123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- MODULE divcur
- !!==============================================================================
- !! *** MODULE divcur ***
- !! Ocean diagnostic variable : horizontal divergence and relative vorticity
- !!==============================================================================
- !! History : OPA ! 1987-06 (P. Andrich, D. L Hostis) Original code
- !! 4.0 ! 1991-11 (G. Madec)
- !! 6.0 ! 1993-03 (M. Guyon) symetrical conditions
- !! 7.0 ! 1996-01 (G. Madec) s-coordinates
- !! 8.0 ! 1997-06 (G. Madec) lateral boundary cond., lbc
- !! 8.1 ! 1997-08 (J.M. Molines) Open boundaries
- !! 8.2 ! 2000-03 (G. Madec) no slip accurate
- !! NEMO 1.0 ! 2002-09 (G. Madec, E. Durand) Free form, F90
- !! - ! 2005-01 (J. Chanut) Unstructured open boundaries
- !! - ! 2003-08 (G. Madec) merged of cur and div, free form, F90
- !! - ! 2005-01 (J. Chanut, A. Sellar) unstructured open boundaries
- !! 3.3 ! 2010-09 (D.Storkey and E.O'Dea) bug fixes for BDY module
- !! - ! 2010-10 (R. Furner, G. Madec) runoff and cla added directly here
- !! 3.6 ! 2014-11 (P. Mathiot) isf added directly here
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! div_cur : Compute the horizontal divergence and relative
- !! vorticity fields
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE sbc_oce, ONLY : ln_rnf, nn_isf ! surface boundary condition: ocean
- USE sbcrnf ! river runoff
- USE sbcisf ! ice shelf
- USE cla ! cross land advection (cla_div routine)
- USE in_out_manager ! I/O manager
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE lib_mpp ! MPP library
- USE wrk_nemo ! Memory Allocation
- USE timing ! Timing
- IMPLICIT NONE
- PRIVATE
- PUBLIC div_cur ! routine called by step.F90 and istate.F90
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: divcur.F90 5516 2015-06-30 12:41:44Z smasson $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- #if defined key_noslip_accurate
- !!----------------------------------------------------------------------
- !! 'key_noslip_accurate' 2nd order interior + 4th order at the coast
- !!----------------------------------------------------------------------
- SUBROUTINE div_cur( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE div_cur ***
- !!
- !! ** Purpose : compute the horizontal divergence and the relative
- !! vorticity at before and now time-step
- !!
- !! ** Method : I. divergence :
- !! - save the divergence computed at the previous time-step
- !! (note that the Asselin filter has not been applied on hdivb)
- !! - compute the now divergence given by :
- !! hdivn = 1/(e1t*e2t*e3t) ( di[e2u*e3u un] + dj[e1v*e3v vn] )
- !! correct hdiv with runoff inflow (div_rnf), ice shelf melting (div_isf)
- !! and cross land flow (div_cla)
- !! II. vorticity :
- !! - save the curl computed at the previous time-step
- !! rotb = rotn
- !! (note that the Asselin time filter has not been applied to rotb)
- !! - compute the now curl in tensorial formalism:
- !! rotn = 1/(e1f*e2f) ( di[e2v vn] - dj[e1u un] )
- !! - Coastal boundary condition: 'key_noslip_accurate' defined,
- !! the no-slip boundary condition is computed using Schchepetkin
- !! and O'Brien (1996) scheme (i.e. 4th order at the coast).
- !! For example, along east coast, the one-sided finite difference
- !! approximation used for di[v] is:
- !! di[e2v vn] = 1/(e1f*e2f) * ( (e2v vn)(i) + (e2v vn)(i-1) + (e2v vn)(i-2) )
- !!
- !! ** Action : - update hdivb, hdivn, the before & now hor. divergence
- !! - update rotb , rotn , the before & now rel. vorticity
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time-step index
- !
