MODULE zdftmx !!======================================================================== !! *** MODULE zdftmx *** !! Ocean physics: vertical tidal mixing coefficient !!======================================================================== !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !!---------------------------------------------------------------------- #if defined key_zdftmx || defined key_esopa !!---------------------------------------------------------------------- !! 'key_zdftmx' Tidal vertical mixing !!---------------------------------------------------------------------- !! zdf_tmx : global momentum & tracer Kz with tidal induced Kz !! tmx_itf : Indonesian momentum & tracer Kz with tidal induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE timing ! Timing USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC zdf_tmx ! called in step module PUBLIC zdf_tmx_init ! called in opa module PUBLIC zdf_tmx_alloc ! called in nemogcm module LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .TRUE. !: tidal mixing flag ! !!* Namelist namzdf_tmx : tidal mixing * REAL(wp) :: rn_htmx ! vertical decay scale for turbulence (meters) REAL(wp) :: rn_n2min ! threshold of the Brunt-Vaisala frequency (s-1) REAL(wp) :: rn_tfe ! tidal dissipation efficiency (St Laurent et al. 2002) REAL(wp) :: rn_me ! mixing efficiency (Osborn 1980) LOGICAL :: ln_tmx_itf ! Indonesian Through Flow (ITF): Koch-Larrouy et al. (2007) parameterization REAL(wp) :: rn_tfe_itf ! ITF tidal dissipation efficiency (St Laurent et al. 2002) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: en_tmx ! energy available for tidal mixing (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: mask_itf ! mask to use over Indonesian area REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: az_tmx ! coefficient used to evaluate the tidal induced Kz !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id: zdftmx.F90 4990 2014-12-15 16:42:49Z timgraham $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_tmx_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_tmx_alloc *** !!---------------------------------------------------------------------- ALLOCATE(en_tmx(jpi,jpj), mask_itf(jpi,jpj), az_tmx(jpi,jpj,jpk), STAT=zdf_tmx_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc ) IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays') END FUNCTION zdf_tmx_alloc SUBROUTINE zdf_tmx( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! tidal mixing (Simmons et al 2004). !! !! ** Method : - tidal-induced vertical mixing is given by: !! Kz_tides = az_tmx / max( rn_n2min, N^2 ) !! where az_tmx is a coefficient that specified the 3D space !! distribution of the faction of tidal energy taht is used !! for mixing. Its expression is set in zdf_tmx_init routine, !! following Simmons et al. 2004. !! NB: a specific bounding procedure is performed on av_tide !! so that the input tidal energy is actually almost used. The !! basic maximum value is 60 cm2/s, but values of 300 cm2/s !! can be reached in area where bottom stratification is too !! weak. !! !! - update av_tide in the Indonesian Through Flow area !! following Koch-Larrouy et al. (2007) parameterisation !! (see tmx_itf routine). !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_tides !! avm = avm + av_tides !! avmu = avmu + mi(av_tides) !! avmv = avmv + mj(av_tides) !! !! ** Action : avt, avm, avmu, avmv increased by tidal mixing !! !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263. !! Koch-Larrouy et al. 2007, GRL. !!---------------------------------------------------------------------- USE oce, zav_tide => ua ! use ua as workspace !! INTEGER, INTENT(in) :: kt ! ocean time-step !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: ztpc ! scalar workspace REAL(wp), POINTER, DIMENSION(:,:) :: zkz !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx') ! CALL wrk_alloc( jpi,jpj, zkz ) ! ! ----------------------- ! ! ! Standard tidal mixing ! (compute zav_tide) ! ! ----------------------- ! ! !* First estimation (with n2 bound by rn_n2min) bounded by 60 cm2/s zav_tide(:,:,:) = MIN( 60.e-4, az_tmx(:,:,:) / MAX( rn_n2min, rn2(:,:,:) ) ) zkz(:,:) = 0.e0 !* Associated potential energy consummed over the whole water column DO jk = 2, jpkm1 zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zav_tide(:,:,jk) * wmask(:,:,jk) END DO DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj) END DO END DO DO jk = 2, jpkm1 !* Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zav_tide bound by 300 cm2/s DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * MIN( zkz(ji,jj), 30./6. ) * wmask(ji,jj,jk) !kz max = 300 cm2/s END DO END DO END DO IF( kt == nit000 ) THEN !