dynamics.tex 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. \section{Model equations and numerics}
  2. The core of the model is a set of primitive equations. They describe
  3. the conservation of momentum, mass, and thermal energy.
  4. Using spherical coordinates and the sigma system and with
  5. the aid of the equation of state they can be written in the
  6. dimensionless form as follows:
  7. {\bf Conservation of momentum:}
  8. Vorticity equation
  9. \begin{equation}
  10. \pd{(\zeta + f)}{t} = \frac{1}{(1-\mu^2)}\pd{F_v}{\lambda}-\pd{F_u}{\mu}+P_{\zeta}
  11. \label{vortgl}
  12. \end{equation}
  13. Divergence equation
  14. \begin{equation}
  15. \pd{D}{t} = \frac{1}{(1-\mu^2)}\pd{F_u}{\lambda}+\pd{F_v}{\mu}-\nabla^2\left(\frac{U^2+V^2}{2(1-\mu^2)}+\Phi+T_0\ln p_s\right)+P_D
  16. \label{divgl}
  17. \end{equation}
  18. Hydrostatic approximation
  19. \begin{equation}
  20. \pd{\Phi}{\ln\sigma} = -T
  21. \label{hydrogl}
  22. \end{equation}
  23. {\bf Conservation of mass:}
  24. Continuity equation
  25. \begin{equation}
  26. \pd{\ln p_s}{t} = -\int\limits_0^1Ad\sigma
  27. \label{kontigl}
  28. \end{equation}
  29. {\bf Conservation of energy:}
  30. First law of thermodynamics
  31. \begin{equation}
  32. \pd{T'}{t} = -\frac{1}{(1-\mu^2)}\pd{(UT')}{\lambda}-\pd{(VT')}{\mu}+DT'-\dot{\sigma}\pd{T}{\sigma}+\kappa\frac{T}{p}\omega+\frac{J}{c_p}+P_T,
  33. \label{thermogl}
  34. \end{equation}
  35. with:
  36. \bfl
  37. $ \di F_u = V(\zeta+f)-\dot{\sigma}\pd{U}{\sigma}-T'\pd{\ln p_s}{\lambda} $
  38. \efl
  39. \bfl
  40. $ \di F_v = -U(\zeta+f)-\dot{\sigma}\pd{V}{\sigma}-T'(1-\mu^2)\pd{\ln p_s}{\mu} $
  41. \efl
  42. \bfl
  43. $ \di A = D+\vec{V}\cdot\nabla\ln p_s $
  44. \efl
  45. and \quad $U = u\cos\phi$, $V = v\cos\phi$.
  46. Where the variables denote:
  47. \begin{tabbing}
  48. xxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\kill
  49. $T$ \> temperature \\
  50. $T_0$ \> reference temperature \\
  51. $T'=T-T_0$ \> temperature deviation from $T_0$ \\
  52. $\zeta$ \> relative vorticity \\
  53. $D$ \> divergence \\
  54. $p_s$ \> surface pressure \\
  55. $p$ \> pressure \\
  56. $\Phi$ \> geopotential \\
  57. $t$ \> time \\
  58. $\lambda$, $\phi$ \> longitude, latitude \\
  59. $\mu=\sin\phi$ \> \\
  60. $\sigma=p/p_s$ \> sigma vertical coordinate \\
  61. $\dot{\sigma}=d\sigma/dt$ \> vertical velocity in $\sigma$-system \\
  62. $\omega=dp/dt$ \> vertical velocity in $p$-system \\
  63. $u$, $v$ \> zonal, meridional component of horizontal velocity \\
  64. $\vec{V}$ \> horizontal velocity with components $U$, $V$ \\
  65. $f$ \> Coriolis parameter \\
  66. $J$ \> diabatic heating rate \\
  67. $c_p$ \> specific heat of dry air at constant pressure \\
  68. $\kappa$ \> adiabatic coefficient \\
  69. \end{tabbing}
  70. The set of differential equations consists of the four prognostic
  71. equations (\ref{vortgl}), (\ref{divgl}), (\ref{kontigl}), and
  72. (\ref{thermogl}). Vorticity $\zeta$ and divergence $D$ are
  73. scaled by the angular velocity of the earth $\Omega$, pressures $p$
  74. and $p_s$ are scaled by the global mean surface pressure $P_s=1011\,hPa$,
  75. temperatures $T$ and $T_0$ are scaled by $a^2\Omega^2/R$, geopotential
  76. $\Phi$ is scaled by $a^2\Omega^2/g$, and time $t$ is scaledby $\Omega^{-1}$, where
  77. $a$ is the radius of the earth, $R$ is the gas constant of dry air,
  78. and $g$ is the gravitational acceleration.