- INTEGER :: ji, jj, jk, jl ! dummy loop indices
- INTEGER :: ii, ij, ijt, iju, ierr ! local integer
- REAL(wp) :: zraur, zdep ! local scalar
- REAL(wp), POINTER, DIMENSION(:,:) :: zwu ! specific 2D workspace
- REAL(wp), POINTER, DIMENSION(:,:) :: zwv ! specific 2D workspace
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('div_cur')
- !
- CALL wrk_alloc( jpi , jpj+2, zwu )
- CALL wrk_alloc( jpi+2, jpj , zwv )
- !
- IF( kt == nit000 ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'div_cur : horizontal velocity divergence and relative vorticity'
- IF(lwp) WRITE(numout,*) '~~~~~~~ NOT optimal for auto-tasking case'
- ENDIF
- ! ! ===============
- DO jk = 1, jpkm1 ! Horizontal slab
- ! ! ===============
- !
- hdivb(:,:,jk) = hdivn(:,:,jk) ! time swap of div arrays
- rotb (:,:,jk) = rotn (:,:,jk) ! time swap of rot arrays
- !
- ! ! --------
- ! Horizontal divergence ! div
- ! ! --------
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- hdivn(ji,jj,jk) = &
- ( e2u(ji,jj)*fse3u(ji,jj,jk) * un(ji,jj,jk) - e2u(ji-1,jj )*fse3u(ji-1,jj ,jk) * un(ji-1,jj ,jk) &
- + e1v(ji,jj)*fse3v(ji,jj,jk) * vn(ji,jj,jk) - e1v(ji ,jj-1)*fse3v(ji ,jj-1,jk) * vn(ji ,jj-1,jk) ) &
- / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) )
- END DO
- END DO
- IF( .NOT. AGRIF_Root() ) THEN
- IF ((nbondi == 1).OR.(nbondi == 2)) hdivn(nlci-1 , : ,jk) = 0.e0 ! east
- IF ((nbondi == -1).OR.(nbondi == 2)) hdivn(2 , : ,jk) = 0.e0 ! west
- IF ((nbondj == 1).OR.(nbondj == 2)) hdivn(: ,nlcj-1 ,jk) = 0.e0 ! north
- IF ((nbondj == -1).OR.(nbondj == 2)) hdivn(: ,2 ,jk) = 0.e0 ! south
- ENDIF
- ! ! --------
- ! relative vorticity ! rot
- ! ! --------
- ! contravariant velocity (extended for lateral b.c.)
- ! inside the model domain
- DO jj = 1, jpj
- DO ji = 1, jpi
- zwu(ji,jj) = e1u(ji,jj) * un(ji,jj,jk)
- zwv(ji,jj) = e2v(ji,jj) * vn(ji,jj,jk)
- END DO
- END DO
-
- ! East-West boundary conditions
- IF( nperio == 1 .OR. nperio == 4 .OR. nperio == 6) THEN
- zwv( 0 ,:) = zwv(jpi-2,:)
- zwv( -1 ,:) = zwv(jpi-3,:)
- zwv(jpi+1,:) = zwv( 3 ,:)
- zwv(jpi+2,:) = zwv( 4 ,:)
- ELSE
- zwv( 0 ,:) = 0.e0
- zwv( -1 ,:) = 0.e0
- zwv(jpi+1,:) = 0.e0
- zwv(jpi+2,:) = 0.e0
- ENDIF
- ! North-South boundary conditions
- IF( nperio == 3 .OR. nperio == 4 ) THEN
- ! north fold ( Grid defined with a T-point pivot) ORCA 2 degre
- zwu(jpi,jpj+1) = 0.e0
- zwu(jpi,jpj+2) = 0.e0
- DO ji = 1, jpi-1
- iju = jpi - ji + 1
- zwu(ji,jpj+1) = - zwu(iju,jpj-3)
- zwu(ji,jpj+2) = - zwu(iju,jpj-4)
- END DO
- ELSEIF( nperio == 5 .OR. nperio == 6 ) THEN