* check at first time-step: diagnose the energy consumed by zav_tide ztpc = 0.e0 DO jk= 1, jpk DO jj= 1, jpj DO ji= 1, jpi ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) & & * MAX( 0.e0, rn2(ji,jj,jk) ) * zav_tide(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 / ( rn_tfe * rn_me ) * ztpc IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' N Total power consumption by av_tide : ztpc = ', ztpc * 1.e-12 ,'TW' ENDIF ! ! ----------------------- ! ! ! ITF tidal mixing ! (update zav_tide) ! ! ----------------------- ! IF( ln_tmx_itf ) CALL tmx_itf( kt, zav_tide ) ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with tidal mixing DO jj = 1, jpj !* Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi avt(ji,jj,jk) = avt(ji,jj,jk) + zav_tide(ji,jj,jk) * wmask(ji,jj,jk) avm(ji,jj,jk) = avm(ji,jj,jk) + zav_tide(ji,jj,jk) * wmask(ji,jj,jk) END DO END DO END DO DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with tidal mixing DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji+1,jj ,jk) ) * wumask(ji,jj,jk) avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5 * ( zav_tide(ji,jj,jk) + zav_tide(ji ,jj+1,jk) ) * wvmask(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition ! !* output tidal mixing coefficient CALL iom_put( "av_tide", zav_tide ) IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_tide , clinfo1=' tmx - av_tide: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk) ! CALL wrk_dealloc( jpi,jpj, zkz ) ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx') ! END SUBROUTINE zdf_tmx SUBROUTINE tmx_itf( kt, pav ) !!---------------------------------------------------------------------- !! *** ROUTINE tmx_itf *** !! !! ** Purpose : modify the vertical eddy diffusivity coefficients !! (pav) in the Indonesian Through Flow area (ITF). !! !! ** Method : - Following Koch-Larrouy et al. (2007), in the ITF defined !! by msk_itf (read in a file, see tmx_init), the tidal !! mixing coefficient is computed with : !! * q=1 (i.e. all the tidal energy remains trapped in !! the area and thus is used for mixing) !! * the vertical distribution of the tifal energy is a !! proportional to N above the thermocline (d(N^2)/dz > 0) !! and to N^2 below the thermocline (d(N^2)/dz < 0) !! !! ** Action : av_tide updated in the ITF area (msk_itf) !! !! References : Koch-Larrouy et al. 2007, GRL !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time-step REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pav ! Tidal mixing coef. !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zcoef, ztpc ! temporary scalar REAL(wp), DIMENSION(:,:) , POINTER :: zkz ! 2D workspace REAL(wp), DIMENSION(:,:) , POINTER :: zsum1 , zsum2 , zsum ! - - REAL(wp), DIMENSION(:,:,:), POINTER :: zempba_3d_1, zempba_3d_2 ! 3D workspace REAL(wp), DIMENSION(:,:,:), POINTER :: zempba_3d , zdn2dz ! - - REAL(wp), DIMENSION(:,:,:), POINTER :: zavt_itf ! - - !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('tmx_itf') ! CALL wrk_alloc( jpi,jpj, zkz, zsum1 , zsum2 , zsum ) CALL wrk_alloc( jpi,jpj,jpk, zempba_3d_1, zempba_3d_2, zempba_3d, zdn2dz, zavt_itf ) ! ! compute the form function using N2 at each time step zdn2dz (:,:,jpk) = 0.e0 zempba_3d_1(:,:,jpk) = 0.e0 zempba_3d_2(:,:,jpk) = 0.e0 DO jk = 1, jpkm1 zdn2dz (:,:,jk) = rn2(:,:,jk) - rn2(:,:,jk+1) ! Vertical profile of dN2/dz !CDIR NOVERRCHK zempba_3d_1(:,:,jk) = SQRT( MAX( 0.e0, rn2(:,:,jk) ) ) ! - - of N zempba_3d_2(:,:,jk) = MAX( 0.e0, rn2(:,:,jk) ) ! - - of N^2 END DO ! zsum (:,:) = 0.e0 zsum1(:,:) = 0.e0 zsum2(:,:) = 0.e0 DO jk= 2, jpk zsum1(:,:) = zsum1(:,:) + zempba_3d_1(:,:,jk) * fse3w(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1) zsum2(:,:) = zsum2(:,:) + zempba_3d_2(:,:,jk) * fse3w(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zsum1(ji,jj) /= 0.e0 ) zsum1(ji,jj) = 1.e0 / zsum1(ji,jj) IF( zsum2(ji,jj) /= 0.e0 ) zsum2(ji,jj) = 1.e0 / zsum2(ji,jj) END DO END DO DO jk= 1, jpk DO jj = 1, jpj DO ji = 1, jpi zcoef = 0.5 - SIGN( 0.5, zdn2dz(ji,jj,jk) ) ! =0 if dN2/dz > 0, =1 otherwise ztpc = zempba_3d_1(ji,jj,jk) * zsum1(ji,jj) * zcoef & & + zempba_3d_2(ji,jj,jk) * zsum2(ji,jj) * ( 1. - zcoef ) ! zempba_3d(ji,jj,jk) = ztpc zsum (ji,jj) = zsum(ji,jj) + ztpc * fse3w(ji,jj,jk) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi IF( zsum(ji,jj) > 0.e0 ) zsum(ji,jj) = 1.e0 / zsum(ji,jj) END DO END DO ! ! first estimation bounded by 10 cm2/s (with n2 bounded by rn_n2min) zcoef = rn_tfe_itf / ( rn_tfe * rau0 ) DO jk = 1, jpk zavt_itf(:,:,jk) = MIN( 