture is condensed, while the
- remaining fraction $\beta$ is stored in the atmosphere.
- The parameter $\beta$ depends on the
- mean relative humidity and, in the present scheme, is
- given by
- \begin{equation}
- \beta = \left( 1 -
- \frac{1}{\sigma_{Base}-\sigma_{Top}}
- \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
- \frac{q_e}{q_{sat}(T_e)} d\sigma \right)^3
- \end{equation}
- Instead of Eq.~\ref{handm}, the temperature and
- moisture tendencies are now
- \begin{equation}\label{handm2}
- \begin{array}{rcl}
- \D (\Delta T)^{cl} & = & \D a_T \, (T_{cl} -T _e) \\
- &&\\
- \D (\Delta q)^{cl} & = & \D a_q \, (q_{sat}(T_e) -q
- _e)
- \end{array}
- \end{equation}
- where $a_T$ and $a_q$ are given by
- \begin{equation}
- \begin{array}{rcl}
- \D a_T & = & \D \frac{(1-\beta )\, L\, I }{c_p\,
- \frac{p_S}{g}\,
- \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (T_{cl}
- - T_e)\, d\sigma} \\
- &&\\
- \D a_q & = & \D \frac{\beta \, I }{\frac{p_S}{g}\,
- \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
- (q_{sat}(T_e) - q_e) \, d\sigma}
- \end{array}
- \end{equation}
- The final tendencies for moisture $\partial q / \partial
- t$ and temperature $\partial T / \partial t$
- which enter the diabatic leap frog time step are given
- by
- \begin{equation}
- \begin{array}{rcl}
- \D \frac{\partial q}{\partial t} & = & \D \frac{(\Delta
- q)^{cl}}{2 \Delta t} - {\delta}^{cl} A_q
- \\
- && \\
- \D \frac{\partial T}{\partial t} & = & \D \frac{(\Delta
- T)^{cl}}{2 \Delta t}
- \end{array}
- \end{equation}
- where ${\delta}^{cl}$ is specified by
- \begin{equation}
- {\delta}^{cl} = \left\{ \begin{array}{ll} 1 & \mbox{if
- } \; \sigma_{Top} \le \sigma \le
- \sigma_{Lift} \\ & \\ 0 & \mbox{otherwise}
- \end{array} \right.
- \end{equation}
- and $2\Delta t$ is the leap frog time step of the model.
- The convective precipitation rate
- $P_{c}$ [m/s] of each cloud layer is
- \begin{equation}
- P_{c} = \frac{c_p\, \Delta p}{L\, g \, \rho_{H_2O}}
- \frac{(\Delta T)^{cl}}{2\Delta t}
- \end{equation}
- where $\Delta p$ is the pressure thickness of the layer
- and $\rho_{H_2O}$ is the density of
- water. $(\Delta T)^{cl}$ is computed from
- Eq.~\ref{handm} or Eq.~\ref{handm2},
- respectively.
- \subsubsection{Large Scale Precipitation}
- Large scale condensation occurs if the air is
- supersaturated ($q > q_{sat}(T)$). Condensed water
- falls out
- instantaneously as precipitation. No storage of water
- in clouds is considered. An iterative procedure is used
- to compute final
- values ($T^*$, $q^*$) starting from the
- supersaturated state ($T$, $q$):
- \begin{equation}\label{lsp1}
- \begin{array}{rcl}
- \D T^* & = & \D T + \frac{L}{c_p} \, \frac{q -
- q_{sat}
- (T)}{1+\frac{L}{c_p}\, \frac{dq_{sat}(T)}{dT}} \\
- &&\\
- \D q^* & = & \D q -\frac{q -
- q_{sat}(T)}{1+\frac{L}{c_p}\,
- \frac{dq_{sat}(T)}{dT}}
- \end{array}
- \end{equation}
- where the suturation specific humidity $q_{sat}$ and
- its derivative with respect to temperature
- $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
- $L$ is
- either the latent heat of vapourisation or
- the latent heat of sublimation depending on the
- temperature.
