12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067 |
- MODULE zdftmx
- !!========================================================================
- !! *** MODULE zdftmx ***
- !! Ocean physics: vertical tidal mixing coefficient
- !!========================================================================
- !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code
- !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait
- !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase
- !!----------------------------------------------------------------------
- #if defined key_zdftmx || defined key_esopa
- !!----------------------------------------------------------------------
- !! 'key_zdftmx' Tidal vertical mixing
- !!----------------------------------------------------------------------
- !! zdf_tmx : global momentum & tracer Kz with tidal induced Kz
- !! tmx_itf : Indonesian momentum & tracer Kz with tidal induced Kz
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers variables
- USE dom_oce ! ocean space and time domain variables
- USE zdf_oce ! ocean vertical physics variables
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE eosbn2 ! ocean equation of state
- USE phycst ! physical constants
- USE prtctl ! Print control
- USE in_out_manager ! I/O manager
- USE iom ! I/O Manager
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE timing ! Timing
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- IMPLICIT NONE
- PRIVATE
- PUBLIC zdf_tmx ! called in step module
- PUBLIC zdf_tmx_init ! called in opa module
- PUBLIC zdf_tmx_alloc ! called in nemogcm module
- LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .TRUE. !: tidal mixing flag
- ! !!* Namelist namzdf_tmx : tidal mixing *
- REAL(wp) :: rn_htmx ! vertical decay scale for turbulence (meters)
- REAL(wp) :: rn_n2min ! threshold of the Brunt-Vaisala frequency (s-1)
- REAL(wp) :: rn_tfe ! tidal dissipation efficiency (St Laurent et al. 2002)
- REAL(wp) :: rn_me ! mixing efficiency (Osborn 1980)
- LOGICAL :: ln_tmx_itf ! Indonesian Through Flow (ITF): Koch-Larrouy et al. (2007) parameterization
- REAL(wp) :: rn_tfe_itf ! ITF tidal dissipation efficiency (St Laurent et al. 2002)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: en_tmx ! energy available for tidal mixing (W/m2)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: mask_itf ! mask to use over Indonesian area
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: az_tmx ! coefficient used to evaluate the tidal induced Kz
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO Consortium (2011)
- !! $Id: zdftmx.F90 4990 2014-12-15 16:42:49Z timgraham $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- INTEGER FUNCTION zdf_tmx_alloc()
- !!----------------------------------------------------------------------
- !! *** FUNCTION zdf_tmx_alloc ***
- !!----------------------------------------------------------------------
- ALLOCATE(en_tmx(jpi,jpj), mask_itf(jpi,jpj), az_tmx(jpi,jpj,jpk), STAT=zdf_tmx_alloc )
- !
- IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc )
- IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays')
- END FUNCTION zdf_tmx_alloc
- SUBROUTINE zdf_tmx( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE zdf_tmx ***
- !!
- !! ** Purpose : add to the vertical mixing coefficients the effect of
- !! tidal mixing (Simmons et al 2004).
- !!
- !! ** Method : - tidal-induced vertical mixing is given by:
- !! Kz_tides = az_tmx / max( rn_n2min, N^2 )
- !! where az_tmx is a coefficient that specified the 3D space
- !! distribution of the faction of tidal energy taht is used
- !! for mixing. Its expression is set in zdf_tmx_init routine,
- !! following Simmons et al. 2004.
- !! NB: a specific bounding procedure is performed on av_tide
- !! so that the input tidal energy is actually almost used. The
- !! basic maximum value is 60 cm2/s, but values of 300 cm2/s
- !! can be reached in area where bottom stratification is too
- !! weak.
- !!
- !! - update av_tide in the Indonesian Through Flow area
- !! following Koch-Larrouy et al. (2007) parameterisation
- !! (see tmx_itf routine).
- !!
- !! - update the model vertical eddy viscosity and diffusivity:
- !! avt = avt + av_tides
- !! avm = avm + av_tides
- !! avmu = avmu + mi(av_tides)
- !! avmv = avmv + mj(av_tides)
- !!
- !! ** Action : avt, avm, avmu, avmv increased by tidal mixing
- !!
- !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263.
- !! Koch-Larrouy et al. 2007, GRL.
- !!----------------------------------------------------------------------
- USE oce, zav_tide => ua ! use ua as workspace
- !!
- INTEGER, INTENT(in) :: kt ! ocean time-step
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: ztpc ! scalar workspace
- REAL(wp), POINTER, DIMENSION(:,:) :: zkz
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('zdf_tmx')
- !
- CALL wrk_alloc( jpi,jpj, zkz )
- ! ! ----------------------- !
- ! ! Standard tidal mixing ! (compute zav_tide)
- ! ! ----------------------- !
- ! !* First estimation (with n2 bound by rn_n2min) bounded by 60 cm2/s
- zav_tide(:,:,:) = MIN( 60.e-4, az_tmx(:,:,:) / MAX( rn_n2min, rn2(:,:,:) ) )
- zkz(:,:) = 0.e0 !* Associated potential energy consummed over the whole water column
- DO jk = 2, jpkm1
- zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zav_tide(:,:,jk) * wmask(:,:,jk)
- END DO
- DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx
- DO ji = 1, jpi
- IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj)
- END DO
- END DO
- DO jk = 2, jpkm1 !* Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zav_tide bound by 300 cm2/s
- DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx
- DO ji = 1, jpi
- zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * MIN( zkz(ji,jj), 30./6. ) * wmask(ji,jj,jk) !kz max = 300 cm2/s
- END DO
- END DO
- END DO
- IF( kt == nit000 ) THEN !* check at first time-step: diagnose the energy consumed by zav_tide
- ztpc = 0.e0
- DO jk= 1, jpk
- DO jj= 1, jpj
- DO ji= 1, jpi
- ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) &
- & * MAX( 0.e0, rn2(ji,jj,jk) ) * zav_tide(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj)
- END DO
- END DO
- END DO
- ztpc= rau0 / ( rn_tfe * rn_me ) * ztpc
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' N Total power consumption by av_tide : ztpc = ', ztpc * 1.e-12 ,'TW'
- ENDIF
-
- ! ! ----------------------- !
