123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- \section{Model equations and numerics}
- The core of the model is a set of primitive equations. They describe
- the conservation of momentum, mass, and thermal energy.
- Using spherical coordinates and the sigma system and with
- the aid of the equation of state they can be written in the
- dimensionless form as follows:
- {\bf Conservation of momentum:}
- Vorticity equation
- \begin{equation}
- \pd{(\zeta + f)}{t} = \frac{1}{(1-\mu^2)}\pd{F_v}{\lambda}-\pd{F_u}{\mu}+P_{\zeta}
- \label{vortgl}
- \end{equation}
- Divergence equation
- \begin{equation}
- \pd{D}{t} = \frac{1}{(1-\mu^2)}\pd{F_u}{\lambda}+\pd{F_v}{\mu}-\nabla^2\left(\frac{U^2+V^2}{2(1-\mu^2)}+\Phi+T_0\ln p_s\right)+P_D
- \label{divgl}
- \end{equation}
- Hydrostatic approximation
- \begin{equation}
- \pd{\Phi}{\ln\sigma} = -T
- \label{hydrogl}
- \end{equation}
- {\bf Conservation of mass:}
- Continuity equation
- \begin{equation}
- \pd{\ln p_s}{t} = -\int\limits_0^1Ad\sigma
- \label{kontigl}
- \end{equation}
- {\bf Conservation of energy:}
- First law of thermodynamics
- \begin{equation}
- \pd{T'}{t} = -\frac{1}{(1-\mu^2)}\pd{(UT')}{\lambda}-\pd{(VT')}{\mu}+DT'-\dot{\sigma}\pd{T}{\sigma}+\kappa\frac{T}{p}\omega+\frac{J}{c_p}+P_T,
- \label{thermogl}
- \end{equation}
- with:
- \bfl
- $ \di F_u = V(\zeta+f)-\dot{\sigma}\pd{U}{\sigma}-T'\pd{\ln p_s}{\lambda} $
- \efl
- \bfl
- $ \di F_v = -U(\zeta+f)-\dot{\sigma}\pd{V}{\sigma}-T'(1-\mu^2)\pd{\ln p_s}{\mu} $
- \efl
- \bfl
- $ \di A = D+\vec{V}\cdot\nabla\ln p_s $
- \efl
- and \quad $U = u\cos\phi$, $V = v\cos\phi$.
- Where the variables denote:
- \begin{tabbing}
- xxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\kill
- $T$ \> temperature \\
- $T_0$ \> reference temperature \\
- $T'=T-T_0$ \> temperature deviation from $T_0$ \\
- $\zeta$ \> relative vorticity \\
- $D$ \> divergence \\
- $p_s$ \> surface pressure \\
- $p$ \> pressure \\
- $\Phi$ \> geopotential \\
- $t$ \> time \\
- $\lambda$, $\phi$ \> longitude, latitude \\
- $\mu=\sin\phi$ \> \\
- $\sigma=p/p_s$ \> sigma vertical coordinate \\
- $\dot{\sigma}=d\sigma/dt$ \> vertical velocity in $\sigma$-system \\
- $\omega=dp/dt$ \> vertical velocity in $p$-system \\
- $u$, $v$ \> zonal, meridional component of horizontal velocity \\
- $\vec{V}$ \> horizontal velocity with components $U$, $V$ \\
- $f$ \> Coriolis parameter \\
- $J$ \> diabatic heating rate \\
- $c_p$ \> specific heat of dry air at constant pressure \\
- $\kappa$ \> adiabatic coefficient \\
- \end{tabbing}
- The set of differential equations consists of the four prognostic
- equations (\ref{vortgl}), (\ref{divgl}), (\ref{kontigl}), and
- (\ref{thermogl}). Vorticity $\zeta$ and divergence $D$ are
- scaled by the angular velocity of the earth $\Omega$, pressures $p$
- and $p_s$ are scaled by the global mean surface pressure $P_s=1011\,hPa$,
- temperatures $T$ and $T_0$ are scaled by $a^2\Omega^2/R$, geopotential
- $\Phi$ is scaled by $a^2\Omega^2/g$, and time $t$ is scaledby $\Omega^{-1}$, where
- $a$ is the radius of the earth, $R$ is the gas constant of dry air,
- and $g$ is the gravitational acceleration.