- $c_p$ is the specific
- heat for moist air at constant pressure ($c_p= c_{pd} \,
- [1+(c_{pv}/c_{pd}-1)\, q]$ where
- $c_{pd}$ and $c_{pv}$ are the specific heats at
- constant pressure for dry air and water vapor,
- respectively). This calculation is repeated once using
- ($T^*$,
- $q^*$) as the new initial state. Finally, The
- temperature
- and moisture tendencies and the precipitation rate
- $P_{l}$ [m/s] are computed:
- \begin{equation}
- \begin{array}{rcl}
- \D \frac{\partial T}{\partial t} & = &
- \D \frac{T^*-T}{2\Delta t} \\
- &&\\
- \D \frac{\partial q}{\partial t} & = &
- \D \frac{q^*-q}{2\Delta t} \\
- && \\
- \D P_{l} & = & \D \frac{p_S \, \Delta \sigma}{g \,
- {\rho}_{H_2O}} \frac{ (q-q^*)}{2\Delta t}
- \end{array}
- \end{equation}
- where $p_S$ is the surface pressure, $\rho_{H_2O}$
- is
- the density of water, $\Delta \sigma$ is the layer
- thickness and $2\Delta t$ is the leap frog time step of
- the model.
- \subsubsection{Cloud Formation}
- Cloud cover and cloud liquid water content are
- diagnostic quantities. The fractional cloud cover
- of a grid box, $cc$, is parameterized following the ideas of Slingo and Slingo (1991) using the
- relative humidity for the stratiform cloud amount $cc_s$ and the convective precipitation rate
- $P_{c}$ [mm/d] for the convective cloud amount $cc_c$. The latter is given by
- \begin{equation}
- cc_c= 0.245 + 0.125 \ln{(P_c)}
- \end{equation}
- where $0.05 \le cc_c \le 0.8$.
- Before computing the amount of stratiform clouds, the relative humidity $rh$ is multiplied by
- $(1-cc_c)$ to account for the fraction of the grid box covered by convective clouds. If $cc_c \ge
- 0.3$ and the cloud top is higher than $\sigma = 0.4$ ($\sigma=p/p_S)$, anvil cirrus is present
- and the cloud amount is
- \begin{equation}
- cc_s=2\; (cc_c-0.3)
- \end{equation}
- High-, middle- and low-level stratiform cloud amounts are computed from
- \begin{equation}
- cc_s=f_{\omega} \left(\frac{rh-rh_c}{1-rh_c}\right)^2
- \end{equation}
- where $rh_c$ is a level depending critical relative
- humidity. Optionally, a restriction of low-level stratiform cloud amount due to subsidence can
- by introduced by the factor $f_{\omega}$ where $f_{\omega}$ depends on the vertical
- velocity
- $\omega$. In the default version, $f_{\omega}$~=~1.
- Cloud liquid water content $q_{H_2O}$ [kg/kg] is computed according to Kiehl et al. (1996):
-
- \begin{equation}
- q_{H_2O} = \frac{q^0_{H_2O}}{\rho} \exp{(-z/h_l)}
- \end{equation}
- where the reference value $q^0_{H_2O}$ is $0.21\cdot 10^{-3}$~kg/m$^3$, $\rho$ is the air
- density, $z$ is the height
- and the local cloud water scale height $h_l$~[m] is given by vertically integrated water vapor
- (precipitable water)
- \begin{equation}
- h_l= 700 \ln{\left(1 + \frac{1}{g} \int\limits^{p_s}_0 q dp \; \right)}
- \end{equation}
- \subsubsection{Evaporation of Precipitation and Snow
- Fall}
- Possible phase changes of convective or large scale
- precipitation within the atmosphere or the
- condensational growth of cloud droplets are not
- considered in the model. However, a distinction
- between rain and snow fall at the surface is made. If
- the temperature of the lowermost level
- exceeds the freezing point ($T$~$>$~273.16~K),
- convective and large scale precipitation is
- assumed to be rain, otherwise all precipitation fall out
- as snow.
- \newpage
- \subsubsection{Dry Convective Adjustment}
- Dry convective adjustment is performed for layers which are dry adiabatically unstable, e.g.