- ! ! ITF tidal mixing ! (update zav_tide)
- ! ! ----------------------- !
- IF( ln_tmx_itf ) CALL tmx_itf( kt, zav_tide )
- ! ! ----------------------- !
- ! ! Update mixing coefs !
- ! ! ----------------------- !
- DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with tidal mixing
- DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx
- DO ji = 1, jpi
- avt(ji,jj,jk) = avt(ji,jj,jk) + zav_tide(ji,jj,jk) * wmask(ji,jj,jk)
- avm(ji,jj,jk) = avm(ji,jj,jk) + zav_tide(ji,jj,jk) * wmask(ji,jj,jk)
- END DO
- END DO
- END DO
-
- DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with tidal mixing
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji+1,jj ,jk) ) * wumask(ji,jj,jk)
- avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji ,jj+1,jk) ) * wvmask(ji,jj,jk)
- END DO
- END DO
- END DO
- CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition
- ! !* output tidal mixing coefficient
- CALL iom_put( "av_tide", zav_tide )
- IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_tide , clinfo1=' tmx - av_tide: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk)
- !
- CALL wrk_dealloc( jpi,jpj, zkz )
- !
- IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx')
- !
- END SUBROUTINE zdf_tmx
- SUBROUTINE tmx_itf( kt, pav )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tmx_itf ***
- !!
- !! ** Purpose : modify the vertical eddy diffusivity coefficients
- !! (pav) in the Indonesian Through Flow area (ITF).
- !!
- !! ** Method : - Following Koch-Larrouy et al. (2007), in the ITF defined
- !! by msk_itf (read in a file, see tmx_init), the tidal
- !! mixing coefficient is computed with :
- !! * q=1 (i.e. all the tidal energy remains trapped in
- !! the area and thus is used for mixing)
- !! * the vertical distribution of the tifal energy is a
- !! proportional to N above the thermocline (d(N^2)/dz > 0)
- !! and to N^2 below the thermocline (d(N^2)/dz < 0)
- !!
- !! ** Action : av_tide updated in the ITF area (msk_itf)
- !!
- !! References : Koch-Larrouy et al. 2007, GRL
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kt ! ocean time-step
- REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pav ! Tidal mixing coef.
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zcoef, ztpc ! temporary scalar
- REAL(wp), DIMENSION(:,:) , POINTER :: zkz ! 2D workspace
- REAL(wp), DIMENSION(:,:) , POINTER :: zsum1 , zsum2 , zsum ! - -
- REAL(wp), DIMENSION(:,:,:), POINTER :: zempba_3d_1, zempba_3d_2 ! 3D workspace
- REAL(wp), DIMENSION(:,:,:), POINTER :: zempba_3d , zdn2dz ! - -
- REAL(wp), DIMENSION(:,:,:), POINTER :: zavt_itf ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('tmx_itf')
- !
- CALL wrk_alloc( jpi,jpj, zkz, zsum1 , zsum2 , zsum )
- CALL wrk_alloc( jpi,jpj,jpk, zempba_3d_1, zempba_3d_2, zempba_3d, zdn2dz, zavt_itf )
- ! ! compute the form function using N2 at each time step
- zdn2dz (:,:,jpk) = 0.e0
- zempba_3d_1(:,:,jpk) = 0.e0
- zempba_3d_2(:,:,jpk) = 0.e0
- DO jk = 1, jpkm1
- zdn2dz (:,:,jk) = rn2(:,:,jk) - rn2(:,:,jk+1) ! Vertical profile of dN2/dz
- !CDIR NOVERRCHK
- zempba_3d_1(:,:,jk) = SQRT( MAX( 0.e0, rn2(:,:,jk) ) ) ! - - of N
- zempba_3d_2(:,:,jk) = MAX( 0.e0, rn2(:,:,jk) ) ! - - of N^2
- END DO
- !
- zsum (:,:) = 0.e0
- zsum1(:,:) = 0.e0
- zsum2(:,:) = 0.e0
- DO jk= 2, jpk
- zsum1(:,:) = zsum1(:,:) + zempba_3d_1(:,:,jk) * fse3w(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1)
- zsum2(:,:) = zsum2(:,:) + zempba_3d_2(:,:,jk) * fse3w(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1)
- END DO
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zsum1(ji,jj) /= 0.e0 ) zsum1(ji,jj) = 1.e0 / zsum1(ji,jj)
- IF( zsum2(ji,jj) /= 0.e0 ) zsum2(ji,jj) = 1.e0 / zsum2(ji,jj)
- END DO
- END DO
- DO jk= 1, jpk
- DO jj = 1, jpj
- DO ji = 1, jpi
- zcoef = 0.5 - SIGN( 0.5, zdn2dz(ji,jj,jk) ) ! =0 if dN2/dz > 0, =1 otherwise
- ztpc = zempba_3d_1(ji,jj,jk) * zsum1(ji,jj) * zcoef &
- & + zempba_3d_2(ji,jj,jk) * zsum2(ji,jj) * ( 1. - zcoef )
- !