10.e-4, zcoef * en_tmx(:,:) * zsum(:,:) * zempba_3d(:,:,jk) & & / MAX( rn_n2min, rn2(:,:,jk) ) * tmask(:,:,jk) ) END DO zkz(:,:) = 0.e0 ! Associated potential energy consummed over the whole water column DO jk = 2, jpkm1 zkz(:,:) = zkz(:,:) + fse3w(:,:,jk) * MAX( 0.e0, rn2(:,:,jk) ) * rau0 * zavt_itf(:,:,jk) * tmask(:,:,jk) * tmask(:,:,jk-1) END DO DO jj = 1, jpj ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz to recover en_tmx DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) zkz(ji,jj) = en_tmx(ji,jj) * rn_tfe_itf / rn_tfe / zkz(ji,jj) END DO END DO DO jk = 2, jpkm1 ! Mutiply by zkz to recover en_tmx, BUT bound by 30/6 ==> zavt_itf bound by 300 cm2/s zavt_itf(:,:,jk) = zavt_itf(:,:,jk) * MIN( zkz(:,:), 120./10. ) * tmask(:,:,jk) * tmask(:,:,jk-1) ! kz max = 120 cm2/s END DO IF( kt == nit000 ) THEN ! diagnose the nergy consumed by zavt_itf ztpc = 0.e0 DO jk= 1, jpk DO jj= 1, jpj DO ji= 1, jpi ztpc = ztpc + e1t(ji,jj) * e2t(ji,jj) * fse3w(ji,jj,jk) * MAX( 0.e0, rn2(ji,jj,jk) ) & & * zavt_itf(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * ztpc / ( rn_me * rn_tfe_itf ) IF(lwp) WRITE(numout,*) ' N Total power consumption by zavt_itf: ztpc = ', ztpc * 1.e-12 ,'TW' ENDIF ! ! Update pav with the ITF mixing coefficient DO jk = 2, jpkm1 pav(:,:,jk) = pav (:,:,jk) * ( 1.e0 - mask_itf(:,:) ) & & + zavt_itf(:,:,jk) * mask_itf(:,:) END DO ! CALL wrk_dealloc( jpi,jpj, zkz, zsum1 , zsum2 , zsum ) CALL wrk_dealloc( jpi,jpj,jpk, zempba_3d_1, zempba_3d_2, zempba_3d, zdn2dz, zavt_itf ) ! IF( nn_timing == 1 ) CALL timing_stop('tmx_itf') ! END SUBROUTINE tmx_itf SUBROUTINE zdf_tmx_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx_init *** !! !! ** Purpose : Initialization of the vertical tidal mixing, Reading !! of M2 and K1 tidal energy in nc files !! !! ** Method : - Read the namtmx namelist and check the parameters !! !! - Read the input data in NetCDF files : !! M2 and K1 tidal energy. The total tidal energy, en_tmx, !! is the sum of M2, K1 and S2 energy where S2 is assumed !! to be: S2=(1/2)^2 * M2 !! mask_itf, a mask array that determine where substituing !! the standard Simmons et al. (2005) formulation with the !! one of Koch_Larrouy et al. (2007). !! !! - Compute az_tmx, a 3D coefficient that allows to compute !! the standard tidal-induced vertical mixing as follows: !! Kz_tides = az_tmx / max( rn_n2min, N^2 ) !! with az_tmx a bottom intensified coefficient is given by: !! az_tmx(z) = en_tmx / ( rau0 * rn_htmx ) * EXP( -(H-z)/rn_htmx ) !! / ( 1. - EXP( - H /rn_htmx ) ) !! where rn_htmx the characteristic length scale of the bottom !! intensification, en_tmx the tidal energy, and H the ocean depth !! !! ** input : - Namlist namtmx !! - NetCDF file : M2_ORCA2.nc, K1_ORCA2.nc, and mask_itf.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - defined az_tmx used to compute tidal-induced mixing !! !! References : Simmons et al. 2004, Ocean Modelling, 6, 3-4, 245-263. !! Koch-Larrouy et al. 2007, GRL. !!---------------------------------------------------------------------- USE oce , zav_tide => ua ! ua used as workspace !! INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local integer INTEGER :: ios REAL(wp) :: ztpc, ze_z ! local scalars REAL(wp), DIMENSION(:,:) , POINTER :: zem2, zek1 ! read M2 and K1 tidal energy REAL(wp), DIMENSION(:,:) , POINTER :: zkz ! total M2, K1 and S2 tidal energy REAL(wp), DIMENSION(:,:) , POINTER :: zfact ! used for vertical structure function REAL(wp), DIMENSION(:,:) , POINTER :: zhdep ! Ocean depth REAL(wp), DIMENSION(:,:,:), POINTER :: zpc ! power consumption !! NAMELIST/namzdf_tmx/ rn_htmx, rn_n2min, rn_tfe, rn_me, ln_tmx_itf, rn_tfe_itf !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx_init') ! CALL wrk_alloc( jpi,jpj, zem2, zek1, zkz, zfact, zhdep ) CALL wrk_alloc( jpi,jpj,jpk, zpc ) REWIND( numnam_ref ) ! Namelist namzdf_tmx in reference namelist : Tidal Mixing READ ( numnam_ref, namzdf_tmx, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namzdf_tmx in configuration namelist : Tidal Mixing READ ( numnam_cfg, namzdf_tmx, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzdf_tmx ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_tmx_init : tidal mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_tmx : set tidal mixing parameters' WRITE(numout,*) ' Vertical decay scale for turbulence = ', rn_htmx WRITE(numout,*) ' Brunt-Vaisala frequency threshold = ', rn_n2min WRITE(numout,*) ' Tidal dissipation efficiency = ', rn_tfe WRITE(numout,*) ' Mixing efficiency = ', rn_me WRITE(numout,*) ' ITF specific parameterisation = ', ln_tmx_itf WRITE(numout,*) ' ITF tidal dissipation efficiency = ', rn_tfe_itf ENDIF ! ! allocate tmx arrays IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' ) IF( ln_tmx_itf ) THEN ! read the Indonesian Through Flow mask CALL iom_open('mask_itf',inum) CALL iom_get (inum, jpdom_data, 'tmaskitf',mask_itf,1) ! CALL iom_close(inum) ENDIF ! read M2 tidal energy flux : W/m2 ( zem2 < 0 ) CALL iom_open('M2rowdrg',inum) CALL iom_get (inum, jpdom_data, 'field',zem2,1) ! CALL iom_close(inum) ! read K1 tidal energy flux : W/m2 ( zek1 < 0 ) CALL iom_open('K1rowdrg',inum) CALL iom_get (inum, jpdom_data, 'field',zek1,1) ! CALL iom_close(inum) ! Total tidal energy ( M2, S2 and K1 with S2=(1/2)^2 * M2 ) ! only the energy available for mixing is taken into account, ! (mixing efficiency tidal dissipation efficiency) en_tmx(:,:) = - rn_tfe * rn_me * ( zem2(:,:) * 1.25 + zek1(:,:) ) * ssmask(:,:) !============ !TG: Bug for VVL? Should this section be moved out of _init and be updated at every timestep? ! Vertical structure (az_tmx) DO jj = 1, jpj ! part independent of the level DO ji = 1, jpi zhdep(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean zfact(ji,jj) = rau0 * rn_htmx * ( 1. - EXP( -zhdep(ji,jj) / rn_htmx ) ) IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = en_tmx(ji,jj) / zfact(ji,jj) END DO END DO DO jk= 1, jpk ! complete with the level-dependent part DO jj = 1, jpj DO ji = 1, jpi az_tmx(ji,jj,jk) = zfact(ji,jj) * EXP( -( zhdep(ji,jj)-gdepw_0(ji,jj,jk) ) / rn_htmx ) * tmask(ji,jj,jk) END DO END DO END DO !=========== IF( nprint == 1 .AND. lwp ) THEN ! Control print ! Total power consumption due to vertical mixing ! zpc = rau0 * 1/rn_me * rn2 * zav_tide zav_tide(:,:,:) = 0.e0 DO jk = 2, jpkm1 zav_tide(:,:,jk) = az_tmx(:,:,jk) / MAX( rn_n2min, rn2(:,:,jk) ) END DO ztpc = 0.e0 zpc(:,:,:) = MAX(rn_n2min,rn2(:,:,:)) * zav_tide(:,:,:) DO jk= 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc WRITE(numout,*) WRITE(numout,*) ' Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW' ! control print 2 zav_tide(:,:,:) = MIN( zav_tide(:,:,:), 60.e-4 ) zkz(:,:) = 0.e0 DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zkz(ji,jj) = zkz(ji,jj) + fse3w(ji,jj,jk) * MAX(0.e0, rn2(ji,jj,jk)) * rau0 * zav_tide(ji,jj,jk) * wmask(ji,jj,jk) END DO END DO END DO ! Here zkz should be equal to en_tmx ==> multiply by en_tmx/zkz DO jj = 1, jpj DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) THEN zkz(ji,jj) = en_tmx(ji,jj) / zkz(ji,jj) ENDIF END DO END DO ztpc = 1.e50 DO jj = 1, jpj DO ji = 1, jpi IF( zkz(ji,jj) /= 0.e0 ) THEN ztpc = Min( zkz(ji,jj), ztpc) ENDIF END DO END DO WRITE(numout,*) ' Min de zkz ', ztpc, ' Max = ', maxval(zkz(:,:) ) DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zav_tide(ji,jj,jk) = zav_tide(ji,jj,jk) * MIN( zkz(ji,jj), 30./6. ) * wmask(ji,jj,jk) !kz max = 300 cm2/s END DO END DO END DO ztpc = 0.e0 zpc(:,:,:) = Max(0.e0,rn2(:,:,:)) * zav_tide(:,:,:) DO jk= 1, jpk DO jj = 1, jpj DO ji = 1, jpi ztpc = ztpc + fse3w(ji,jj,jk) * e1t(ji,jj) * e2t(ji,jj) * zpc(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO ztpc= rau0 * 1/(rn_tfe * rn_me) * ztpc WRITE(numout,*) ' 2 Total power consumption of the tidally driven part of Kz : ztpc = ', ztpc * 1.e-12 ,'TW' DO jk = 1, jpk ze_z = SUM( e1t(:,:) * e2t(:,:) * zav_tide(:,:,jk) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) ) ztpc = 1.E50 DO jj = 1, jpj DO ji = 1, jpi IF( zav_tide(ji,jj,jk) /= 0.e0 ) ztpc =Min( ztpc, zav_tide(ji,jj,jk) ) END DO END DO WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',ztpc*1.e4, & & 'max= ', MAXVAL(zav_tide(:,:,jk) )*1.e4, ' cm2/s' END DO WRITE(numout,*) ' e_tide : ', SUM( e1t*e2t*en_tmx ) / ( rn_tfe * rn_me ) * 1.e-12, 'TW' WRITE(numout,*) WRITE(numout,*) ' Initial profile of tidal vertical mixing' DO jk = 1, jpk DO jj = 1,jpj DO ji = 1,jpi zkz(ji,jj) = az_tmx(ji,jj,jk) /MAX( rn_n2min, rn2(ji,jj,jk) ) END DO END DO ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) ) WRITE(numout,*) ' jk= ', jk,' ', ze_z * 1.e4,' cm2/s' END DO DO jk = 1, jpk zkz(:,:) = az_tmx(:,:,jk) /rn_n2min ze_z = SUM( e1t(:,:) * e2t(:,:) * zkz(:,:) * tmask_i(:,:) ) & & / MAX( 1.e-20, SUM( e1t(:,:) * e2t(:,:) * wmask (:,:,jk) * tmask_i(:,:) ) ) WRITE(numout,*) WRITE(numout,*) ' N2 min - jk= ', jk,' ', ze_z * 1.e4,' cm2/s min= ',MINVAL(zkz)*1.e4, & & 'max= ', MAXVAL(zkz)*1.e4, ' cm2/s' END DO ! ENDIF ! CALL wrk_dealloc( jpi,jpj, zem2, zek1, zkz, zfact, zhdep ) CALL wrk_dealloc( jpi,jpj,jpk, zpc ) ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx_init') ! END SUBROUTINE zdf_tmx_init #elif defined key_zdftmx_new !!