- For the parameterizations $P_\zeta$, $P_D$ and $P_T$ see section
- \ref{parametrisierungen}. The model can be run with or without orography.
- The horizontal representation of any model variable is given
- by a series of spherical harmonics. If $Q$ is an arbitrary
- model variable, then its spectral representation has the form:
- \begin{equation}
- \label{spektral}
- Q(\lambda,\mu,t) = \sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu).
- \end{equation}
- Here, $Y_\gamma$ are the spherical harmonics, and $Q_\gamma$ the
- corresponding complex amplitudes, where $\gamma=(n,m)$ designates
- the spectral modes ($n=1,\,2,\,3,\ldots$: total wave number;
- $m=0,\,\pm1,\,\pm2,\,\pm3,\ldots$: zonal wave number),
- with $|m|\le n$ \citep{holton}. The latter condition follows
- from the triangular truncation in wave number space.
- The truncation is done at the total wave number $n_T$, which
- can be set to $n_T=21,31,42,85,127,170$, i.e. the model can be
- used with the T21,\ldots,T170 spectral resolution. The vertical
- resolution is given by $n_L$ equidistant $\sigma$-levels with the
- standard value $n_L=5$. At the upper ($\sigma=0$) and lower boundary
- ($\sigma=1$) of the model domain the vertical velocity is set to zero
- ($\dot{\sigma}=0$).
- The linear contributions to the tendencies are calculated in the spectral
- domain, the nonlinear contributions in grid point space. Therefore, at
- every time step, the necessary model variables are transformed from
- spectral to grid point representation by Legendre and Fast Fourier (FFT)
- transformations, and then the calculated tendencies are transformed back
- into the spectral domain where the time step is carried out
- \citep[for the transform method see][]{orszag70, eliasen70}. Because of
- the semi-implicit time integration scheme \citep*{hossim75, simhosburr78}
- the terms due to gravity wave propagation are integrated in time implicitly,
- and the remaining terms are integrated explicitly, the latter with a
- leap-frog time step. In the standard model, a time step of one hour is used.
- A Robert-Asselin time filter \citep*{halwilli} is applied to avoid decoupling
- of the two leap-frog time levels. The contributions to the tendencies due
- to vertical advection are calculated by an energy and angular-momentum
- conserving vertical finite-difference scheme \citep*{simburr81}.
- \section{Parameterizations}
- \label{parametrisierungen}
- \subsection{Friction}
- The dissipative processes in the atmosphere are parameterized using a linear
- approach (Rayleigh friction), which describes the effects of surface drag and
- vertical transport of the horizontal momentum due to small scale turbulence
- in the boundary layer. To achieve this, vorticity $\zeta$ and divergence $D$
- are damped towards the state of rest ($\zeta=0,\,D=0$) with the time scale $\tau_F$.
- The parameterization terms $P_\zeta$ and $P_D$ appear in the model equations
- (\ref{vortgl}) resp. (\ref{divgl}) and have the form:
- \beqa
- P_\zeta & = & \frac{\zeta}{\tau_F}+H_\zeta \label{paraz} \\
- P_D & = & \frac{D}{\tau_F}+H_D. \label{parad}
- \eeqa
- The time scale $(\tau_F)_l$ depends on the $\sigma$-level $l$ ($l=1,\ldots,n_l$).
- Usually, for the upper levels ($l=1,\ldots,n_l-1$) it is set to
- $(\tau_F)_l=\infty$ (no friction) and for the lowest level ($l=n_l$)
- a typical value is $(\tau_F)_l=1\,d$. An explanation of the hyperdiffusion terms
- $H_\zeta$ and $H_D$ follows in section \ref{diffusion}.