- zempba_3d(ji,jj,jk) = ztpc
- zsum (ji,jj) = zsum(ji,jj) + ztpc * fse3w(ji,jj,jk)
- END DO
- END DO
- END DO
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zsum(ji,jj) > 0.e0 ) zsum(ji,jj) = 1.e0 / zsum(ji,jj)
- END DO
- END DO
- ! ! first estimation bounded by 10 cm2/s (with n2 bounded by rn_n2min)
- zcoef = rn_tfe_itf / ( rn_tfe * rau0 )
- DO jk = 1, jpk
- zavt_itf(:,:,jk) = MIN( 10.e-4, zcoef * en_tmx(:,:) * zsum(:,:) * zempba_3d(:,:,jk) &
- & / MAX( rn_n2min, rn2(:,:,jk) ) * tmask(:,:,jk) )
- END DO
- zkz(:,:) = 0.e0 ! Associated potential energy consummed over the whole water column
- DO jk = 2, jpkm1
- zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zavt_itf(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1)
- END DO
- DO jj = 1, jpj ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx
- DO ji = 1, jpi
- IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) * rn_tfe_itf / rn_tfe / zkz(ji,jj)
- END DO
- END DO
- DO jk = 2, jpkm1 ! Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zavt_itf bound by 300 cm2/s
- zavt_itf(:,:,jk) = zavt_itf(:,:,jk) * MIN( zkz(:,:), 120./10. ) * tmask(:,:,jk) * tmask(:,:,jk-1) ! kz max = 120 cm2/s
- END DO
- IF( kt == nit000 ) THEN ! diagnose the nergy consumed by zavt_itf
- ztpc = 0.e0
- DO jk= 1, jpk
- DO jj= 1, jpj
- DO ji= 1, jpi
- ztpc = ztpc + e1t(ji,jj) * e2t(ji,jj) * fse3w(ji,jj,jk) * MAX( 0.e0, rn2(ji,jj,jk) ) &
- & * zavt_itf(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj)
- END DO
- END DO
- END DO
- ztpc= rau0 * ztpc / ( rn_me * rn_tfe_itf )
- IF(lwp) WRITE(numout,*) ' N Total power consumption by zavt_itf: ztpc = ', ztpc * 1.e-12 ,'TW'
- ENDIF
- ! ! Update pav with the ITF mixing coefficient
- DO jk = 2, jpkm1
- pav(:,:,jk) = pav (:,:,jk) * ( 1.e0 - mask_itf(:,:) ) &
- & + zavt_itf(:,:,jk) * mask_itf(:,:)
- END DO
- !
- CALL wrk_dealloc( jpi,jpj, zkz, zsum1 , zsum2 , zsum )
- CALL wrk_dealloc( jpi,jpj,jpk, zempba_3d_1, zempba_3d_2, zempba_3d, zdn2dz, zavt_itf )
- !
- IF( nn_timing == 1 ) CALL timing_stop('tmx_itf')
- !
- END SUBROUTINE tmx_itf
- SUBROUTINE zdf_tmx_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE zdf_tmx_init ***
- !!
- !! ** Purpose : Initialization of the vertical tidal mixing, Reading
- !! of M2 and K1 tidal energy in nc files
- !!
- !! ** Method : - Read the namtmx namelist and check the parameters
- !!
- !! - Read the input data in NetCDF files :
- !! M2 and K1 tidal energy. The total tidal energy, en_tmx,
- !! is the sum of M2, K1 and S2 energy where S2 is assumed
- !! to be: S2=(1/2)^2 * M2
- !! mask_itf, a mask array that determine where substituing
- !! the standard Simmons et al. (2005) formulation with the
- !! one of Koch_Larrouy et al. (2007).
- !!
- !! - Compute az_tmx, a 3D coefficient that allows to compute
- !! the standard tidal-induced vertical mixing as follows:
- !! Kz_tides = az_tmx / max( rn_n2min, N^2 )
- !! with az_tmx a bottom intensified coefficient is given by:
- !! az_tmx(z) = en_tmx / ( rau0 * rn_htmx ) * EXP( -(H-z)/rn_htmx )
- !! / ( 1. - EXP( - H /rn_htmx ) )
- !! where rn_htmx the characteristic length scale of the bottom
- !! intensification, en_tmx the tidal energy, and H the ocean depth
- !!
- !! ** input : - Namlist namtmx
- !! - NetCDF file : M2_ORCA2.nc, K1_ORCA2.nc, and mask_itf.nc
- !!
- !! ** Action : - Increase by 1 the nstop flag is setting problem encounter
- !! - defined az_tmx used to compute tidal-induced mixing
- !!
- !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263.
- !! Koch-Larrouy et al. 2007, GRL.
- !!----------------------------------------------------------------------
- USE oce , zav_tide => ua ! ua used as workspace
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: inum ! local integer
- INTEGER :: ios
- REAL(wp) :: ztpc, ze_z ! local scalars
- REAL(wp), DIMENSION(:,:) , POINTER :: zem2, zek1 ! read M2 and K1 tidal energy
- REAL(wp), DIMENSION(:,:) , POINTER :: zkz ! total M2, K1 and S2 tidal energy
- REAL(wp), DIMENSION(:,:) , POINTER :: zfact ! used for vertical structure function
- REAL(wp), DIMENSION(:,:) , POINTER :: zhdep ! Ocean depth
- REAL(wp), DIMENSION(:,:,:), POINTER :: zpc ! power consumption
- !!
- NAMELIST/namzdf_tmx/ rn_htmx, rn_n2min, rn_tfe, rn_me, ln_tmx_itf, rn_tfe_itf
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('zdf_tmx_init')
- !
- CALL wrk_alloc( jpi,jpj, zem2, zek1, zkz, zfact, zhdep )
- CALL wrk_alloc( jpi,jpj,jpk, zpc )
-
- REWIND( numnam_ref ) ! Namelist namzdf_tmx in reference namelist : Tidal Mixing
- READ ( numnam_ref, namzdf_tmx, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namzdf_tmx in configuration namelist : Tidal Mixing
- READ ( numnam_cfg, namzdf_tmx, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namzdf_tmx )
- IF(lwp) THEN ! Control print
- WRITE(numout,*)
- WRITE(numout,*) 'zdf_tmx_init : tidal mixing'
- WRITE(numout,*) '~~~~~~~~~~~~'
- WRITE(numout,*) ' Namelist namzdf_tmx : set tidal mixing parameters'
- WRITE(numout,*) ' Vertical decay scale for turbulence = ', rn_htmx
- WRITE(numout,*) ' Brunt-Vaisala frequency threshold = ', rn_n2min
- WRITE(numout,*) ' Tidal dissipation efficiency = ', rn_tfe
- WRITE(numout,*) ' Mixing efficiency = ', rn_me
- WRITE(numout,*) ' ITF specific parameterisation = ', ln_tmx_itf
- WRITE(numout,*) ' ITF tidal dissipation efficiency = ', rn_tfe_itf
- ENDIF
- ! ! allocate tmx arrays
- IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' )
- IF( ln_tmx_itf ) THEN ! read the Indonesian Through Flow mask
- CALL iom_open('mask_itf',inum)
- CALL iom_get (inum, jpdom_data, 'tmaskitf',mask_itf,1) !