---------------------------------------------------------------------- !! 'key_zdftmx_new' Internal wave-driven vertical mixing !!---------------------------------------------------------------------- !! zdf_tmx : global momentum & tracer Kz with wave induced Kz !! zdf_tmx_init : global momentum & tracer Kz with wave induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE zdfddm ! ocean vertical physics: double diffusive mixing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE timing ! Timing USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC zdf_tmx ! called in step module PUBLIC zdf_tmx_init ! called in nemogcm module PUBLIC zdf_tmx_alloc ! called in nemogcm module LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .TRUE. !: wave-driven mixing flag ! !!* Namelist namzdf_tmx : internal wave-driven mixing * INTEGER :: nn_zpyc ! pycnocline-intensified mixing energy proportional to N (=1) or N^2 (=2) LOGICAL :: ln_mevar ! variable (=T) or constant (=F) mixing efficiency LOGICAL :: ln_tsdiff ! account for differential T/S wave-driven mixing (=T) or not (=F) REAL(wp) :: r1_6 = 1._wp / 6._wp REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ebot_tmx ! power available from high-mode wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: epyc_tmx ! power available from low-mode, pycnocline-intensified wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ecri_tmx ! power available from low-mode, critical slope wave breaking (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbot_tmx ! WKB decay scale for high-mode energy dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hcri_tmx ! decay scale for low-mode critical slope dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: emix_tmx ! local energy density available for mixing (W/kg) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: bflx_tmx ! buoyancy flux Kz * N^2 (W/kg) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: pcmap_tmx ! vertically integrated buoyancy flux (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_ratio ! S/T diffusivity ratio (only for ln_tsdiff=T) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: zav_wave ! Internal wave-induced diffusivity !! * Substitutions # include "zdfddm_substitute.h90" # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2016) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_tmx_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_tmx_alloc *** !!---------------------------------------------------------------------- ALLOCATE( ebot_tmx(jpi,jpj), epyc_tmx(jpi,jpj), ecri_tmx(jpi,jpj) , & & hbot_tmx(jpi,jpj), hcri_tmx(jpi,jpj), emix_tmx(jpi,jpj,jpk), & & bflx_tmx(jpi,jpj,jpk), pcmap_tmx(jpi,jpj), zav_ratio(jpi,jpj,jpk), & & zav_wave(jpi,jpj,jpk), STAT=zdf_tmx_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( zdf_tmx_alloc ) IF( zdf_tmx_alloc /= 0 ) CALL ctl_warn('zdf_tmx_alloc: failed to allocate arrays') END FUNCTION zdf_tmx_alloc SUBROUTINE zdf_tmx( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! breaking internal waves. !! !! ** Method : - internal wave-driven vertical mixing is given by: !! Kz_wave = min( 100 cm2/s, f( Reb = emix_tmx /( Nu * N^2 ) ) !! where emix_tmx is the 3D space distribution of the wave-breaking !! energy and Nu the molecular kinematic viscosity. !! The function f(Reb) is linear (constant mixing efficiency) !! if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T. !! !! - Compute emix_tmx, the 3D power density that allows to compute !! Reb and therefrom the wave-induced vertical diffusivity. !! This is divided into three components: !! 1. Bottom-intensified low-mode dissipation at critical slopes !! emix_tmx(z) = ( ecri_tmx / rau0 ) * EXP( -(H-z)/hcri_tmx ) !! / ( 1. - EXP( - H/hcri_tmx ) ) * hcri_tmx !! where hcri_tmx is the characteristic length scale of the bottom !! intensification, ecri_tmx a map of available power, and H the ocean depth. !! 2. Pycnocline-intensified low-mode dissipation !! emix_tmx(z) = ( epyc_tmx / rau0 ) * ( sqrt(rn2(z))^nn_zpyc ) !! / SUM( sqrt(rn2(z))^nn_zpyc * e3w(z) ) !! where epyc_tmx is a map of available power, and nn_zpyc !! is the chosen stratification-dependence of the internal wave !! energy dissipation. !! 3. WKB-height dependent high mode dissipation !! emix_tmx(z) = ( ebot_tmx / rau0 ) * rn2(z) * EXP(-z_wkb(z)/hbot_tmx) !! / SUM( rn2(z) * EXP(-z_wkb(z)/hbot_tmx) * e3w(z) ) !! where hbot_tmx is the characteristic length scale of the WKB bottom !! intensification, ebot_tmx is a map of available power, and z_wkb is the !! WKB-stretched height above bottom defined as !! z_wkb(z) = H * SUM( sqrt(rn2(z'>=z)) * e3w(z'>=z) ) !! / SUM( sqrt(rn2(z')) * e3w(z') ) !