  79. For the parameterizations $P_\zeta$, $P_D$ and $P_T$ see section
  80. \ref{parametrisierungen}. The model can be run with or without orography.
  81. The horizontal representation of any model variable is given
  82. by a series of spherical harmonics. If $Q$ is an arbitrary
  83. model variable, then its spectral representation has the form:
  84. \begin{equation}
  85. \label{spektral}
  86. Q(\lambda,\mu,t) = \sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu).
  87. \end{equation}
  88. Here, $Y_\gamma$ are the spherical harmonics, and $Q_\gamma$ the
  89. corresponding complex amplitudes, where $\gamma=(n,m)$ designates
  90. the spectral modes ($n=1,\,2,\,3,\ldots$: total wave number;
  91. $m=0,\,\pm1,\,\pm2,\,\pm3,\ldots$: zonal wave number),
  92. with $|m|\le n$ \citep{holton}. The latter condition follows
  93. from the triangular truncation in wave number space.
  94. The truncation is done at the total wave number $n_T$, which
  95. can be set to $n_T=21,31,42,85,127,170$, i.e. the model can be
  96. used with the T21,\ldots,T170 spectral resolution. The vertical
  97. resolution is given by $n_L$ equidistant $\sigma$-levels with the
  98. standard value $n_L=5$. At the upper ($\sigma=0$) and lower boundary
  99. ($\sigma=1$) of the model domain the vertical velocity is set to zero
  100. ($\dot{\sigma}=0$).
  101. The linear contributions to the tendencies are calculated in the spectral
  102. domain, the nonlinear contributions in grid point space. Therefore, at
  103. every time step, the necessary model variables are transformed from
  104. spectral to grid point representation by Legendre and Fast Fourier (FFT)
  105. transformations, and then the calculated tendencies are transformed back
  106. into the spectral domain where the time step is carried out
  107. \citep[for the transform method see][]{orszag70, eliasen70}. Because of
  108. the semi-implicit time integration scheme \citep*{hossim75, simhosburr78}
  109. the terms due to gravity wave propagation are integrated in time implicitly,
  110. and the remaining terms are integrated explicitly, the latter with a
  111. leap-frog time step. In the standard model, a time step of one hour is used.
  112. A Robert-Asselin time filter \citep*{halwilli} is applied to avoid decoupling
  113. of the two leap-frog time levels. The contributions to the tendencies due
  114. to vertical advection are calculated by an energy and angular-momentum
  115. conserving vertical finite-difference scheme \citep*{simburr81}.
  116. \section{Parameterizations}
  117. \label{parametrisierungen}
  118. \subsection{Friction}
  119. The dissipative processes in the atmosphere are parameterized using a linear
  120. approach (Rayleigh friction), which describes the effects of surface drag and
  121. vertical transport of the horizontal momentum due to small scale turbulence
  122. in the boundary layer. To achieve this, vorticity $\zeta$ and divergence $D$
  123. are damped towards the state of rest ($\zeta=0,\,D=0$) with the time scale $\tau_F$.
  124. The parameterization terms $P_\zeta$ and $P_D$ appear in the model equations
  125. (\ref{vortgl}) resp. (\ref{divgl}) and have the form:
  126. \beqa
  127. P_\zeta & = & \frac{\zeta}{\tau_F}+H_\zeta \label{paraz} \\
  128. P_D & = & \frac{D}{\tau_F}+H_D. \label{parad}
  129. \eeqa
  130. The time scale $(\tau_F)_l$ depends on the $\sigma$-level $l$ ($l=1,\ldots,n_l$).
  131. Usually, for the upper levels ($l=1,\ldots,n_l-1$) it is set to
  132. $(\tau_F)_l=\infty$ (no friction) and for the lowest level ($l=n_l$)
  133. a typical value is $(\tau_F)_l=1\,d$. An explanation of the hyperdiffusion terms
  134. $H_\zeta$ and $H_D$ follows in section \ref{diffusion}.