- CALL iom_close(inum)
- ENDIF
- ! read M2 tidal energy flux : W/m2 ( zem2 < 0 )
- CALL iom_open('M2rowdrg',inum)
- CALL iom_get (inum, jpdom_data, 'field',zem2,1) !
- CALL iom_close(inum)
- ! read K1 tidal energy flux : W/m2 ( zek1 < 0 )
- CALL iom_open('K1rowdrg',inum)
- CALL iom_get (inum, jpdom_data, 'field',zek1,1) !
- CALL iom_close(inum)
-
- ! Total tidal energy ( M2, S2 and K1 with S2=(1/2)^2 * M2 )
- ! only the energy available for mixing is taken into account,
- ! (mixing efficiency tidal dissipation efficiency)
- en_tmx(:,:) = - rn_tfe * rn_me * ( zem2(:,:) * 1.25 + zek1(:,:) ) * ssmask(:,:)
- !============
- !TG: Bug for VVL? Should this section be moved out of _init and be updated at every timestep?
- ! Vertical structure (az_tmx)
- DO jj = 1, jpj ! part independent of the level
- DO ji = 1, jpi
- zhdep(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean
- zfact(ji,jj) = rau0 * rn_htmx * ( 1. - EXP( -zhdep(ji,jj) / rn_htmx ) )
- IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = en_tmx(ji,jj) / zfact(ji,jj)
- END DO
- END DO
- DO jk= 1, jpk ! complete with the level-dependent part
- DO jj = 1, jpj
- DO ji = 1, jpi
- az_tmx(ji,jj,jk) = zfact(ji,jj) * EXP( -( zhdep(ji,jj)-gdepw_0(ji,jj,jk) ) / rn_htmx ) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- !===========
- IF( nprint == 1 .AND. lwp ) THEN
- ! Control print
- ! Total power consumption due to vertical mixing
- ! zpc = rau0 * 1/rn_me * rn2 * zav_tide
- zav_tide(:,:,:) = 0.e0
- DO jk = 2, jpkm1
- zav_tide(:,:,jk) = az_tmx(:,:,jk) / MAX( rn_n2min, rn2(:,:,jk) )
- END DO
- ztpc = 0.e0
- zpc(:,:,:) = MAX(rn_n2min,rn2(:,:,:)) * zav_tide(:,:,:)
- DO jk= 2, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj)
- END DO
- END DO
- END DO
- ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc
- WRITE(numout,*)
- WRITE(numout,*) ' Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW'
- ! control print 2
- zav_tide(:,:,:) = MIN( zav_tide(:,:,:), 60.e-4 )
- zkz(:,:) = 0.e0
- DO jk = 2, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zkz(ji,jj) = zkz(ji,jj) + fse3w(ji,jj,jk) * MAX(0.e0, rn2(ji,jj,jk)) * rau0 * zav_tide(ji,jj,jk) * wmask(ji,jj,jk)
- END DO
- END DO
- END DO
- ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zkz(ji,jj) /= 0.e0 ) THEN
- zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj)
- ENDIF
- END DO
- END DO
- ztpc = 1.e50
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zkz(ji,jj) /= 0.e0 ) THEN
- ztpc = Min( zkz(ji,jj), ztpc)
- ENDIF
- END DO
- END DO
- WRITE(numout,*) ' Min de zkz ', ztpc, ' Max = ', maxval(zkz(:,:) )
- DO jk = 2, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * MIN( zkz(ji,jj), 30./6. ) * wmask(ji,jj,jk) !kz max = 300 cm2/s
- END DO
- END DO
- END DO
- ztpc = 0.e0
- zpc(:,:,:) = Max(0.e0,rn2(:,:,:)) * zav_tide(:,:,:)
- DO jk= 1, jpk
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj)
- END DO
- END DO
- END DO
- ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc
- WRITE(numout,*) ' 2 Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW'
- DO jk = 1, jpk
- ze_z = SUM( e1t(:,:) * e2t(:,:) * zav_tide(:,:,jk) * tmask_i(:,:) ) &
- & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) )
- ztpc = 1.E50
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zav_tide(ji,jj,jk) /= 0.e0 ) ztpc =Min( ztpc, zav_tide(ji,jj,jk) )
- END DO
- END DO
- WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',ztpc*1.e4, &
- & 'max= ', MAXVAL(zav_tide(:,:,jk) )*1.e4, ' cm2/s'
- END DO
- WRITE(numout,*) ' e_tide : ', SUM( e1t*e2t*en_tmx ) / ( rn_tfe * rn_me ) * 1.e-12, 'TW'
- WRITE(numout,*)
- WRITE(numout,*) ' Initial profile of tidal vertical mixing'
- DO jk = 1, jpk
- DO jj = 1,jpj
- DO ji = 1,jpi
- zkz(ji,jj) = az_tmx(ji,jj,jk) /MAX( rn_n2min, rn2(ji,jj,jk) )
- END DO
- END DO
- ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) &
- & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) )
- WRITE(numout,*) ' jk= ', jk,' ', ze_z * 1.e4,' cm2/s'
- END DO
- DO jk = 1, jpk
- zkz(:,:) = az_tmx(:,:,jk) /rn_n2min
- ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) &
- & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) )
- WRITE(numout,*)
- WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',MINVAL(zkz)*1.e4, &
- & 'max= ', MAXVAL(zkz)*1.e4, ' cm2/s'
- END DO
- !
- ENDIF
- !
- CALL wrk_dealloc( jpi,jpj, zem2, zek1, zkz, zfact, zhdep )
- CALL wrk_dealloc( jpi,jpj,jpk, zpc )
- !
- IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx_init')
- !
- END SUBROUTINE zdf_tmx_init
- #elif defined key_zdftmx_new
- !!----------------------------------------------------------------------
- !! 'key_zdftmx_new' Internal wave-driven vertical mixing
- !!----------------------------------------------------------------------
- !! zdf_tmx : global momentum & tracer Kz with wave induced Kz
- !! zdf_tmx_init : global momentum & tracer Kz with wave induced Kz
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers variables
- USE dom_oce ! ocean space and time domain variables
- USE zdf_oce ! ocean vertical physics variables
- USE zdfddm ! ocean vertical physics: double diffusive mixing
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE eosbn2 ! ocean equation of state
- USE phycst ! physical constants
- USE prtctl ! Print control
- USE in_out_manager ! I/O manager
- USE iom ! I/O Manager
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE timing ! Timing
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- IMPLICIT NONE
- PRIVATE
- PUBLIC zdf_tmx ! called in step module
- PUBLIC zdf_tmx_init ! called in nemogcm module
- PUBLIC zdf_tmx_alloc ! called in nemogcm module
- LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .TRUE. !: wave-driven mixing flag
- ! !!* Namelist namzdf_tmx : internal wave-driven mixing *
- INTEGER :: nn_zpyc ! pycnocline-intensified mixing energy proportional to N (=1) or N^2 (=2)
- LOGICAL :: ln_mevar ! variable (=T) or constant (=F) mixing efficiency
- LOGICAL :: ln_tsdiff ! account for differential T/S wave-driven mixing (=T) or not (=F)
- REAL(wp) :: r1_6 = 1._wp / 6._wp
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ebot_tmx ! power available from high-mode wave breaking (W/m2)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: epyc_tmx ! power available from low-mode, pycnocline-intensified wave breaking (W/m2)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ecri_tmx ! power available from low-mode, critical slope wave breaking (W/m2)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbot_tmx ! WKB decay scale for high-mode energy dissipation (m)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hcri_tmx ! decay scale for low-mode critical slope dissipation (m)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: emix_tmx ! local energy density available for mixing (W/kg)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: bflx_tmx ! buoyancy flux Kz * N^2 (W/kg)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: pcmap_tmx ! vertically integrated buoyancy flux (W/m2)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_ratio ! S/T diffusivity ratio (only for ln_tsdiff=T)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_wave ! Internal wave-induced diffusivity
- !! * Substitutions
- # include "zdfddm_substitute.h90"
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO Consortium (2016)
- !! $Id$
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- INTEGER FUNCTION zdf_tmx_alloc()
- !!----------------------------------------------------------------------
- !! *** FUNCTION zdf_tmx_alloc ***
- !!----------------------------------------------------------------------
- ALLOCATE( ebot_tmx(jpi,jpj), epyc_tmx(jpi,jpj), ecri_tmx(jpi,jpj) , &
- & hbot_tmx(jpi,jpj), hcri_tmx(jpi,jpj), emix_tmx(jpi,jpj,jpk), &
- & bflx_tmx(jpi,jpj,jpk), pcmap_tmx(jpi,jpj), zav_ratio(jpi,jpj,jpk), &
- & zav_wave(jpi,jpj,jpk), STAT=zdf_tmx_alloc )
- !
- IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc )
- IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays')
- END FUNCTION zdf_tmx_alloc
- SUBROUTINE zdf_tmx( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE zdf_tmx ***
- !!
- !! ** Purpose : add to the vertical mixing coefficients the effect of
- !! breaking internal waves.
- !!
- !! ** Method : - internal wave-driven vertical mixing is given by:
- !! Kz_wave = min( 100 cm2/s, f( Reb = emix_tmx /( Nu * N^2 ) )
- !! where emix_tmx is the 3D space distribution of the wave-breaking
- !! energy and Nu the molecular kinematic viscosity.
- !! The function f(Reb) is linear (constant mixing efficiency)
- !! if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T.
- !!
- !! - Compute emix_tmx, the 3D power density that allows to compute
- !! Reb and therefrom the wave-induced vertical diffusivity.
- !! This is divided into three components:
- !! 1. Bottom-intensified low-mode dissipation at critical slopes
- !! emix_tmx(z) = ( ecri_tmx / rau0 ) * EXP( -(H-z)/hcri_tmx )
- !! / ( 1. - EXP( - H/hcri_tmx ) ) * hcri_tmx
- !! where hcri_tmx is the characteristic length scale of the bottom
- !! intensification, ecri_tmx a map of available power, and H the ocean depth.
- !! 2. Pycnocline-intensified low-mode dissipation
- !! emix_tmx(z) = ( epyc_tmx / rau0 ) * ( sqrt(rn2(z))^nn_zpyc )
- !! / SUM( sqrt(rn2(z))^nn_zpyc * e3w(z) )
- !! where epyc_tmx is a map of available power, and nn_zpyc
- !! is the chosen stratification-dependence of the internal wave
- !! energy dissipation.
- !! 3. WKB-height dependent high mode dissipation
- !! emix_tmx(z) = ( ebot_tmx / rau0 ) * rn2(z) * EXP(-z_wkb(z)/hbot_tmx)
- !! / SUM( rn2(z) * EXP(-z_wkb(z)/hbot_tmx) * e3w(z) )
- !! where hbot_tmx is the characteristic length scale of the WKB bottom
- !! intensification, ebot_tmx is a map of available power, and z_wkb is the
- !! WKB-stretched height above bottom defined as
- !! z_wkb(z) = H * SUM( sqrt(rn2(z'>=z)) * e3w(z'>=z) )
- !! / SUM( sqrt(rn2(z')) * e3w(z') )
- !!
- !! - update the model vertical eddy viscosity and diffusivity:
- !! avt = avt + av_wave
- !! avm = avm + av_wave
- !! avmu = avmu + mi(av_wave)
- !! avmv = avmv + mj(av_wave)
- !!