- \subsection{Diabatic heating}
- \label{diabatischeheizung}
- All the diabatic processes considered in the model are also parameterized using
- a linear approach (Newtonian cooling). They include the diabatic heating due to
- absorption and emission of short and long wave radiation, as well as latent and
- sensible heat fluxes (convection). The temperature $T$ relaxes towards the
- restoration temperature $T_R$ with the time scale $\tau_R$. The parameterization
- term in the thermal energy equation (\ref{thermogl}) is given by:
- \begin{equation}
- \frac{J}{c_p}+P_T = \frac{T_R-T}{\tau_R}+H_T. \label{parat}
- \end{equation}
- For the hyperdiffusion $H_T$ see section \ref{diffusion}. $\tau_R$ depends on
- the $\sigma$-level $l$, $T_R$ on the latitude $\phi$ and on the vertical
- coordinate $\sigma$. The restoration temperature field has the form:
- \begin{equation}
- \label{glgTr_2d}
- T_R(\phi,\sigma) = T_R(\sigma)+f(\sigma)\,T_R(\phi).
- \end{equation}
- The vertical profile is described by:
- \begin{equation}
- T_R(\sigma) = (T_R)_{tp}+\sqrt{\left[\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big)\right]^2+S^2}\,+\,\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big),
- \end{equation}
- with $\di (T_R)_{tp}=(T_R)_{grd}-L\,z_{tp}$. Here, $z$ denotes the geometric
- height, $z_{tp}$ the global constant height of the tropopause,
- $L=-(\partial T_R)/(\partial z)$ the vertical restoration temperature gradient,
- $(T_R)_{grd}$ and $(T_R)_{tp}$ the restoration temperature at the surface and at
- the global isothermal tropopause, respectively. $S$ provides a smoothing of the
- profile at the tropopause. $z(\sigma)$ is determined by an iterative method.
- The profile is determined by setting the parameters $(T_R)_{grd}$, $z_{tp}$,
- $L$ and $S$. Figure \ref{Tr_z} shows the vertical profile for the standard
- parameter values.
- % 37.4.09: erscheint so im naechsten Abschnitt: \begin{figure}[!!!b]
- \begin{figure}[h]
- \begin{minipage}{.5\linewidth}
- \includegraphics{Pics/Tr_z_Eng}
- %\centering \epsfig{figure=Tr_z.Eng.eps, width=\linewidth}
- \end{minipage}
- \begin{minipage}{.5\linewidth}
- \includegraphics{Pics/Tr_sigma_Eng}
- %\centering \epsfig{figure=Tr_sigma.Eng.eps, width=\linewidth}
- \end{minipage}
- \caption{\footnotesize{Vertical profile of the restoration temperature $T_R$ as
- function of the geometric height $z$ (left) and as function of the dimensionless
- vertical coordinate $\sigma$ (right) for standard parameter values:
- $(T_R)_{grd}=288\,K$; $z_{tp}=12\,km$; $L=6.5\,K/km$; $S=2\,K$.}} \label{Tr_z}
- \end{figure}
- The temperature contrast between low and high latitudes due to the differential
- radiative energy balance, which drives the general circulation, is described by
- the meridional form of the restoration temperature:
- \begin{equation}
- \label{Tr_phi}
- T_R(\phi) = (\Delta T_R)_{NS}\, \frac{\sin\phi}{2}-(\Delta T_R)_{EP}\, \left(\sin^2\phi-\frac{1}{3}\right).
- \end{equation}
- The meridional gradient decreases with height and vanishes at the tropopause:
- \begin{equation}
- f(\sigma) = \left\{\ba{ll}
- \di\sin\left(\frac{\pi}{2}\left(\frac{\sigma-\sigma_{tp}}{1-\sigma_{tp}}\right)\right) &
- \mbox{if}\quad\sigma\ge\sigma_{tp} \\
- 0 &\mbox{if}\quad\sigma<\sigma_{tp},
- \ea\right.