  135. \subsection{Diabatic heating}
  136. \label{diabatischeheizung}
  137. All the diabatic processes considered in the model are also parameterized using
  138. a linear approach (Newtonian cooling). They include the diabatic heating due to
  139. absorption and emission of short and long wave radiation, as well as latent and
  140. sensible heat fluxes (convection). The temperature $T$ relaxes towards the
  141. restoration temperature $T_R$ with the time scale $\tau_R$. The parameterization
  142. term in the thermal energy equation (\ref{thermogl}) is given by:
  143. \begin{equation}
  144. \frac{J}{c_p}+P_T = \frac{T_R-T}{\tau_R}+H_T. \label{parat}
  145. \end{equation}
  146. For the hyperdiffusion $H_T$ see section \ref{diffusion}. $\tau_R$ depends on
  147. the $\sigma$-level $l$, $T_R$ on the latitude $\phi$ and on the vertical
  148. coordinate $\sigma$. The restoration temperature field has the form:
  149. \begin{equation}
  150. \label{glgTr_2d}
  151. T_R(\phi,\sigma) = T_R(\sigma)+f(\sigma)\,T_R(\phi).
  152. \end{equation}
  153. The vertical profile is described by:
  154. \begin{equation}
  155. T_R(\sigma) = (T_R)_{tp}+\sqrt{\left[\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big)\right]^2+S^2}\,+\,\frac{L}{2}\Big(z_{tp}-z(\sigma)\Big),
  156. \end{equation}
  157. with $\di (T_R)_{tp}=(T_R)_{grd}-L\,z_{tp}$. Here, $z$ denotes the geometric
  158. height, $z_{tp}$ the global constant height of the tropopause,
  159. $L=-(\partial T_R)/(\partial z)$ the vertical restoration temperature gradient,
  160. $(T_R)_{grd}$ and $(T_R)_{tp}$ the restoration temperature at the surface and at
  161. the global isothermal tropopause, respectively. $S$ provides a smoothing of the
  162. profile at the tropopause. $z(\sigma)$ is determined by an iterative method.
  163. The profile is determined by setting the parameters $(T_R)_{grd}$, $z_{tp}$,
  164. $L$ and $S$. Figure \ref{Tr_z} shows the vertical profile for the standard
  165. parameter values.
  166. % 37.4.09: erscheint so im naechsten Abschnitt: \begin{figure}[!!!b]
  167. \begin{figure}[h]
  168. \begin{minipage}{.5\linewidth}
  169. \includegraphics{Pics/Tr_z_Eng}
  170. %\centering \epsfig{figure=Tr_z.Eng.eps, width=\linewidth}
  171. \end{minipage}
  172. \begin{minipage}{.5\linewidth}
  173. \includegraphics{Pics/Tr_sigma_Eng}
  174. %\centering \epsfig{figure=Tr_sigma.Eng.eps, width=\linewidth}
  175. \end{minipage}
  176. \caption{\footnotesize{Vertical profile of the restoration temperature $T_R$ as
  177. function of the geometric height $z$ (left) and as function of the dimensionless
  178. vertical coordinate $\sigma$ (right) for standard parameter values:
  179. $(T_R)_{grd}=288\,K$; $z_{tp}=12\,km$; $L=6.5\,K/km$; $S=2\,K$.}} \label{Tr_z}
  180. \end{figure}
  181. The temperature contrast between low and high latitudes due to the differential
  182. radiative energy balance, which drives the general circulation, is described by
  183. the meridional form of the restoration temperature:
  184. \begin{equation}
  185. \label{Tr_phi}
  186. T_R(\phi) = (\Delta T_R)_{NS}\, \frac{\sin\phi}{2}-(\Delta T_R)_{EP}\, \left(\sin^2\phi-\frac{1}{3}\right).
  187. \end{equation}
  188. The meridional gradient decreases with height and vanishes at the tropopause:
  189. \begin{equation}
  190. f(\sigma) = \left\{\ba{ll}
  191. \di\sin\left(\frac{\pi}{2}\left(\frac{\sigma-\sigma_{tp}}{1-\sigma_{tp}}\right)\right) &
  192. \mbox{if}\quad\sigma\ge\sigma_{tp} \\
  193. 0 &\mbox{if}\quad\sigma<\sigma_{tp},
  194. \ea\right.
  195. \end{equation}
  196. with the height of the tropopause
  197. \begin{equation}
  198. \sigma_{tp} = \left(\frac{(T_R)_{tp}}{(T_R)_{grd}}\right)^{\frac{g}{LR}}.