- !! - if namelist parameter ln_tsdiff = T, account for differential mixing:
- !! avs = avt + av_wave * diffusivity_ratio(Reb)
- !!
- !! ** Action : - Define emix_tmx used to compute internal wave-induced mixing
- !! - avt, avs, avm, avmu, avmv increased by internal wave-driven mixing
- !!
- !! References : de Lavergne et al. 2015, JPO; 2016, in prep.
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time-step
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: ztpc ! scalar workspace
- REAL(wp), DIMENSION(:,:) , POINTER :: zfact ! Used for vertical structure
- REAL(wp), DIMENSION(:,:) , POINTER :: zhdep ! Ocean depth
- REAL(wp), DIMENSION(:,:,:), POINTER :: zwkb ! WKB-stretched height above bottom
- REAL(wp), DIMENSION(:,:,:), POINTER :: zweight ! Weight for high mode vertical distribution
- REAL(wp), DIMENSION(:,:,:), POINTER :: znu_t ! Molecular kinematic viscosity (T grid)
- REAL(wp), DIMENSION(:,:,:), POINTER :: znu_w ! Molecular kinematic viscosity (W grid)
- REAL(wp), DIMENSION(:,:,:), POINTER :: zReb ! Turbulence intensity parameter
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('zdf_tmx')
- !
- CALL wrk_alloc( jpi,jpj, zfact, zhdep )
- CALL wrk_alloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb )
- ! ! ----------------------------- !
- ! ! Internal wave-driven mixing ! (compute zav_wave)
- ! ! ----------------------------- !
- !
- ! !* Critical slope mixing: distribute energy over the time-varying ocean depth,
- ! using an exponential decay from the seafloor.
- DO jj = 1, jpj ! part independent of the level
- DO ji = 1, jpi
- zhdep(ji,jj) = fsdepw(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean
- zfact(ji,jj) = rau0 * ( 1._wp - EXP( -zhdep(ji,jj) / hcri_tmx(ji,jj) ) )
- IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ecri_tmx(ji,jj) / zfact(ji,jj)
- END DO
- END DO
- DO jk = 2, jpkm1 ! complete with the level-dependent part
- emix_tmx(:,:,jk) = zfact(:,:) * ( EXP( ( fsde3w(:,:,jk ) - zhdep(:,:) ) / hcri_tmx(:,:) ) &
- & - EXP( ( fsde3w(:,:,jk-1) - zhdep(:,:) ) / hcri_tmx(:,:) ) ) * wmask(:,:,jk) &
- & / ( fsde3w(:,:,jk) - fsde3w(:,:,jk-1) )
- END DO
- ! !* Pycnocline-intensified mixing: distribute energy over the time-varying
- ! !* ocean depth as proportional to sqrt(rn2)^nn_zpyc
- SELECT CASE ( nn_zpyc )
- CASE ( 1 ) ! Dissipation scales as N (recommended)
- zfact(:,:) = 0._wp
- DO jk = 2, jpkm1 ! part independent of the level
- zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk)
- END DO
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) )
- END DO
- END DO
- DO jk = 2, jpkm1 ! complete with the level-dependent part
- emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk)
- END DO
- CASE ( 2 ) ! Dissipation scales as N^2
- zfact(:,:) = 0._wp
- DO jk = 2, jpkm1 ! part independent of the level
- zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk)
- END DO
- DO jj= 1, jpj
- DO ji = 1, jpi
- IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) )
- END DO
- END DO
- DO jk = 2, jpkm1 ! complete with the level-dependent part
- emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk)
- END DO
- END SELECT
- ! !* WKB-height dependent mixing: distribute energy over the time-varying
- ! !* ocean depth as proportional to rn2 * exp(-z_wkb/rn_hbot)
-
- zwkb(:,:,:) = 0._wp
- zfact(:,:) = 0._wp
- DO jk = 2, jpkm1
- zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk)
- zwkb(:,:,jk) = zfact(:,:)
- END DO
- DO jk = 2, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zfact(ji,jj) /= 0 ) zwkb(ji,jj,jk) = zhdep(ji,jj) * ( zfact(ji,jj) - zwkb(ji,jj,jk) ) &
- & * tmask(ji,jj,jk) / zfact(ji,jj)
- END DO
- END DO
- END DO
- zwkb(:,:,1) = zhdep(:,:) * tmask(:,:,1)
- zweight(:,:,:) = 0._wp
- DO jk = 2, jpkm1
- zweight(:,:,jk) = MAX( 0._wp, rn2(:,:,jk) ) * hbot_tmx(:,:) * wmask(:,:,jk) &
- & * ( EXP( -zwkb(:,:,jk) / hbot_tmx(:,:) ) - EXP( -zwkb(:,:,jk-1) / hbot_tmx(:,:) ) )
- END DO
- zfact(:,:) = 0._wp
- DO jk = 2, jpkm1 ! part independent of the level
- zfact(:,:) = zfact(:,:) + zweight(:,:,jk)
- END DO
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ebot_tmx(ji,jj) / ( rau0 * zfact(ji,jj) )
- END DO
- END DO
- DO jk = 2, jpkm1 ! complete with the level-dependent part
- emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zweight(:,:,jk) * zfact(:,:) * wmask(:,:,jk) &
- & / ( fsde3w(:,:,jk) - fsde3w(:,:,jk-1) )
- END DO
- ! Calculate molecular kinematic viscosity
- znu_t(:,:,:) = 1.e-4_wp * ( 17.91_wp - 0.53810_wp * tsn(:,:,:,jp_tem) + 0.00694_wp * tsn(:,:,:,jp_tem) * tsn(:,:,:,jp_tem) &
- & + 0.02305_wp * tsn(:,:,:,jp_sal) ) * tmask(:,:,:) * r1_rau0
- DO jk = 2, jpkm1
- znu_w(:,:,jk) = 0.5_wp * ( znu_t(:,:,jk-1) + znu_t(:,:,jk) ) * wmask(:,:,jk)
- END DO
- ! Calculate turbulence intensity parameter Reb
- DO jk = 2, jpkm1
- zReb(:,:,jk) = emix_tmx(:,:,jk) / MAX( 1.e-20_wp, znu_w(:,:,jk) * rn2(:,:,jk) )
- END DO
- ! Define internal wave-induced diffusivity