- ! north fold ( Grid defined with a F-point pivot) ORCA 0.5 degre\
- zwu(jpi,jpj+1) = 0.e0
- zwu(jpi,jpj+2) = 0.e0
- DO ji = 1, jpi-1
- iju = jpi - ji
- zwu(ji,jpj ) = - zwu(iju,jpj-1)
- zwu(ji,jpj+1) = - zwu(iju,jpj-2)
- zwu(ji,jpj+2) = - zwu(iju,jpj-3)
- END DO
- DO ji = -1, jpi+2
- ijt = jpi - ji + 1
- zwv(ji,jpj) = - zwv(ijt,jpj-2)
- END DO
- DO ji = jpi/2+1, jpi+2
- ijt = jpi - ji + 1
- zwv(ji,jpjm1) = - zwv(ijt,jpjm1)
- END DO
- ELSE
- ! closed
- zwu(:,jpj+1) = 0.e0
- zwu(:,jpj+2) = 0.e0
- ENDIF
- ! relative vorticity (vertical component of the velocity curl)
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- rotn(ji,jj,jk) = ( zwv(ji+1,jj ) - zwv(ji,jj) &
- & - zwu(ji ,jj+1) + zwu(ji,jj) ) * fmask(ji,jj,jk) / ( e1f(ji,jj)*e2f(ji,jj) )
- END DO
- END DO
- ! second order accurate scheme along straight coast
- DO jl = 1, npcoa(1,jk)
- ii = nicoa(jl,1,jk)
- ij = njcoa(jl,1,jk)
- rotn(ii,ij,jk) = 1. / ( e1f(ii,ij) * e2f(ii,ij) ) &
- * ( + 4. * zwv(ii+1,ij) - zwv(ii+2,ij) + 0.2 * zwv(ii+3,ij) )
- END DO
- DO jl = 1, npcoa(2,jk)
- ii = nicoa(jl,2,jk)
- ij = njcoa(jl,2,jk)
- rotn(ii,ij,jk) = 1./(e1f(ii,ij)*e2f(ii,ij)) &
- *(-4.*zwv(ii,ij)+zwv(ii-1,ij)-0.2*zwv(ii-2,ij))
- END DO
- DO jl = 1, npcoa(3,jk)
- ii = nicoa(jl,3,jk)
- ij = njcoa(jl,3,jk)
- rotn(ii,ij,jk) = -1. / ( e1f(ii,ij)*e2f(ii,ij) ) &
- * ( +4. * zwu(ii,ij+1) - zwu(ii,ij+2) + 0.2 * zwu(ii,ij+3) )
- END DO
- DO jl = 1, npcoa(4,jk)
- ii = nicoa(jl,4,jk)
- ij = njcoa(jl,4,jk)
- rotn(ii,ij,jk) = -1. / ( e1f(ii,ij)*e2f(ii,ij) ) &
- * ( -4. * zwu(ii,ij) + zwu(ii,ij-1) - 0.2 * zwu(ii,ij-2) )
- END DO
- ! ! ===============
- END DO ! End of slab
- ! ! ===============
- IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field)
- IF( ln_divisf .AND. (nn_isf /= 0) ) CALL sbc_isf_div( hdivn ) ! ice shelf (update hdivn field)
- IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (Update Hor. divergence)
-
- ! 4. Lateral boundary conditions on hdivn and rotn
- ! ---------------------------------=======---======
- CALL lbc_lnk( hdivn, 'T', 1. ) ; CALL lbc_lnk( rotn , 'F', 1. ) ! lateral boundary cond. (no sign change)
- !
- CALL wrk_dealloc( jpi , jpj+2, zwu )
- CALL wrk_dealloc( jpi+2, jpj , zwv )
- !
- IF( nn_timing == 1 ) CALL timing_stop('div_cur')
- !
- END SUBROUTINE div_cur
-
- #else
- !!----------------------------------------------------------------------
- !! Default option 2nd order centered schemes
- !!----------------------------------------------------------------------
- SUBROUTINE div_cur( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE div_cur ***
- !!