- $\partial \theta / \partial p > 0$ where $\theta$ denotes the potential temperature. The adjustment
- is done so that the total sensible heat of the respective column is conserved. Wherever dry
- convection occurs, it is assumed that the moisture is completely mixed by the convective
- process as well. The adjustment is done iteratively. The atmospheric column is scanned for
- unstable regions. A new neutral stable state for the unstable region is computed which consists
- of a potential temperature $\theta_N$ and specific humidity $q_N$:
- \begin{equation}
- \begin{array}{lcl}
- \D \theta_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} T_l \; \Delta\sigma_l}
- {\sum\limits_{l=l_1}^{l_2} \sigma_l^{\kappa} \; \Delta\sigma_l} \\
- &&\\
- \D q_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} q_l \; \Delta\sigma_l}
- {\sum\limits_{l=l_1}^{l_2} \Delta\sigma_l} \\
- \end{array}
- \end{equation}
- where $l_1$ and $l_2$ define the unstable region, $\sigma = (p/p_S)$ is the vertical coordinate,
- $T$ and $q$ are temperature and specific humidity, respectively, and $\kappa$ is
- $R_d$/$c_{pd}$ where $R_d$ and $c_{pd}$ are the gas constant and the specific heat for dry
- air,
- respectively.
- The procedure is repeated starting from the new potential temperatures und moistures until all
- unstable regions are removed. The temperature and moisture tendencies which enter the diabatic
- time steps are then computed from the final $\theta_N$ and $q_N$
- \begin{equation}
- \begin{array}{lcl}
- \D \frac{T_l^{t+\Delta t}-T_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{\theta_N
- \; \sigma_l^{\kappa} -T_l^{t-\Delta t}}{2\Delta t} \\
- &&\\
- \D \frac{q_l^{t+\Delta t}-q_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{q_N - q_l^{t-\Delta
- t}}{2\Delta t}
- \end{array}
- \end{equation}
- \newpage
- \subsection{Land Surface and Soil \label{landmod}}
- The parameterizations for the land surface and the soil
- include the calculation of temperatures
- for the surface and the soil, a soil hydrology and a river
- transport scheme. In addition, surface
- properties like the albedo, the roughness length or the
- evaporation efficiency are provided.
- As, at the moment, coupling to an extra glacier
- module is not available, glaciers are treated like
- other land points, but with surface and soil properties
- appropriate for ice. Optionally, A simple biome model can be used (see AXEL).
- \subsubsection{Temperatures}\label{surtemp}
- The surface temperature $T_S$ is computed from
- the linearized energy balance of the
- uppermost $z_{top}$ meters of the ground:
- \begin{equation} \label{land.1}
- c_{top} \; z_{top} \; \frac{\Delta T_S}{\Delta t}
- = F_S - G + \Delta T_S \; \frac{\partial (Q_a
- -F_g)}{\partial T_S} - F_m
- \end{equation}
- $z_{top}$ is a prescribed parameter and set to a default
- value of $z_{top}$~=~0.20~m.
- $Q_a$ denotes the total heat flux from the atmosphere,
- which consists of the sensible heat flux,
- the latent heat flux, the net short wave radiation and the
- net long wave radiation. $Q_g$ is the flux
- into the deep soil. $Q_a$ and $Q_g$ are defined positive
- downwards. $Q_m$ is the
- snow melt heat flux and $c_{top}$ is the
- volumetric heat capacity. Depending on the snow
- pack, $z_{top}$ can partly or totally consist
- of snow or soil solids:
- $z_{top}=z_{snow}+z_{soil}$. Thus, the heat
- capacity $c_{top}$ is a
- combination of snow and soil heat capacities:
- \begin{equation}
- c_{top} =\frac{ c_{snow} \; c_{soil} \; z_{top}}{c_{snow} \; z_{soil} +
- c_{soil} \; z_{snow}}
- \end{equation}
- The default value of
- $c_{snow}$ is
- 0.6897~$\cdot$~10$^{6}$~J/(kg K) using a snow
- density
- of 330~kg/m$^3$. $c_{soil}$ is set to a default value
- of 2.07~$\cdot$~10$^{6}$~J/(kg K) for
- glaciers and to a value of 2.4~$\cdot$~10$^{6}$~J/(kgK) otherweise.
- Below $z_{top}$ the soil column is discretized into
- $N$ layers with thickness $\Delta z_i$,
- where layer $1$ is the uppermost of the soil
- layers. The default values for the model are $N$~=~5
- and $\Delta z$~=~(0.4~m, 0.8~m, 1.6~m,
- 3.2~m, 6.4~m). The heat flux into layer 1, $Q_g$, is
- given by
- \begin{equation}
- Q_g=\frac{2 k_{1}}{\Delta z_{1}} (T_S - T_{1})
- \end{equation}
-
- where $k_{1}$ and $T_{1}$ are the thermal
- conductivity and the temperature.