- DO jk = 2, jpkm1
- zav_wave(:,:,jk) = znu_w(:,:,jk) * zReb(:,:,jk) * r1_6 ! This corresponds to a constant mixing efficiency of 1/6
- END DO
- IF( ln_mevar ) THEN ! Variable mixing efficiency case : modify zav_wave in the
- DO jk = 2, jpkm1 ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( zReb(ji,jj,jk) > 480.00_wp ) THEN
- zav_wave(ji,jj,jk) = 3.6515_wp * znu_w(ji,jj,jk) * SQRT( zReb(ji,jj,jk) )
- ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN
- zav_wave(ji,jj,jk) = 0.052125_wp * znu_w(ji,jj,jk) * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) )
- ENDIF
- END DO
- END DO
- END DO
- ENDIF
- DO jk = 2, jpkm1 ! Bound diffusivity by molecular value and 100 cm2/s
- zav_wave(:,:,jk) = MIN( MAX( 1.4e-7_wp, zav_wave(:,:,jk) ), 1.e-2_wp ) * wmask(:,:,jk)
- END DO
- IF( kt == nit000 ) THEN !* Control print at first time-step: diagnose the energy consumed by zav_wave
- ztpc = 0._wp
- DO jk = 2, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztpc = ztpc + fse3w(ji,jj,jk) * e1e2t(ji,jj) &
- & * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj)
- END DO
- END DO
- END DO
- IF( lk_mpp ) CALL mpp_sum( ztpc )
- ztpc = rau0 * ztpc ! Global integral of rauo * Kz * N^2 = power contributing to mixing
-
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'zdf_tmx : Internal wave-driven mixing (tmx)'
- WRITE(numout,*) '~~~~~~~ '
- WRITE(numout,*)
- WRITE(numout,*) ' Total power consumption by av_wave: ztpc = ', ztpc * 1.e-12_wp, 'TW'
- ENDIF
- ENDIF
- ! ! ----------------------- !
- ! ! Update mixing coefs !
- ! ! ----------------------- !
- !
- IF( ln_tsdiff ) THEN !* Option for differential mixing of salinity and temperature
- DO jk = 2, jpkm1 ! Calculate S/T diffusivity ratio as a function of Reb
- DO jj = 1, jpj
- DO ji = 1, jpi
- zav_ratio(ji,jj,jk) = ( 0.505_wp + 0.495_wp * &
- & TANH( 0.92_wp * ( LOG10( MAX( 1.e-20_wp, zReb(ji,jj,jk) * 5._wp * r1_6 ) ) - 0.60_wp ) ) &
- & ) * wmask(ji,jj,jk)
- END DO
- END DO
- END DO
- CALL iom_put( "av_ratio", zav_ratio )
- DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with wave-driven mixing
- fsavs(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) * zav_ratio(:,:,jk)
- avt (:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk)
- avm (:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk)
- END DO
- !
- ELSE !* update momentum & tracer diffusivity with wave-driven mixing
- DO jk = 2, jpkm1
- fsavs(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk)
- avt (:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk)
- avm (:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk)
- END DO
- ENDIF
- DO jk = 2, jpkm1 !* update momentum diffusivity at wu and wv points
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji+1,jj ,jk) ) * wumask(ji,jj,jk)
- avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji ,jj+1,jk) ) * wvmask(ji,jj,jk)
- END DO
- END DO
- END DO
- CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition
- ! !* output internal wave-driven mixing coefficient
- CALL iom_put( "av_wave", zav_wave )
- !* output useful diagnostics: N^2, Kz * N^2 (bflx_tmx),
- ! vertical integral of rau0 * Kz * N^2 (pcmap_tmx), energy density (emix_tmx)
- IF( iom_use("bflx_tmx") .OR. iom_use("pcmap_tmx") ) THEN
- bflx_tmx(:,:,:) = MAX( 0._wp, rn2(:,:,:) ) * zav_wave(:,:,:)
- pcmap_tmx(:,:) = 0._wp
- DO jk = 2, jpkm1
- pcmap_tmx(:,:) = pcmap_tmx(:,:) + fse3w(:,:,jk) * bflx_tmx(:,:,jk) * wmask(:,:,jk)
- END DO
- pcmap_tmx(:,:) = rau0 * pcmap_tmx(:,:)
- CALL iom_put( "bflx_tmx", bflx_tmx )
- CALL iom_put( "pcmap_tmx", pcmap_tmx )
- ENDIF
- CALL iom_put( "bn2", rn2 )
- CALL iom_put( "emix_tmx", emix_tmx )
-
- CALL wrk_dealloc( jpi,jpj, zfact, zhdep )
- CALL wrk_dealloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb )
- IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' tmx - av_wave: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk)
- !
- IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx')
- !
- END SUBROUTINE zdf_tmx
- SUBROUTINE zdf_tmx_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE zdf_tmx_init ***
- !!
- !! ** Purpose : Initialization of the wave-driven vertical mixing, reading
- !! of input power maps and decay length scales in netcdf files.
- !!
- !! ** Method : - Read the namzdf_tmx namelist and check the parameters
- !!
- !! - Read the input data in NetCDF files :
- !! power available from high-mode wave breaking (mixing_power_bot.nc)
- !! power available from pycnocline-intensified wave-breaking (mixing_power_pyc.nc)
- !! power available from critical slope wave-breaking (mixing_power_cri.nc)
- !! WKB decay scale for high-mode wave-breaking (decay_scale_bot.nc)
- !! decay scale for critical slope wave-breaking (decay_scale_cri.nc)
- !!
- !! ** input : - Namlist namzdf_tmx
- !! - NetCDF files : mixing_power_bot.nc, mixing_power_pyc.nc, mixing_power_cri.nc,
- !! decay_scale_bot.nc decay_scale_cri.nc
- !!