- !! ** Purpose : compute the horizontal divergence and the relative
- !! vorticity at before and now time-step
- !!
- !! ** Method : - Divergence:
- !! - save the divergence computed at the previous time-step
- !! (note that the Asselin filter has not been applied on hdivb)
- !! - compute the now divergence given by :
- !! hdivn = 1/(e1t*e2t*e3t) ( di[e2u*e3u un] + dj[e1v*e3v vn] )
- !! correct hdiv with runoff inflow (div_rnf) and cross land flow (div_cla)
- !! - Relavtive Vorticity :
- !! - save the curl computed at the previous time-step (rotb = rotn)
- !! (note that the Asselin time filter has not been applied to rotb)
- !! - compute the now curl in tensorial formalism:
- !! rotn = 1/(e1f*e2f) ( di[e2v vn] - dj[e1u un] )
- !! Note: Coastal boundary condition: lateral friction set through
- !! the value of fmask along the coast (see dommsk.F90) and shlat
- !! (namelist parameter)
- !!
- !! ** Action : - update hdivb, hdivn, the before & now hor. divergence
- !! - update rotb , rotn , the before & now rel. vorticity
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time-step index
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zraur, zdep ! local scalars
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('div_cur')
- !
- IF( kt == nit000 ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'div_cur : horizontal velocity divergence and'
- IF(lwp) WRITE(numout,*) '~~~~~~~ relative vorticity'
- ENDIF
- ! ! ===============
- DO jk = 1, jpkm1 ! Horizontal slab
- ! ! ===============
- !
- hdivb(:,:,jk) = hdivn(:,:,jk) ! time swap of div arrays
- rotb (:,:,jk) = rotn (:,:,jk) ! time swap of rot arrays
- !
- ! ! --------
- ! Horizontal divergence ! div
- ! ! --------
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- hdivn(ji,jj,jk) = &
- ( e2u(ji,jj)*fse3u(ji,jj,jk) * un(ji,jj,jk) - e2u(ji-1,jj)*fse3u(ji-1,jj,jk) * un(ji-1,jj,jk) &
- + e1v(ji,jj)*fse3v(ji,jj,jk) * vn(ji,jj,jk) - e1v(ji,jj-1)*fse3v(ji,jj-1,jk) * vn(ji,jj-1,jk) ) &
- / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) )
- END DO
- END DO
- IF( .NOT. AGRIF_Root() ) THEN
- IF ((nbondi == 1).OR.(nbondi == 2)) hdivn(nlci-1 , : ,jk) = 0.e0 ! east
- IF ((nbondi == -1).OR.(nbondi == 2)) hdivn(2 , : ,jk) = 0.e0 ! west
- IF ((nbondj == 1).OR.(nbondj == 2)) hdivn(: ,nlcj-1 ,jk) = 0.e0 ! north
- IF ((nbondj == -1).OR.(nbondj == 2)) hdivn(: ,2 ,jk) = 0.e0 ! south
- ENDIF
- ! ! --------
- ! relative vorticity ! rot
- ! ! --------
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- rotn(ji,jj,jk) = ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) &
- & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) &
- & * fmask(ji,jj,jk) / ( e1f(ji,jj) * e2f(ji,jj) )
- END DO
- END DO
- ! ! ===============
- END DO ! End of slab
- ! ! ===============
- IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field)
- IF( ln_divisf .AND. (nn_isf .GT. 0) ) CALL sbc_isf_div( hdivn ) ! ice shelf (update hdivn field)
- IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field)
- !
- CALL lbc_lnk( hdivn, 'T', 1. ) ; CALL lbc_lnk( rotn , 'F', 1. ) ! lateral boundary cond. (no sign change)
- !
- IF( nn_timing == 1 ) CALL timing_stop('div_cur')
- !
- END SUBROUTINE div_cur
-
- #endif
- !!======================================================================
- END MODULE divcur
|