MODULE divcur !!============================================================================== !! *** MODULE divcur *** !! Ocean diagnostic variable : horizontal divergence and relative vorticity !!============================================================================== !! History : OPA ! 1987-06 (P. Andrich, D. L Hostis) Original code !! 4.0 ! 1991-11 (G. Madec) !! 6.0 ! 1993-03 (M. Guyon) symetrical conditions !! 7.0 ! 1996-01 (G. Madec) s-coordinates !! 8.0 ! 1997-06 (G. Madec) lateral boundary cond., lbc !! 8.1 ! 1997-08 (J.M. Molines) Open boundaries !! 8.2 ! 2000-03 (G. Madec) no slip accurate !! NEMO 1.0 ! 2002-09 (G. Madec, E. Durand) Free form, F90 !! - ! 2005-01 (J. Chanut) Unstructured open boundaries !! - ! 2003-08 (G. Madec) merged of cur and div, free form, F90 !! - ! 2005-01 (J. Chanut, A. Sellar) unstructured open boundaries !! 3.3 ! 2010-09 (D.Storkey and E.O'Dea) bug fixes for BDY module !! - ! 2010-10 (R. Furner, G. Madec) runoff and cla added directly here !! 3.6 ! 2014-11 (P. Mathiot) isf added directly here !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! div_cur : Compute the horizontal divergence and relative !! vorticity fields !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce, ONLY : ln_rnf, nn_isf ! surface boundary condition: ocean USE sbcrnf ! river runoff USE sbcisf ! ice shelf USE cla ! cross land advection (cla_div routine) USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC div_cur ! routine called by step.F90 and istate.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id: divcur.F90 5516 2015-06-30 12:41:44Z smasson $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS #if defined key_noslip_accurate !!---------------------------------------------------------------------- !! 'key_noslip_accurate' 2nd order interior + 4th order at the coast !!---------------------------------------------------------------------- SUBROUTINE div_cur( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE div_cur *** !! !! ** Purpose : compute the horizontal divergence and the relative !! vorticity at before and now time-step !! !! ** Method : I. divergence : !! - save the divergence computed at the previous time-step !! (note that the Asselin filter has not been applied on hdivb) !! - compute the now divergence given by : !! hdivn = 1/(e1t*e2t*e3t) ( di[e2u*e3u un] + dj[e1v*e3v vn] ) !! correct hdiv with runoff inflow (div_rnf), ice shelf melting (div_isf) !! and cross land flow (div_cla) !! II. vorticity : !! - save the curl computed at the previous time-step !! rotb = rotn !! (note that the Asselin time filter has not been applied to rotb) !! - compute the now curl in tensorial formalism: !! rotn = 1/(e1f*e2f) ( di[e2v vn] - dj[e1u un] ) !! - Coastal boundary condition: 'key_noslip_accurate' defined, !! the no-slip boundary condition is computed using Schchepetkin !! and O'Brien (1996) scheme (i.e. 4th order at the coast). !! For example, along east coast, the one-sided finite difference !! approximation used for di[v] is: !! di[e2v vn] = 1/(e1f*e2f) * ( (e2v vn)(i) + (e2v vn)(i-1) + (e2v vn)(i-2) ) !! !! ** Action : - update hdivb, hdivn, the before & now hor. divergence !! - update rotb , rotn , the before & now rel. vorticity !