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_wave !! avm = avm + av_wave !! avmu = avmu + mi(av_wave) !! avmv = avmv + mj(av_wave) !! !! - if namelist parameter ln_tsdiff = T, account for differential mixing: !! avs = avt + av_wave * diffusivity_ratio(Reb) !! !! ** Action : - Define emix_tmx used to compute internal wave-induced mixing !! - avt, avs, avm, avmu, avmv increased by internal wave-driven mixing !! !! References : de Lavergne et al. 2015, JPO; 2016, in prep. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: ztpc ! scalar workspace REAL(wp), DIMENSION(:,:) , POINTER :: zfact ! Used for vertical structure REAL(wp), DIMENSION(:,:) , POINTER :: zhdep ! Ocean depth REAL(wp), DIMENSION(:,:,:), POINTER :: zwkb ! WKB-stretched height above bottom REAL(wp), DIMENSION(:,:,:), POINTER :: zweight ! Weight for high mode vertical distribution REAL(wp), DIMENSION(:,:,:), POINTER :: znu_t ! Molecular kinematic viscosity (T grid) REAL(wp), DIMENSION(:,:,:), POINTER :: znu_w ! Molecular kinematic viscosity (W grid) REAL(wp), DIMENSION(:,:,:), POINTER :: zReb ! Turbulence intensity parameter !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx') ! CALL wrk_alloc( jpi,jpj, zfact, zhdep ) CALL wrk_alloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb ) ! ! ----------------------------- ! ! ! Internal wave-driven mixing ! (compute zav_wave) ! ! ----------------------------- ! ! ! !* Critical slope mixing: distribute energy over the time-varying ocean depth, ! using an exponential decay from the seafloor. DO jj = 1, jpj ! part independent of the level DO ji = 1, jpi zhdep(ji,jj) = fsdepw(ji,jj,mbkt(ji,jj)+1) ! depth of the ocean zfact(ji,jj) = rau0 * ( 1._wp - EXP( -zhdep(ji,jj) / hcri_tmx(ji,jj) ) ) IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ecri_tmx(ji,jj) / zfact(ji,jj) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = zfact(:,:) * ( EXP( ( fsde3w(:,:,jk ) - zhdep(:,:) ) / hcri_tmx(:,:) ) & & - EXP( ( fsde3w(:,:,jk-1) - zhdep(:,:) ) / hcri_tmx(:,:) ) ) * wmask(:,:,jk) & & / ( fsde3w(:,:,jk) - fsde3w(:,:,jk-1) ) END DO ! !* Pycnocline-intensified mixing: distribute energy over the time-varying ! !* ocean depth as proportional to sqrt(rn2)^nn_zpyc SELECT CASE ( nn_zpyc ) CASE ( 1 ) ! Dissipation scales as N (recommended) zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) END DO CASE ( 2 ) ! Dissipation scales as N^2 zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO DO jj= 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = epyc_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zfact(:,:) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk) END DO END SELECT ! !* WKB-height dependent mixing: distribute energy over the time-varying ! !* ocean depth as proportional to rn2 * exp(-z_wkb/rn_hbot) zwkb(:,:,:) = 0._wp zfact(:,:) = 0._wp DO jk = 2, jpkm1 zfact(:,:) = zfact(:,:) + fse3w(:,:,jk) * SQRT( MAX( 0._wp, rn2(:,:,jk) ) ) * wmask(:,:,jk) zwkb(:,:,jk) = zfact(:,:) END DO DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zwkb(ji,jj,jk) = zhdep(ji,jj) * ( zfact(ji,jj) - zwkb(ji,jj,jk) ) & & * tmask(ji,jj,jk) / zfact(ji,jj) END DO END DO END DO zwkb(:,:,1) = zhdep(:,:) * tmask(:,:,1) zweight(:,:,:) = 0._wp DO jk = 2, jpkm1 zweight(:,:,jk) = MAX( 0._wp, rn2(:,:,jk) ) * hbot_tmx(:,:) * wmask(:,:,jk) & & * ( EXP( -zwkb(:,:,jk) / hbot_tmx(:,:) ) - EXP( -zwkb(:,:,jk-1) / hbot_tmx(:,:) ) ) END DO zfact(:,:) = 0._wp DO jk = 2, jpkm1 ! part independent of the level zfact(:,:) = zfact(:,:) + zweight(:,:,jk) END DO DO jj = 1, jpj DO ji = 1, jpi IF( zfact(ji,jj) /= 0 ) zfact(ji,jj) = ebot_tmx(ji,jj) / ( rau0 * zfact(ji,jj) ) END DO END DO DO jk = 2, jpkm1 ! complete with the level-dependent part emix_tmx(:,:,jk) = emix_tmx(:,:,jk) + zweight(:,:,jk) * zfact(:,:) * wmask(:,:,jk) & & / ( fsde3w(:,:,jk) - fsde3w(:,:,jk-1) ) END DO ! Calculate molecular kinematic viscosity znu_t(:,:,:) = 1.e-4_wp * ( 17.91_wp - 0.53810_wp * tsn(:,:,:,jp_tem) + 0.00694_wp * tsn(:,:,:,jp_tem) * tsn(:,:,:,jp_tem) & & + 0.02305_wp * tsn(:,:,:,jp_sal) ) * tmask(:,:,:) * r1_rau0 DO jk = 2, jpkm1 znu_w(:,:,jk) = 0.5_wp * ( znu_t(:,:,jk-1) + znu_t(:,:,jk) ) * wmask(:,:,jk) END DO ! Calculate turbulence intensity parameter Reb DO jk = 2, jpkm1 zReb(:,:,jk) = emix_tmx(:,:,jk) / MAX( 1.e-20_wp, znu_w(:,:,jk) * rn2(:,:,jk) ) END DO ! Define internal wave-induced diffusivity DO jk = 2, jpkm1 zav_wave(:,:,jk) = znu_w(:,:,jk) * zReb(:,:,jk) * r1_6 ! This corresponds to a constant mixing efficiency of 1/6 END DO IF( ln_mevar ) THEN ! Variable mixing efficiency case : modify zav_wave in the DO jk = 2, jpkm1 ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224 ) regimes DO jj = 1, jpj DO ji = 1, jpi IF( zReb(ji,jj,jk) > 480.00_wp ) THEN zav_wave(ji,jj,jk) = 3.6515_wp * znu_w(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN zav_wave(ji,jj,jk) = 0.052125_wp * znu_w(ji,jj,jk) * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ENDIF END DO END DO END DO ENDIF DO jk = 2, jpkm1 ! Bound diffusivity by molecular value and 100 cm2/s zav_wave(:,:,jk) = MIN( MAX( 1.4e-7_wp, zav_wave(:,:,jk) ), 1.e-2_wp ) * wmask(:,:,jk) END DO IF( kt == nit000 ) THEN !