- If the snow depth is greater than $z_{top}$, the
- thermal properties of snow are blended with the
- first soil layer to create a snow/soil layer with
- thickness $z_{snow}-z_{top}+\Delta z_1$. The
- thermal conductivity $k_1$ and heat capacity
- $c_1$ of a snow/soil layer are
- \begin{equation}
- \begin{array}{rcl}
- \D k_1 & = & \D \frac{k_{snow}\; k_{soil}\; (\Delta
- z_1+z_{snow}-z_{top})}{k_{snow}\; \Delta z_1 +
- k_{soil}\; (z_{snow}-z_{top})} \\
- &&\\
- \D c_1 & = & \D \frac{c_{snow}\; c_{soil}\; (\Delta
- z_1+z_{snow}-z_{top})}{c_{snow}\; \Delta z_1 +
- c_{soil}\; (z_{snow}-z_{top})}
- \end{array}
- \end{equation}
- with default values of $k_{snow}$~=~0.31~W/(m K),
- $k_{soil}$~=~2.03~W/(m K) for
- glaciers and $k_{soil}$~=~7~W/(m K) otherweise.
-
- After the surface temperature $T_S$ has been
- calculated
- from Eq.~\ref{land.1}, snow melts when $T_S$ is
- greater than the freezing temperature $T_{melt}$. In this
- case, $T_S$ is set to $T_{melt}$ and a new atmospheric
- heat
- flux $Q_a(T_{melt})$ is calculated from $Q_a$ and
- $\partial Q_a/\partial T_S$. If the energy inbalance is
- positive ($Q_a(T_{melt}) > c_{top} \; z_{top}\; (T_{melt} -
- T_S^{t})/\Delta t$; where $T_S^{t}$ is the surface
- temperature at
- the previous time step), the
- snow melt heat flux $Q_m$ is
- \begin{equation}\label{melt}
- Q_m=\max(Q_a(T_{melt}) - \frac{c_{top} \; z_{top}}{\Delta
- t} \; (T_{melt} - T_S^{t}), \; \frac{W_{snow} \; L_f}{\Delta t})
- \end{equation}
- where $W_{snow}$ is the mass of the snow water of
- the
- total snow pack and $L_f$ is the latent heat of fusion.
- Any excess of energy is used to warm the soil.
- With the heat flux $F_z$ at depth $z$ of the soil
- \begin{equation}
- F_z = -k \; \frac{\partial T}{\partial z}
- \end{equation}
- one dimensional energy conservation requires
- \begin{equation}
- c\; \frac{\partial T} {\partial t} = - \frac{\partial
- F_z}{\partial
- z}= \frac{\partial}{\partial z} \left [ k \;
- \frac{\partial T}{\partial z} \right]
- \end{equation}
- where $c$ is the volumetric soil heat capacity, $T$
- is the soil temperature, and $k$ is the
- thermal conductivity.
- In the model, thermal properties (temperature,
- thermal conductivity, volumetric heat capacity) are
- defined at the center of each layer. Assuming the
- heat flux from $i$ to the interface $i$ and $i+1$
- equals the heat flux from the interface to $i+1$, the
- heat flux $F_i$ from layer $i$ to layer $i+1$
- (positive downwards) is given by
- \begin{equation}
- F_i= - \frac{2\; k_i\; k_{i+1} (T_i -
- T_{i+1})}{k_{i+1} \; \Delta z_i + k_i\; \Delta z_{i+1}}
- \end{equation}
- The energy balance for layer $i$ is
- \begin{equation}
- \frac{c_i\; \Delta z_i}{\Delta t} \; (T_i^{t+\Delta t} -
- T_i ^{t}) = F_i - F_{i-1}
- \end{equation}
- The boundary conditions are zero flux at the bottom
- of the soil column and heat flux $F_g$ at the top.