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index ! INTEGER :: ji, jj, jk, jl ! dummy loop indices INTEGER :: ii, ij, ijt, iju, ierr ! local integer REAL(wp) :: zraur, zdep ! local scalar REAL(wp), POINTER, DIMENSION(:,:) :: zwu ! specific 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zwv ! specific 2D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('div_cur') ! CALL wrk_alloc( jpi , jpj+2, zwu ) CALL wrk_alloc( jpi+2, jpj , zwv ) ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'div_cur : horizontal velocity divergence and relative vorticity' IF(lwp) WRITE(numout,*) '~~~~~~~ NOT optimal for auto-tasking case' ENDIF ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! hdivb(:,:,jk) = hdivn(:,:,jk) ! time swap of div arrays rotb (:,:,jk) = rotn (:,:,jk) ! time swap of rot arrays ! ! ! -------- ! Horizontal divergence ! div ! ! -------- DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. hdivn(ji,jj,jk) = & ( e2u(ji,jj)*fse3u(ji,jj,jk) * un(ji,jj,jk) - e2u(ji-1,jj )*fse3u(ji-1,jj ,jk) * un(ji-1,jj ,jk) & + e1v(ji,jj)*fse3v(ji,jj,jk) * vn(ji,jj,jk) - e1v(ji ,jj-1)*fse3v(ji ,jj-1,jk) * vn(ji ,jj-1,jk) ) & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) END DO END DO IF( .NOT. AGRIF_Root() ) THEN IF ((nbondi == 1).OR.(nbondi == 2)) hdivn(nlci-1 , : ,jk) = 0.e0 ! east IF ((nbondi == -1).OR.(nbondi == 2)) hdivn(2 , : ,jk) = 0.e0 ! west IF ((nbondj == 1).OR.(nbondj == 2)) hdivn(: ,nlcj-1 ,jk) = 0.e0 ! north IF ((nbondj == -1).OR.(nbondj == 2)) hdivn(: ,2 ,jk) = 0.e0 ! south ENDIF ! ! -------- ! relative vorticity ! rot ! ! -------- ! contravariant velocity (extended for lateral b.c.) ! inside the model domain DO jj = 1, jpj DO ji = 1, jpi zwu(ji,jj) = e1u(ji,jj) * un(ji,jj,jk) zwv(ji,jj) = e2v(ji,jj) * vn(ji,jj,jk) END DO END DO ! East-West boundary conditions IF( nperio == 1 .OR. nperio == 4 .OR. nperio == 6) THEN zwv( 0 ,:) = zwv(jpi-2,:) zwv( -1 ,:) = zwv(jpi-3,:) zwv(jpi+1,:) = zwv( 3 ,:) zwv(jpi+2,:) = zwv( 4 ,:) ELSE zwv( 0 ,:) = 0.e0 zwv( -1 ,:) = 0.e0 zwv(jpi+1,:) = 0.e0 zwv(jpi+2,:) = 0.e0 ENDIF ! North-South boundary conditions IF( nperio == 3 .OR. nperio == 4 ) THEN ! north fold ( Grid defined with a T-point pivot) ORCA 2 degre zwu(jpi,jpj+1) = 0.e0 zwu(jpi,jpj+2) = 0.e0 DO ji = 1, jpi-1 iju = jpi - ji + 1 zwu(ji,jpj+1) = - zwu(iju,jpj-3) zwu(ji,jpj+2) = - zwu(iju,jpj-4) END DO ELSEIF( nperio == 5 .OR. nperio == 6 ) THEN ! north fold ( Grid defined with a F-point pivot) ORCA 0.5 degre\ zwu(jpi,jpj+1) = 0.e0 zwu(jpi,jpj+2) = 0.e0 DO ji = 1, jpi-1 iju = jpi - ji zwu(ji,jpj ) = - zwu(iju,jpj-1) zwu(ji,jpj+1) = - zwu(iju,jpj-2) zwu(ji,jpj+2) = - zwu(iju,jpj-3) END DO DO ji = -1, jpi+2 ijt = jpi - ji + 1 zwv(ji,jpj) = - zwv(ijt,jpj-2) END DO DO ji = jpi/2+1, jpi+2 ijt = jpi - ji + 1 zwv(ji,jpjm1) = - zwv(ijt,jpjm1) END DO ELSE ! closed zwu(:,jpj+1) = 0.e0 zwu(:,jpj+2) = 0.e0 ENDIF ! relative vorticity (vertical component of the velocity curl) DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. rotn(ji,jj,jk) = ( zwv(ji+1,jj ) - zwv(ji,jj) & & - zwu(ji ,jj+1) + zwu(ji,jj) ) * fmask(ji,jj,jk) / ( e1f(ji,jj)*e2f(ji,jj) ) END DO END DO ! second order accurate scheme along straight coast DO jl = 1, npcoa(1,jk) ii = nicoa(jl,1,jk) ij = njcoa(jl,1,jk) rotn(ii,ij,jk) = 1. / ( e1f(ii,ij) * e2f(ii,ij) ) & * ( + 4. * zwv(ii+1,ij) - zwv(ii+2,ij) + 0.2 * zwv(ii+3,ij) ) END DO DO jl = 1, npcoa(2,jk) ii = nicoa(jl,2,jk) ij = njcoa(jl,2,jk) rotn(ii,ij,jk) = 1./(e1f(ii,ij)*e2f(ii,ij)) & *(-4.