  199. \end{equation}
  200. In equation (\ref{Tr_phi}), \dtepE represents the constant part of the meridional
  201. temperature contrast, and \dtns the variable part, corresponds to the annual cycle.
  202. Figure \ref{Tr_2d} shows the meridional and vertical form of the restoration
  203. temperature field (see eqn. (\ref{glgTr_2d})).
  204. \afterpage{
  205. \begin{figure}[!!!t]
  206. \includegraphics[width=16cm]{Pics/plot_Tr_aqua}
  207. %\centering \epsfig{figure=plot_Tr_aqua.eps, angle=270, width=\linewidth}
  208. \caption{\footnotesize{Restoration temperature field $T_R$ in $\degrees$C as function
  209. of latitude $\phi$ and the $\sigma$-level $l$ for standard parameter values as in
  210. figure \ref{Tr_z} and with $(\Delta T_R)_{EP}=70\,K$, $(\Delta T_R)_{NS}=0\,K$.}} \label{Tr_2d}
  211. \end{figure}
  212. }
  213. Usually, for the lower model levels, the time scale $\tau_R$ is set to smaller values
  214. (stronger diabatic heating) than for the upper levels in order to account for the
  215. stronger impact of the turbulent heat fluxes near the surface. The standard $\tau_R$ setting
  216. for $n_l=5$ levels is $(\tau_R)_{l=1,\ldots,3}=30\,d$, $(\tau_R)_{l=4}=10\,d$,
  217. $(\tau_R)_{l=5}=5\,d$.
  218. \subsection{Diffusion}
  219. \label{diffusion}
  220. The parameterizations (\ref{paraz}), (\ref{parad}) and (\ref{parat}) contain the
  221. hyperdiffusion terms $H_\zeta$, $H_D$ and $H_T$, respectively. The hyperdiffusion
  222. parameterizes both the subgrid scale horizontal mixing and the energy cascade into
  223. these scales and its subsequent dissipation, because the dissipative range of the
  224. wavenumber-energy-spectrum is not included with the relatively coarse model resolution.
  225. If $Q$ is one of the model variables $\zeta$, $D$ or $T$, then the hyperdiffusion
  226. is given by equation (\ref{hypergitter}) for grid point representation and by equation
  227. (\ref{hyperspektral}) for spectral representation (see also eqn. (\ref{spektral}))
  228. \beqa
  229. H & = & -(-1)^hK\,\nabla^{2h}\,Q(\lambda,\mu,t) \label{hypergitter} \\
  230. & = & -(-1)^hK\,\nabla^{2h}\sum_\gamma Q_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hyperspektral}
  231. \eeqa
  232. The hyperdiffusion for one spectral mode $\gamma$ is then \citep{holton}:
  233. \beqa
  234. H_\gamma & = & -(-1)^hK\,\nabla^{2h}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu) \\
  235. & = & -K\left(\frac{n(n+1)}{a^2}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hgamma.2}
  236. \eeqa
  237. With the condition that the spectral modes with $n=n_T$ are damped with a prescribed
  238. time scale $\tau_H$:
  239. \begin{equation}
  240. H_\gamma = -\frac{1}{\tau_H}\,Q_\gamma(t)\,Y_\gamma(\lambda,\mu)\quad\mbox{}
  241. \end{equation}
  242. ${if} n=n_T,$ substitution into Equation (\ref{hgamma.2}) yields:
  243. \begin{equation}
  244. K = \frac{1}{\tau_H}\left(\frac{a^2}{n_T(n_T+1)}\right)^h.
  245. \end{equation}
  246. Thus, from Equation (\ref{hgamma.2}) it follows that:
  247. \begin{equation}
  248. H_\gamma = -\frac{1}{\tau_H}\left(\frac{n(n+1)}{n_T(n_T+1)}\right)^hQ_\gamma(t)\,Y_\gamma(\lambda,\mu). \label{hn2}
  249. \end{equation}
  250. In the model the hyperdiffusion is applied in the form (\ref{hn2}). For the shortest
  251. waves ($n=n_T$) the damping is maximal, for the mean ($n=0$) the damping vanishes.
  252. The integer exponent with the standard value $h=4$ leads to an additional reduction
  253. of the damping at small wavenumbers. The diffusion time scale is usually set to
  254. $\tau_H=1/4\,d$.