- \end{equation}
- with the height of the tropopause
- \begin{equation}
- \sigma_{tp} = \left(\frac{(T_R)_{tp}}{(T_R)_{grd}}\right)^{\frac{g}{LR}}.
- \end{equation}
- In equation (\ref{Tr_phi}), \dtepE represents the constant part of the meridional
- temperature contrast, and \dtns the variable part, corresponds to the annual cycle.
- Figure \ref{Tr_2d} shows the meridional and vertical form of the restoration
- temperature field (see eqn. (\ref{glgTr_2d})).
- \afterpage{
- \begin{figure}[!!!t]
- \includegraphics[width=16cm]{Pics/plot_Tr_aqua}
- %\centering \epsfig{figure=plot_Tr_aqua.eps, angle=270, width=\linewidth}
- \caption{\footnotesize{Restoration temperature field $T_R$ in $\degrees$C as function
- of latitude $\phi$ and the $\sigma$-level $l$ for standard parameter values as in
- figure \ref{Tr_z} and with $(\Delta T_R)_{EP}=70\,K$, $(\Delta T_R)_{NS}=0\,K$.}} \label{Tr_2d}
- \end{figure}
- }
- Usually, for the lower model levels, the time scale $\tau_R$ is set to smaller values
- (stronger diabatic heating) than for the upper levels in order to account for the
- stronger impact of the turbulent heat fluxes near the surface. The standard $\tau_R$ setting
- for $n_l=5$ levels is $(\tau_R)_{l=1,\ldots,3}=30\,d$, $(\tau_R)_{l=4}=10\,d$,
- $(\tau_R)_{l=5}=5\,d$.
- \subsection{Diffusion}
- \label{diffusion}
- The parameterizations (\ref{paraz}), (\ref{parad}) and (\ref{parat}) contain the
- hyperdiffusion terms $H_\zeta$, $H_D$ and $H_T$, respectively. The hyperdiffusion
- parameterizes both the subgrid scale horizontal mixing and the energy cascade into
- these scales and its subsequent dissipation, because the dissipative range of the
- wavenumber-energy-spectrum is not included with the relatively coarse model resolution.
- If $Q$ is one of the model variables $\zeta$, $D$ or $T$, then the hyperdiffusion
- is given by equation (\ref{hypergitter}) for grid point representation and by equation
- (\ref{hyperspektral}) for spectral representation (see also eqn. (\ref{spektral}))
- \beqa
- H & = & -(-1)^hK\,\nabla^{2h}\,Q(\lambda,\mu,t) \label{hypergitter} \\
- & = & -(-1)^hK\,\nabla^{2h}\sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hyperspektral}
- \eeqa
- The hyperdiffusion for one spectral mode $\gamma$ is then \citep{holton}:
- \beqa
- H_\gamma & = & -(-1)^hK\,\nabla^{2h}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu) \\
- & = & -K\left(\frac{n(n+1)}{a^2}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hgamma.2}
- \eeqa
- With the condition that the spectral modes with $n=n_T$ are damped with a prescribed
- time scale $\tau_H$:
- \begin{equation}
- H_\gamma = -\frac{1}{\tau_H}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu)\quad\mbox{}
- \end{equation}
- ${if} n=n_T,$ substitution into Equation (\ref{hgamma.2}) yields:
- \begin{equation}
- K = \frac{1}{\tau_H}\left(\frac{a^2}{n_T(n_T+1)}\right)^h.
- \end{equation}
- Thus, from Equation (\ref{hgamma.2}) it follows that:
- \begin{equation}
- H_\gamma = -\frac{1}{\tau_H}\left(\frac{n(n+1)}{n_T(n_T+1)}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hn2}
- \end{equation}
- In the model the hyperdiffusion is applied in the form (\ref{hn2}). For the shortest
- waves ($n=n_T$) the damping is maximal, for the mean ($n=0$) the damping vanishes.
- The integer exponent with the standard value $h=4$ leads to an additional reduction
- of the damping at small wavenumbers. The diffusion time scale is usually set to
- $\tau_H=1/4\,d$.
|