\section{Model equations and numerics} The core of the model is a set of primitive equations. They describe the conservation of momentum, mass, and thermal energy. Using spherical coordinates and the sigma system and with the aid of the equation of state they can be written in the dimensionless form as follows: {\bf Conservation of momentum:} Vorticity equation \begin{equation} \pd{(\zeta + f)}{t} = \frac{1}{(1-\mu^2)}\pd{F_v}{\lambda}-\pd{F_u}{\mu}+P_{\zeta} \label{vortgl} \end{equation} Divergence equation \begin{equation} \pd{D}{t} = \frac{1}{(1-\mu^2)}\pd{F_u}{\lambda}+\pd{F_v}{\mu}-\nabla^2\left(\frac{U^2+V^2}{2(1-\mu^2)}+\Phi+T_0\ln p_s\right)+P_D \label{divgl} \end{equation} Hydrostatic approximation \begin{equation} \pd{\Phi}{\ln\sigma} = -T \label{hydrogl} \end{equation} {\bf Conservation of mass:} Continuity equation \begin{equation} \pd{\ln p_s}{t} = -\int\limits_0^1Ad\sigma \label{kontigl} \end{equation} {\bf Conservation of energy:} First law of thermodynamics \begin{equation} \pd{T'}{t} = -\frac{1}{(1-\mu^2)}\pd{(UT')}{\lambda}-\pd{(VT')}{\mu}+DT'-\dot{\sigma}\pd{T}{\sigma}+\kappa\frac{T}{p}\omega+\frac{J}{c_p}+P_T, \label{thermogl} \end{equation} with: \bfl $ \di F_u = V(\zeta+f)-\dot{\sigma}\pd{U}{\sigma}-T'\pd{\ln p_s}{\lambda} $ \efl \bfl $ \di F_v = -U(\zeta+f)-\dot{\sigma}\pd{V}{\sigma}-T'(1-\mu^2)\pd{\ln p_s}{\mu} $ \efl \bfl $ \di A = D+\vec{V}\cdot\nabla\ln p_s $ \efl and \quad $U = u\cos\phi$, $V = v\cos\phi$. Where the variables denote: \begin{tabbing} xxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\kill $T$ \> temperature \\ $T_0$ \> reference temperature \\ $T'=T-T_0$ \> temperature deviation from $T_0$ \\ $\zeta$ \> relative vorticity \\ $D$ \> divergence \\ $p_s$ \> surface pressure \\ $p$ \> pressure \\ $\Phi$ \> geopotential \\ $t$ \> time \\ $\lambda$, $\phi$ \> longitude, latitude \\ $\mu=\sin\phi$ \> \\ $\sigma=p/p_s$ \> sigma vertical coordinate \\ $\dot{\sigma}=d\sigma/dt$ \> vertical velocity in $\sigma$-system \\ $\omega=dp/dt$ \> vertical velocity in $p$-system \\ $u$, $v$ \> zonal, meridional component of horizontal velocity \\ $\vec{V}$ \> horizontal velocity with components $U$, $V$ \\ $f$ \> Coriolis parameter \\ $J$ \> diabatic heating rate \\ $c_p$ \> specific heat of dry air at constant pressure \\ $\kappa$ \> adiabatic coefficient \\ \end{tabbing} The set of differential equations consists of the four prognostic equations (\ref{vortgl}), (\ref{divgl}), (\ref{kontigl}), and (\ref{thermogl}). Vorticity $\zeta$ and divergence $D$ are scaled by the angular velocity of the earth $\Omega$, pressures $p$ and $p_s$ are scaled by the global mean surface pressure $P_s=1011\,hPa$, temperatures $T$ and $T_0$ are scaled by $a^2\Omega^2/R$, geopotential $\Phi$ is scaled by $a^2\Omega^2/g$, and time $t$ is scaledby $\Omega^{-1}$, where $a$ is the radius of the earth, $R$ is the gas constant of dry air, and $g$ is the gravitational acceleration. For the parameterizations $P_\zeta$, $P_D$ and $P_T$ see section \ref{parametrisierungen}. The model can be run with or without orography. The horizontal representation of any model variable is given by a series of spherical harmonics. If $Q$ is an arbitrary model variable, then its spectral representation has the form: \begin{equation} \label{spektral} Q(\lambda,\mu,t) = \sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu). \end{equation} Here, $Y_\gamma$ are the spherical harmonics, and $Q_\gamma$ the corresponding complex amplitudes, where $\gamma=(n,m)$ designates the spectral modes ($n=1,\,2,\,3,\ldots$: total wave number; $m=0,\,\pm1,\,\pm2,\,\pm3,\ldots$: zonal wave number), with $|m|\le n$ \citep{holton}. The latter condition follows from the triangular truncation in wave number space. The truncation is done at the total wave number $n_T$, which can be set to $n_T=21,31,42,85,127,170$, i.e. the model can be used with the T21,\ldots,T170 spectral resolution. The vertical resolution is given by $n_L$ equidistant $\sigma$-levels with the standard value $n_L=5$. At the upper ($\sigma=0$) and lower boundary ($\sigma=1$) of the model domain the vertical velocity is set to zero ($\dot{\sigma}=0$). The linear contributions to the tendencies are calculated in the spectral domain, the nonlinear contributions in