* Control print at first time-step: diagnose the energy consumed by zav_wave ztpc = 0._wp DO jk = 2, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ztpc = ztpc + fse3w(ji,jj,jk) * e1e2t(ji,jj) & & * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END DO END DO END DO IF( lk_mpp ) CALL mpp_sum( ztpc ) ztpc = rau0 * ztpc ! Global integral of rauo * Kz * N^2 = power contributing to mixing IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'zdf_tmx : Internal wave-driven mixing (tmx)' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) WRITE(numout,*) ' Total power consumption by av_wave: ztpc = ', ztpc * 1.e-12_wp, 'TW' ENDIF ENDIF ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! ! IF( ln_tsdiff ) THEN !* Option for differential mixing of salinity and temperature DO jk = 2, jpkm1 ! Calculate S/T diffusivity ratio as a function of Reb DO jj = 1, jpj DO ji = 1, jpi zav_ratio(ji,jj,jk) = ( 0.505_wp + 0.495_wp * & & TANH( 0.92_wp * ( LOG10( MAX( 1.e-20_wp, zReb(ji,jj,jk) * 5._wp * r1_6 ) ) - 0.60_wp ) ) & & ) * wmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "av_ratio", zav_ratio ) DO jk = 2, jpkm1 !* update momentum & tracer diffusivity with wave-driven mixing fsavs(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) * zav_ratio(:,:,jk) avt (:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) avm (:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk) END DO ! ELSE !* update momentum & tracer diffusivity with wave-driven mixing DO jk = 2, jpkm1 fsavs(:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) avt (:,:,jk) = avt(:,:,jk) + zav_wave(:,:,jk) avm (:,:,jk) = avm(:,:,jk) + zav_wave(:,:,jk) END DO ENDIF DO jk = 2, jpkm1 !* update momentum diffusivity at wu and wv points DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. avmu(ji,jj,jk) = avmu(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji+1,jj ,jk) ) * wumask(ji,jj,jk) avmv(ji,jj,jk) = avmv(ji,jj,jk) + 0.5_wp * ( zav_wave(ji,jj,jk) + zav_wave(ji ,jj+1,jk) ) * wvmask(ji,jj,jk) END DO END DO END DO CALL lbc_lnk( avmu, 'U', 1. ) ; CALL lbc_lnk( avmv, 'V', 1. ) ! lateral boundary condition ! !* output internal wave-driven mixing coefficient CALL iom_put( "av_wave", zav_wave ) !* output useful diagnostics: N^2, Kz * N^2 (bflx_tmx), ! vertical integral of rau0 * Kz * N^2 (pcmap_tmx), energy density (emix_tmx) IF( iom_use("bflx_tmx") .OR. iom_use("pcmap_tmx") ) THEN bflx_tmx(:,:,:) = MAX( 0._wp, rn2(:,:,:) ) * zav_wave(:,:,:) pcmap_tmx(:,:) = 0._wp DO jk = 2, jpkm1 pcmap_tmx(:,:) = pcmap_tmx(:,:) + fse3w(:,:,jk) * bflx_tmx(:,:,jk) * wmask(:,:,jk) END DO pcmap_tmx(:,:) = rau0 * pcmap_tmx(:,:) CALL iom_put( "bflx_tmx", bflx_tmx ) CALL iom_put( "pcmap_tmx", pcmap_tmx ) ENDIF CALL iom_put( "bn2", rn2 ) CALL iom_put( "emix_tmx", emix_tmx ) CALL wrk_dealloc( jpi,jpj, zfact, zhdep ) CALL wrk_dealloc( jpi,jpj,jpk, zwkb, zweight, znu_t, znu_w, zReb ) IF(ln_ctl) CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' tmx - av_wave: ', tab3d_2=avt, clinfo2=' avt: ', ovlap=1, kdim=jpk) ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx') ! END SUBROUTINE zdf_tmx SUBROUTINE zdf_tmx_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_tmx_init *** !! !! ** Purpose : Initialization of the wave-driven vertical mixing, reading !! of input power maps and decay length scales in netcdf files. !! !! ** Method : - Read the namzdf_tmx namelist and check the parameters !! !! - Read the input data in NetCDF files : !! power available from high-mode wave breaking (mixing_power_bot.nc) !! power available from pycnocline-intensified wave-breaking (mixing_power_pyc.nc) !! power available from critical slope wave-breaking (mixing_power_cri.nc) !! WKB decay scale for high-mode wave-breaking (decay_scale_bot.nc) !! decay scale for critical slope wave-breaking (decay_scale_cri.nc) !! !! ** input : - Namlist namzdf_tmx !! - NetCDF files : mixing_power_bot.nc, mixing_power_pyc.nc, mixing_power_cri.nc, !! decay_scale_bot.nc decay_scale_cri.