- This equation is solved implicitly using fluxes
- $F_i$ evaluated at $t+\Delta t$
- \begin{equation}
- \begin{array}{lclcl}
- \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
- T_i ^{t}) & = &\D \frac{k_i k_{i+1}
- (T_{i+1}^{t+\Delta
- t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
- \Delta z_{i+1}} + G & for & \D i = 1 \\
- & & & & \\
- \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
- T_i ^{t}) & = &\D \frac{k_i k_{i+1}
- (T_{i+1}^{t+\Delta
- t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
- \Delta z_{i+1}} + \frac{k_i k_{i-1} (T_{i-
- 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
- z_i + k_i \Delta z_{i-1}} & for & \D 1 < i < N \\
- & & & & \\
- \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
- T_i ^{t}) & = &\D \frac{k_i k_{i-1} (T_{i-
- 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
- z_i + k_i \Delta z_{i-1}} & for & \D i = N
- \end{array}
- \end{equation}
- resulting in a linear system for the $T_i^{t+\Delta
- t}$.
-
- \subsubsection{Soil Hydrology}\label{hydro}
- The parameterization of soil hydrology comprises the
- budgets for snow amount and the soil
- water amount. The water equivalent of the snow layer
- $z_{snow}^{H_2O}$ is computed over
- land and glacier areas from
- \begin{equation}
- \frac{\partial z_{snow}^{H_2O}}{\partial t} = F_q +
- P_{snow}-M_{snow}
- \end{equation}
- where $F_q$ is the evaporation rate over snow
- computed from Eq.~\ref{fluxes2}, $P_{snow}$ is the
- snow fall and $M_{snow}$ is the snow
- melt rate (all fluxes are positive downward and in m/s).
- $M_{snow}$ is related to the snow melt
- heat flux $Q_m$ (Eq.~\ref{melt}) by
- \begin{equation}
- M_{snow}=\frac{Q_m}{\rho_{H_2O}\, L_f}
- \end{equation}
- where $L_f$ is the latent heat of fusion.
- The soil water reservoir $W_{soil}$ [m] is
- represented by a single-layer bucket model
- (Manabe 1969). Soil water is increased by precipitation
- $P$ and snow melt $M_{snow}$
- and is depleted by the surface evaporation $F_q$:
-
- \begin{equation}
- \frac{\partial W_{soil}}{\partial t} = P + M + F_q
- \end{equation}
- where all fluxes are defined positive downwards and in
- m/s.
- Soil water is limited by a field capacity $W_{max}$
- which geographical distribution can be prescribed via an external input or is set to a default
- value of
- 0.5~m everywhere. If the soil water
- exceeds $W_{max}$ the excessive
- water builds the runoff $R$ and is provided to the river
- transport scheme
- (Section~\ref{runoff}). The ratio of the soil water and
- the field capacity defines the wetness
- factor $C_w$ which is used in Eq.~\ref{fluxes2} to
- compute the surface evaporation:
- \begin{equation}\label{cwgl}
- C_w=\frac{W_{soil}}{f_{Cw} \; W_{max}}
- \end{equation}
- where the factor $f_{Cw}$ (with a default value of 0.25) takes into account that maximum
- evaporation will take place even if the bucket is not completely filled. For land points covered
- by glaciers, $C_w$ is set to a
- constant value of 1.
- \subsubsection{River Transport}\label{runoff}
- The local runoff is transported to the ocean by a river
- transport scheme with linear advection
- (Sausen et al.~1994). For each grid box (both, land and
- ocean costal points) the river water
- amount $W_{river}$ [m$^3$] is computed from
- \begin{equation}
- \frac{\partial W_{river}}{\partial t}= ADV + area \; (R - S)
- \end{equation}
- where $R$ is the local runoff (Section~\ref{hydro}),
- $S$ is the input into the ocean, $ADV$
- is the advection of river water and $area$ is the area of the
- respective grid box. The input into
- the ocean $S$ is given by
- \begin{equation}
- S=\left\{ \begin{array}{ll} 0 & \mbox{for land points}
- \\
- &\\
- ADV & \mbox{for ocean points} \end{array}
- \right.