grid point space. Therefore, at every time step, the necessary model variables are transformed from spectral to grid point representation by Legendre and Fast Fourier (FFT) transformations, and then the calculated tendencies are transformed back into the spectral domain where the time step is carried out \citep[for the transform method see][]{orszag70, eliasen70}. Because of the semi-implicit time integration scheme \citep*{hossim75, simhosburr78} the terms due to gravity wave propagation are integrated in time implicitly, and the remaining terms are integrated explicitly, the latter with a leap-frog time step. In the standard model, a time step of one hour is used. A Robert-Asselin time filter \citep*{halwilli} is applied to avoid decoupling of the two leap-frog time levels. The contributions to the tendencies due to vertical advection are calculated by an energy and angular-momentum conserving vertical finite-difference scheme \citep*{simburr81}. \section{Parameterizations} \label{parametrisierungen} \subsection{Friction} The dissipative processes in the atmosphere are parameterized using a linear approach (Rayleigh friction), which describes the effects of surface drag and vertical transport of the horizontal momentum due to small scale turbulence in the boundary layer. To achieve this, vorticity $\zeta$ and divergence $D$ are damped towards the state of rest ($\zeta=0,\,D=0$) with the time scale $\tau_F$. The parameterization terms $P_\zeta$ and $P_D$ appear in the model equations (\ref{vortgl}) resp. (\ref{divgl}) and have the form: \beqa P_\zeta & = & \frac{\zeta}{\tau_F}+H_\zeta \label{paraz} \\ P_D & = & \frac{D}{\tau_F}+H_D. \label{parad} \eeqa The time scale $(\tau_F)_l$ depends on the $\sigma$-level $l$ ($l=1,\ldots,n_l$). Usually, for the upper levels ($l=1,\ldots,n_l-1$) it is set to $(\tau_F)_l=\infty$ (no friction) and for the lowest level ($l=n_l$) a typical value is $(\tau_F)_l=1\,d$. An explanation of the hyperdiffusion terms $H_\zeta$ and $H_D$ follows in section \ref{diffusion}. \subsection{Diabatic heating} \label{diabatischeheizung} All the diabatic processes considered in the model are also parameterized using a linear approach (Newtonian cooling). They include the diabatic heating due to absorption and emission of short and long wave radiation, as well as latent and sensible heat fluxes (convection). The temperature $T$ relaxes towards the restoration temperature $T_R$ with the time scale $\tau_R$. The parameterization term in the thermal energy equation (\ref{thermogl}) is given by: \begin{equation} \frac{J}{c_p}+P_T = \frac{T_R-T}{\tau_R}+H_T. \label{parat} \end{equation} For the hyperdiffusion $H_T$ see section \ref{diffusion}. $\tau_R$ depends on the $\sigma$-level $l$, $T_R$ on the latitude $\phi$ and on the vertical coordinate $\sigma$. The restoration temperature field has the form: \begin{equation} \label{glgTr_2d} T_R(\phi,\sigma) = T_R(\sigma)+f(\sigma)\,T_R(\phi). \end{equation} The vertical profile is described by: \begin{equation} T_R(\sigma) = (T_R)_{tp}+\sqrt{\left[\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big)\right]^2+S^2}\,+\,\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big), \end{equation} with $\di (T_R)_{tp}=(T_R)_{grd}-L\,z_{tp}$. Here, $z$ denotes the geometric height, $z_{tp}$ the global constant height of the tropopause, $L=-(\partial T_R)/(\partial z)$ the vertical restoration temperature gradient, $(T_R)_{grd}$ and $(T_R)_{tp}$ the restoration temperature at the surface and at the global isothermal tropopause, respectively. $S$ provides a smoothing of the profile at the tropopause. $z(\sigma)$ is determined by an iterative method. The profile is determined by setting the parameters $(T_R)_{grd}$, $z_{tp}$, $L$ and $S$. Figure \ref{Tr_z} shows the vertical profile for the standard parameter values. % 37.4.09: erscheint so im naechsten Abschnitt: \begin{figure}[!!!b] \begin{figure}[h] \begin{minipage}{.5\linewidth} \includegraphics{Pics/Tr_z_Eng} %\centering \epsfig{figure=Tr_z.Eng.eps, width=\linewidth} \end{minipage} \begin{minipage}{.5\linewidth} \includegraphics{Pics/Tr_sigma_Eng} %\centering \epsfig{figure=Tr_sigma.Eng.eps, width=\linewidth} \end{minipage} \caption{\footnotesize{Vertical profile of the restoration temperature $T_R$ as function of the geometric height $z$ (left) and as function of the dimensionless vertical coordinate $\sigma$ (right) for standard parameter values: $(T_R)_{grd}=288\,K$; $z_{tp}=12\,km$; $L=6.5\,K/km$; $S=2\,K$.