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - Define ebot_tmx, epyc_tmx, ecri_tmx, hbot_tmx, hcri_tmx !! !! References : de Lavergne et al. 2015, JPO; 2016, in prep. !! !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: inum ! local integer INTEGER :: ios REAL(wp) :: zbot, zpyc, zcri ! local scalars !! NAMELIST/namzdf_tmx_new/ nn_zpyc, ln_mevar, ln_tsdiff !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('zdf_tmx_init') ! REWIND( numnam_ref ) ! Namelist namzdf_tmx in reference namelist : Wave-driven mixing READ ( numnam_ref, namzdf_tmx_new, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in reference namelist', lwp ) ! REWIND( numnam_cfg ) ! Namelist namzdf_tmx in configuration namelist : Wave-driven mixing READ ( numnam_cfg, namzdf_tmx_new, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_tmx in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namzdf_tmx_new ) ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_tmx_init : internal wave-driven mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_tmx_new : set wave-driven mixing parameters' WRITE(numout,*) ' Pycnocline-intensified diss. scales as N (=1) or N^2 (=2) = ', nn_zpyc WRITE(numout,*) ' Variable (T) or constant (F) mixing efficiency = ', ln_mevar WRITE(numout,*) ' Differential internal wave-driven mixing (T) or not (F) = ', ln_tsdiff ENDIF ! The new wave-driven mixing parameterization elevates avt and avm in the interior, and ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6). avmb(:) = 1.4e-6_wp ! viscous molecular value avtb(:) = 1.e-10_wp ! very small diffusive minimum (background avt is specified in zdf_tmx) avtb_2d(:,:) = 1.e0_wp ! uniform IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) ' Force the background value applied to avm & avt in TKE to be everywhere ', & & 'the viscous molecular value & a very small diffusive value, resp.' ENDIF IF( .NOT.lk_zdfddm ) CALL ctl_stop( 'STOP', 'zdf_tmx_init_new : key_zdftmx_new requires key_zdfddm' ) ! ! allocate tmx arrays IF( zdf_tmx_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_tmx_init : unable to allocate tmx arrays' ) ! ! ! read necessary fields CALL iom_open('mixing_power_bot',inum) ! energy flux for high-mode wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', ebot_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('mixing_power_pyc',inum) ! energy flux for pynocline-intensified wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', epyc_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('mixing_power_cri',inum) ! energy flux for critical slope wave breaking [W/m2] CALL iom_get (inum, jpdom_data, 'field', ecri_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('decay_scale_bot',inum) ! spatially variable decay scale for high-mode wave breaking [m] CALL iom_get (inum, jpdom_data, 'field', hbot_tmx, 1 ) CALL iom_close(inum) ! CALL iom_open('decay_scale_cri',inum) ! spatially variable decay scale for critical slope wave breaking [m] CALL iom_get (inum, jpdom_data, 'field', hcri_tmx, 1 ) CALL iom_close(inum) ebot_tmx(:,:) = ebot_tmx(:,:) * ssmask(:,:) epyc_tmx(:,:) = epyc_tmx(:,:) * ssmask(:,:) ecri_tmx(:,:) = ecri_tmx(:,:) * ssmask(:,:) ! Set once for all to zero the first and last vertical levels of appropriate variables emix_tmx (:,:, 1 ) = 0._wp emix_tmx (:,:,jpk) = 0._wp zav_ratio(:,:, 1 ) = 0._wp zav_ratio(:,:,jpk) = 0._wp zav_wave (:,:, 1 ) = 0._wp zav_wave (:,:,jpk) = 0._wp zbot = glob_sum( e1e2t(:,:) * ebot_tmx(:,:) ) zpyc = glob_sum( e1e2t(:,:) * epyc_tmx(:,:) ) zcri = glob_sum( e1e2t(:,:) * ecri_tmx(:,:) ) IF(lwp) THEN WRITE(numout,*) ' High-mode wave-breaking energy: ', zbot * 1.e-12_wp, 'TW' WRITE(numout,*) ' Pycnocline-intensifed wave-breaking energy: ', zpyc * 1.e-12_wp, 'TW' WRITE(numout,*) ' Critical slope wave-breaking energy: ', zcri * 1.e-12_wp, 'TW' ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('zdf_tmx_init') ! END SUBROUTINE zdf_tmx_init #else !!---------------------------------------------------------------------- !! Default option Dummy module NO Tidal MiXing !!---------------------------------------------------------------------- LOGICAL, PUBLIC, PARAMETER :: lk_zdftmx = .FALSE. !: tidal mixing flag CONTAINS SUBROUTINE zdf_tmx_init ! Dummy routine WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?' END SUBROUTINE zdf_tmx_init SUBROUTINE zdf_tmx( kt ) ! Dummy routine WRITE(*,*) 'zdf_tmx: You should not have seen this print! error?', kt END SUBROUTINE zdf_tmx #endif !!====================================================================== END MODULE zdftmx