- \end{equation}
- This ensures that $S$ is non-zero only for ocean costal
- points. The advection from grid box
- $(i,j)$ into grid box $(i',j')$, $ADV_{(i,j)\rightarrow
- (i',j')}$, is formulated using an upstream
- scheme:
- \begin{equation}
- \begin{array}{rcl}
- \D ADV_{(i,j)\rightarrow (i+1,j)} & = & \D \left\{
- \begin{array}{ll} u_{i,j} W_{i,j}, & \mbox{if } \;
- u_{i,j} \ge 0 \\
- & \\
- u_{i,j} W_{i+1,j}, & \mbox{if } \;
- u_{i,j} < 0 \end{array} \right. \\
- && \\
- \D ADV_{(i,j)\rightarrow (i,j+1)} & = & \D \left\{
- \begin{array}{ll} -v_{i,j} W_{i,j}, & \mbox{if } \;
- v_{i,j} \le 0 \\
- & \\
- -v_{i,j} W_{i,j+1}, & \mbox{if } \;
- v_{i,j} > 0 \end{array} \right. \\
- \end{array}
- \end{equation}
- where $i$ and $j$ are the zonal and meridional indices
- of the grid box, which are counted
- from the west to the east and from the north to the
- south, respectively. The zonal and
- meridional advection rates $u_{i,j}$ and $v_{i,j}$ are
- defined at the interface of two grid
- boxes and depend on the slope of the orography:
- \begin{equation}
- \begin{array}{rcl}
- \D u_{i,j} & = & \D \frac{c}{\Delta
- x}\left[\frac{h_{i,j}-h_{i+1,j}}{\Delta
- x}\right]^{\alpha} \\
- && \\
- \D v_{i,j} & = & \D \frac{c}{\Delta
- y}\left[\frac{h_{i,j+1}-h{i,j}}{\Delta
- y}\right]^{\alpha}
- \end{array}
- \end{equation}
- where $\Delta x$ and $\Delta y$ are the distances
- between the grid points in the longitudinal
- and the meridional direction. $h$ is the height of the
- orography, which is modified in
- order to omit local minima at land grid points. The
- empirical constants $c$ and $\alpha$ are
- set to the values given by Sausen et al.~(1994) for T21
- resolution ($c = $~4.2~m/s and
- $\alpha =$~0.18).
- \subsubsection{Other Land Surface
- Parameter}\label{landsurf}
- Some additional quantities characterizing the land surface of
- each grid box need to be specified for use in the model. The land-sea mask and the orography
- are read from an external file. Optionally, this file may also include other climatological surface
- parameter: the global distribution of the surface roughness length $z_0$, a background albedo
- ${\cal R}_S^{clim}$, a glacier mask for permanent ice sheets, the bucked size for the soil water
- $W_{max}$ (see section above) and a climatological annual cycle of the soil wetness
- $C^{clim}_w$ (which may be used instead of the computed $C_w$ from Eq.~\ref{cwgl}. If
- there is no input for the particular field in the file, the parameter is set to be horizontal
- homogeneous with a specific value. The following defaults are used: $z_0$~=~ 2~m,
- ${\cal R}_S^{clim}$~=~0.2, no glaciers, $W_{max}$~=~0.5 and $C^{clim}_w$~=~0.25.
- For snow covered areas, the background albedo is modified to give the actual albedo ${\cal
- R}_S$
- which is used in the radiation scheme. For points, which are not covered by glaciers, ${\cal
- R}_S$ is
- given by
- \begin{equation}
- {\cal R}_S={\cal R}_S^{clim} + ({\cal R}_S^{snow}-{\cal R}_S^{clim}) \;
- \frac{z_{snow}}{z_{snow} + 0.01}
- \end{equation}
- where $z_{snow}$ is the snow depth, and the albedo of the snow, ${\cal R}_S^{snow}$,
- depends on
- the surface temperature $T_S$
- \begin{equation}\label{rsnow}
- {\cal R}_S^{snow}={\cal R}_{max}^{snow} + ({\cal R}_{min}^{snow} - {\cal
- R}_{max}^{snow}) \; \frac{T_S -
- 263.16}{10}
- \end{equation}
- with ${\cal R}_{min}^{snow} \le {\cal R}_S^{snow} \le {\cal R}_{max}^{snow}$ and default
- values
- ${\cal R}_{min}^{snow}$~=~0.4 and ${\cal R}_{max}^{snow}$~=~0.8.
- For glaciers, ${\cal R}_S$ is given by ${\cal R}_S^{snow}$ from Eq.~\ref{rsnow} but with a
- default
- ${cal R}_{min}^{snow}$~=~0.6.