- !! ** Action : - Increase by 1 the nstop flag is setting problem encounter
- !! - Define ebot_tmx, epyc_tmx, ecri_tmx, hbot_tmx, hcri_tmx
- !!
- !! References : de Lavergne et al. 2015, JPO; 2016, in prep.
- !!
- !!----------------------------------------------------------------------
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: inum ! local integer
- INTEGER :: ios
- REAL(wp) :: zbot, zpyc, zcri ! local scalars
- !!
- NAMELIST/namzdf_tmx_new/ nn_zpyc, ln_mevar, ln_tsdiff
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('zdf_tmx_init')
- !
- REWIND( numnam_ref ) ! Namelist namzdf_tmx in reference namelist : Wave-driven mixing
- READ ( numnam_ref, namzdf_tmx_new, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in reference namelist', lwp )
- !
- REWIND( numnam_cfg ) ! Namelist namzdf_tmx in configuration namelist : Wave-driven mixing
- READ ( numnam_cfg, namzdf_tmx_new, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namzdf_tmx_new )
- !
- IF(lwp) THEN ! Control print
- WRITE(numout,*)
- WRITE(numout,*) 'zdf_tmx_init : internal wave-driven mixing'
- WRITE(numout,*) '~~~~~~~~~~~~'
- WRITE(numout,*) ' Namelist namzdf_tmx_new : set wave-driven mixing parameters'
- WRITE(numout,*) ' Pycnocline-intensified diss. scales as N (=1) or N^2 (=2) = ', nn_zpyc
- WRITE(numout,*) ' Variable (T) or constant (F) mixing efficiency = ', ln_mevar
- WRITE(numout,*) ' Differential internal wave-driven mixing (T) or not (F) = ', ln_tsdiff
- ENDIF
-
- ! The new wave-driven mixing parameterization elevates avt and avm in the interior, and
- ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should
- ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6).
- avmb(:) = 1.4e-6_wp ! viscous molecular value
- avtb(:) = 1.e-10_wp ! very small diffusive minimum (background avt is specified in zdf_tmx)
- avtb_2d(:,:) = 1.e0_wp ! uniform
- IF(lwp) THEN ! Control print
- WRITE(numout,*)
- WRITE(numout,*) ' Force the background value applied to avm & avt in TKE to be everywhere ', &
- & 'the viscous molecular value & a very small diffusive value, resp.'
- ENDIF
-
- IF( .NOT.lk_zdfddm ) CALL ctl_stop( 'STOP', 'zdf_tmx_init_new : key_zdftmx_new requires key_zdfddm' )
-
- ! ! allocate tmx arrays
- IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' )
- !
- ! ! read necessary fields
- CALL iom_open('mixing_power_bot',inum) ! energy flux for high-mode wave breaking [W/m2]
- CALL iom_get (inum, jpdom_data, 'field', ebot_tmx, 1 )
- CALL iom_close(inum)
- !
- CALL iom_open('mixing_power_pyc',inum) ! energy flux for pynocline-intensified wave breaking [W/m2]
- CALL iom_get (inum, jpdom_data, 'field', epyc_tmx, 1 )
- CALL iom_close(inum)
- !
- CALL iom_open('mixing_power_cri',inum) ! energy flux for critical slope wave breaking [W/m2]
- CALL iom_get (inum, jpdom_data, 'field', ecri_tmx, 1 )
- CALL iom_close(inum)
- !
- CALL iom_open('decay_scale_bot',inum) ! spatially variable decay scale for high-mode wave breaking [m]
- CALL iom_get (inum, jpdom_data, 'field', hbot_tmx, 1 )
- CALL iom_close(inum)
- !
- CALL iom_open('decay_scale_cri',inum) ! spatially variable decay scale for critical slope wave breaking [m]
- CALL iom_get (inum, jpdom_data, 'field', hcri_tmx, 1 )
- CALL iom_close(inum)
- ebot_tmx(:,:) = ebot_tmx(:,:) * ssmask(:,:)
- epyc_tmx(:,:) = epyc_tmx(:,:) * ssmask(:,:)
- ecri_tmx(:,:) = ecri_tmx(:,:) * ssmask(:,:)
- ! Set once for all to zero the first and last vertical levels of appropriate variables
- emix_tmx (:,:, 1 ) = 0._wp
- emix_tmx (:,:,jpk) = 0._wp
- zav_ratio(:,:, 1 ) = 0._wp
- zav_ratio(:,:,jpk) = 0._wp
- zav_wave (:,:, 1 ) = 0._wp
- zav_wave (:,:,jpk) = 0._wp
- zbot = glob_sum( e1e2t(:,:) * ebot_tmx(:,:) )
- zpyc = glob_sum( e1e2t(:,:) * epyc_tmx(:,:) )
- zcri = glob_sum( e1e2t(:,:) * ecri_tmx(:,:) )
- IF(lwp) THEN
- WRITE(numout,*) ' High-mode wave-breaking energy: ', zbot * 1.e-12_wp, 'TW'
- WRITE(numout,*) ' Pycnocline-intensifed wave-breaking energy: ', zpyc * 1.e-12_wp, 'TW'
- WRITE(numout,*) ' Critical slope wave-breaking energy: ', zcri * 1.e-12_wp, 'TW'
- ENDIF
- !
- IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx_init')
- !
- END SUBROUTINE zdf_tmx_init
- #else
- !!----------------------------------------------------------------------
- !! Default option Dummy module NO Tidal MiXing
- !!----------------------------------------------------------------------
- LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .FALSE. !: tidal mixing flag
- CONTAINS
- SUBROUTINE zdf_tmx_init ! Dummy routine
- WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?'
- END SUBROUTINE zdf_tmx_init
- SUBROUTINE zdf_tmx( kt ) ! Dummy routine
- WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?', kt
- END SUBROUTINE zdf_tmx
- #endif
- !!======================================================================
- END MODULE zdftmx
|