}} \label{Tr_z} \end{figure} The temperature contrast between low and high latitudes due to the differential radiative energy balance, which drives the general circulation, is described by the meridional form of the restoration temperature: \begin{equation} \label{Tr_phi} T_R(\phi) = (\Delta T_R)_{NS}\, \frac{\sin\phi}{2}-(\Delta T_R)_{EP}\, \left(\sin^2\phi-\frac{1}{3}\right). \end{equation} The meridional gradient decreases with height and vanishes at the tropopause: \begin{equation} f(\sigma) = \left\{\ba{ll} \di\sin\left(\frac{\pi}{2}\left(\frac{\sigma-\sigma_{tp}}{1-\sigma_{tp}}\right)\right) & \mbox{if}\quad\sigma\ge\sigma_{tp} \\ 0 &\mbox{if}\quad\sigma<\sigma_{tp}, \ea\right. \end{equation} with the height of the tropopause \begin{equation} \sigma_{tp} = \left(\frac{(T_R)_{tp}}{(T_R)_{grd}}\right)^{\frac{g}{LR}}. \end{equation} In equation (\ref{Tr_phi}), \dtepE represents the constant part of the meridional temperature contrast, and \dtns the variable part, corresponds to the annual cycle. Figure \ref{Tr_2d} shows the meridional and vertical form of the restoration temperature field (see eqn. (\ref{glgTr_2d})). \afterpage{ \begin{figure}[!!!t] \includegraphics[width=16cm]{Pics/plot_Tr_aqua} %\centering \epsfig{figure=plot_Tr_aqua.eps, angle=270, width=\linewidth} \caption{\footnotesize{Restoration temperature field $T_R$ in $\degrees$C as function of latitude $\phi$ and the $\sigma$-level $l$ for standard parameter values as in figure \ref{Tr_z} and with $(\Delta T_R)_{EP}=70\,K$, $(\Delta T_R)_{NS}=0\,K$.}} \label{Tr_2d} \end{figure} } Usually, for the lower model levels, the time scale $\tau_R$ is set to smaller values (stronger diabatic heating) than for the upper levels in order to account for the stronger impact of the turbulent heat fluxes near the surface. The standard $\tau_R$ setting for $n_l=5$ levels is $(\tau_R)_{l=1,\ldots,3}=30\,d$, $(\tau_R)_{l=4}=10\,d$, $(\tau_R)_{l=5}=5\,d$. \subsection{Diffusion} \label{diffusion} The parameterizations (\ref{paraz}), (\ref{parad}) and (\ref{parat}) contain the hyperdiffusion terms $H_\zeta$, $H_D$ and $H_T$, respectively. The hyperdiffusion parameterizes both the subgrid scale horizontal mixing and the energy cascade into these scales and its subsequent dissipation, because the dissipative range of the wavenumber-energy-spectrum is not included with the relatively coarse model resolution. If $Q$ is one of the model variables $\zeta$, $D$ or $T$, then the hyperdiffusion is given by equation (\ref{hypergitter}) for grid point representation and by equation (\ref{hyperspektral}) for spectral representation (see also eqn. (\ref{spektral})) \beqa H & = & -(-1)^hK\,\nabla^{2h}\,Q(\lambda,\mu,t) \label{hypergitter} \\ & = & -(-1)^hK\,\nabla^{2h}\sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hyperspektral} \eeqa The hyperdiffusion for one spectral mode $\gamma$ is then \citep{holton}: \beqa H_\gamma & = & -(-1)^hK\,\nabla^{2h}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu) \\ & = & -K\left(\frac{n(n+1)}{a^2}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hgamma.2} \eeqa With the condition that the spectral modes with $n=n_T$ are damped with a prescribed time scale $\tau_H$: \begin{equation} H_\gamma = -\frac{1}{\tau_H}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu)\quad\mbox{} \end{equation} ${if} n=n_T,$ substitution into Equation (\ref{hgamma.2}) yields: \begin{equation} K = \frac{1}{\tau_H}\left(\frac{a^2}{n_T(n_T+1)}\right)^h. \end{equation} Thus, from Equation (\ref{hgamma.2}) it follows that: \begin{equation} H_\gamma = -\frac{1}{\tau_H}\left(\frac{n(n+1)}{n_T(n_T+1)}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hn2} \end{equation} In the model the hyperdiffusion is applied in the form (\ref{hn2}). For the shortest waves ($n=n_T$) the damping is maximal, for the mean ($n=0$) the damping vanishes. The integer exponent with the standard value $h=4$ leads to an additional reduction of the damping at small wavenumbers. The diffusion time scale is usually set to $\tau_H=1/4\,d$.