- The surface specific humidity $q_S$ is given by the saturation specific humidity at $T_S$:
- \begin{equation}
- q_S =q_{sat}(T_S)
- \end{equation}
- where $q_{sat}(T_S)$ is computed from
- Eq.~\ref{qsat}.
- \subsection{Sea Surface}\label{seasurf}
- Sea surface temperatures $T_{sea}$, sea ice distributions
- $c_{ice}$ and surface temperatures over
- sea ice $T_i$ are provided by the ocean and sea
- ice modules (Section HEIKO). From
- these quantities, the following additional parameter are
- computed which enter the atmospheric
- parameterizations. The prescribed surface albedo ${\cal R_S}$
- for open water is set to a default value of
- 0.069. For sea ice ${\cal R}_S$ is given as a function of the ice
- surface temperature $T_{i}$:
- \begin{equation}
- {\cal R}_S=\min{({\cal R}_S^{max}, \, 0.5 + 0.025 \, (273. - T_{i}))}
- \end{equation}
- where the prescribed maximum sea ice background
- albedo ${\cal R}_S^{max}$ is set to a default value
- of 0.7.
- The surface
- specific humidity $q_S$ is given by the
- saturation specific humidity at the surface
- temperature $T_S$ which is either $T_{sea}$ or
- $T_{i}$:
- \begin{equation}
- q_S =q_{sat}(T_S)
- \end{equation}
- where $q_{sat}(T_S)$ is computed from
- Eq.~\ref{qsat}. The wetness factor $C_w$ which
- enters
- the calculation of the surface evaporation
- (Eq.~\ref{fluxes2}) is set to 1.
-
- The roughness length $z_0$ over sea ice is set to a
- constant value of $z_0$~=~0.001~m. Over open
- water,
- $z_0$ is computed from the Charnock (1955) formula:
- \begin{equation}
- z_0 = C_{char} \frac{u_{*}^{2}}{g}
- \end{equation}
- with a minimum value of $1.5 \cdot 10^{-5}$~m.
- $C_{char}$ denotes the Charnock constant and is set
- to
- 0.018. $g$ is the gravitational acceleration. The
- friction
- velocity $u_{*}$ is calculated from the surface wind
- stress at the previous time level:
- \begin{equation}
- u_{*}=\sqrt{\frac{|F_u, F_v|}{\rho} }
- \end{equation}
- where $|F_u, F_v| $ is the absolute value of the surface
- wind stress computed from Eq.~\ref{fluxes2} and
- $\rho$
- is the density.
-
- \newpage
- \subsection{References}
- Berger, A., 1978a: A simple algorithm to compute
- long-term
- variations of daily insolation. Institute of Astronomy
- and
- Geophysic, Universite Catholique de Louvain, {\bf
- Contribution
- 18}, Louvain-la-Neuve, Belgium.
- Berger, A., 1978b: Long-term variations of daily
- insolation
- and quaternary climatic change. {\it J.~Atmos.~Sci.},
- {\bf 35}, 2362-
- 2367.
- Blackadar, A.~K., 1962: The vertical distributionof
- wind and turbulent exchange in a neutral
- atmosphere. {\it J.~Geophys.~Res.}, {\bf 67},
- 3095-3102.
- Boer, G.~J., N.~A.~McFarlane, R.~Laprise,
- J.~Henderson and J.-P.~Blanchet, 1984: The
- Canadian Climate Centre spectral atmospheric general
- circulation model. {\it
- Atmosphere-Ocean},
- {\bf 22}, 397-429.
- Charnock, M., 1955: Wind stress on a water surface.
- {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf
- 81}, 639-640.
- Chou, M.-D., M.~J.~Suarez, X.-Z.~Liang and M.~M.~H.~Yan, 2001 (Revised 2002):
- A thermal infrared radiation
- parameterization for atmospheric studies. {\it Technical Report Series on Global Modelling and
- Data Assimilation, M.~J.~Suarez Ed.}, {\bf NASA/TM-2001-104606, Vol.
- 19}, 55pp.
- Green, A.~E.~S., 1964: Attenuation by ozone and the earth's albedo in the middle ultraviolet.
- {\it AAppl.~Opt.}, {\bf 3}, 203-208.
- Katayama, A., 1972: A simplified scheme for
- computing
- radiative transfer in the troposphere.
- Department
- of Meteorology, {\it Tech.~Report}, {\bf No. 6},
- University of California, Los Angeles, CA,
- 77 pp.
- Kiehl, J.~T., J.~J.~Hack, G.~B.~Bonan, B.~A.~Boville, B.~P.~Briegleb, D.~L.~Williamson
- and
- P.~J.~Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). {\it NCAR
- Technical Note}, {\bf NCAR/TN-420+STR}, 152pp.
- Kuo, H.~L., 1965: On formation and intensification of
- tropical cyclones through latent heat
- release by cumulus convection. {\it J.~Atmos.~Sci.},
- {\bf 22}, 40-63.
- Kuo, H.~L., 1974: Further studies of the
- parameterization of the influence of cumulus
- convection on large-scale flow. {\it J.~Atmos.~Sci.},
- {\bf 31}, 1232-1240.
- Lacis, A.~A., and J.~E.~Hansen, 1974: A parameterization for the absorption of solar
- radiation in the Earth's atmosphere. {\it J.~Atmos.~Sci.}, {\bf 31}, 118-133.
- Laurson, L.~and E.~Eliasen, 1989: On the effects of
- the damping mechanisms in an
- atmospheric general circulation model. {\it Tellus},
- {\bf 41A}, 385-400.
- Louis, J.~F., 1979: A parametric model of vertical
- eddy fluxes in the atmosphere. {\it
- Boundary
- Layer Meteorology}, {\bf 17}, 187-202.
- Louis, J.~F., M.~Tiedtke and M.~Geleyn, 1982: A
- short history of the PBL parameterisation
- at
- ECMWF. Proceedings, ECMWF workshop on
- planetary boundary layer parameterization,
- Reading, 25-27 Nov. 81, 59-80.
- Lowe, P.~R., 1977: An approximating polynomial for
- the computation of saturation vapour
- pressure. {\it J.~Appl.~Met.}, {\bf 16}, 100-103.
- Manabe, S.~and F.~M\"oller, 1961: on the radiative
- equilibrium and heat balance of the
- atmosphere. {\it Mon~Wea.~Rev.}, {\bf 89}, 503-532.
- Manabe, S., 1969: Climate and ocean circulation. I.
- The atmospheric circulation and the
- hydrology of the earth's surface. {\it
- Mon.~Wea.~Rev.}, {\bf 97}, 739-774.
- Rodgers, C.~D., 1967: The use of emissivity in the
- atmospheric radiation calculation.
- {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf 93}, 43-54.
- Roeckner, E., K.~Arpe, L.~Bengtsson, S.~Brinkop,
- L.~D\"umenil, M.~Esch, E.~Kirk,
- F.~Lunkeit, M.~Ponater, B.~Rockel, R.~Sausen,
- U.~Schlese, S.~Schubert and
- M.~Windelband,
- 1992: Simulation of the present-day climate with the
- ECHAM-3 model: Impact of model
- physics
- and resolution. Max-Planck Institut f\"ur Meteorologie,
- {\bf Report No.~93}, 171pp.
- Sasamori, T., 1968: The radiative cooling calculation
- for application to general circulation
- experiments. {\it J.~Appl.~Met.}, {\bf 7}, 721-729.
- Sausen, R., S.~Schubert and L.~D\"umenil, 1994: A
- model of river runoff for use in coupled
- atmosphere-ocean models. {\it Journal of Hydrology},
- {\bf 155}, 337-352.
- Slingo, A., and J.~M.~Slingo, 1991: Response of the National Center for Atmospheric Research
- community climate model to improvements in the representation of clouds. {\it
- J.~Geoph.~Res.}, {\bf 96}, 341-357.
- Stephens, G.~L., 1978: Radiation profiles in extended water clouds. II: Parameterization
- schemes. {\it J.~Atmos.~Sci.}, {\bf 35}, 2123-2132.
- Stephens, G.~L., 1984: The parameterization of
- radiation for numerical weather prediction
- and
- climate models. {\it Mon.~Wea.~Rev.}, {\bf 112},
- 826-867.
- Stephens, G.~L., S.~Ackermann and E.~A.~Smith, 1984: A shortwave parameterization revised
- to improve cloud absorption. {\it J.~Atmos.~Sci.}, {\bf 41}, 687-690.
|