*zwv(ii,ij)+zwv(ii-1,ij)-0.2*zwv(ii-2,ij)) END DO DO jl = 1, npcoa(3,jk) ii = nicoa(jl,3,jk) ij = njcoa(jl,3,jk) rotn(ii,ij,jk) = -1. / ( e1f(ii,ij)*e2f(ii,ij) ) & * ( +4. * zwu(ii,ij+1) - zwu(ii,ij+2) + 0.2 * zwu(ii,ij+3) ) END DO DO jl = 1, npcoa(4,jk) ii = nicoa(jl,4,jk) ij = njcoa(jl,4,jk) rotn(ii,ij,jk) = -1. / ( e1f(ii,ij)*e2f(ii,ij) ) & * ( -4. * zwu(ii,ij) + zwu(ii,ij-1) - 0.2 * zwu(ii,ij-2) ) END DO ! ! =============== END DO ! End of slab ! ! =============== IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) IF( ln_divisf .AND. (nn_isf /= 0) ) CALL sbc_isf_div( hdivn ) ! ice shelf (update hdivn field) IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (Update Hor. divergence) ! 4. Lateral boundary conditions on hdivn and rotn ! ---------------------------------=======---====== CALL lbc_lnk( hdivn, 'T', 1. ) ; CALL lbc_lnk( rotn , 'F', 1. ) ! lateral boundary cond. (no sign change) ! CALL wrk_dealloc( jpi , jpj+2, zwu ) CALL wrk_dealloc( jpi+2, jpj , zwv ) ! IF( nn_timing == 1 ) CALL timing_stop('div_cur') ! END SUBROUTINE div_cur #else !!---------------------------------------------------------------------- !! Default option 2nd order centered schemes !!---------------------------------------------------------------------- SUBROUTINE div_cur( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE div_cur *** !! !! ** Purpose : compute the horizontal divergence and the relative !! vorticity at before and now time-step !! !! ** Method : - Divergence: !! - save the divergence computed at the previous time-step !! (note that the Asselin filter has not been applied on hdivb) !! - compute the now divergence given by : !! hdivn = 1/(e1t*e2t*e3t) ( di[e2u*e3u un] + dj[e1v*e3v vn] ) !! correct hdiv with runoff inflow (div_rnf) and cross land flow (div_cla) !! - Relavtive Vorticity : !! - save the curl computed at the previous time-step (rotb = rotn) !! (note that the Asselin time filter has not been applied to rotb) !! - compute the now curl in tensorial formalism: !! rotn = 1/(e1f*e2f) ( di[e2v vn] - dj[e1u un] ) !! Note: Coastal boundary condition: lateral friction set through !! the value of fmask along the coast (see dommsk.F90) and shlat !! (namelist parameter) !! !! ** Action : - update hdivb, hdivn, the before & now hor. divergence !! - update rotb , rotn , the before & now rel. vorticity !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zraur, zdep ! local scalars !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('div_cur') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'div_cur : horizontal velocity divergence and' IF(lwp) WRITE(numout,*) '~~~~~~~ relative vorticity' ENDIF ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! hdivb(:,:,jk) = hdivn(:,:,jk) ! time swap of div arrays rotb (:,:,jk) = rotn (:,:,jk) ! time swap of rot arrays ! ! ! -------- ! Horizontal divergence ! div ! ! -------- DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. hdivn(ji,jj,jk) = & ( e2u(ji,jj)*fse3u(ji,jj,jk) * un(ji,jj,jk) - e2u(ji-1,jj)*fse3u(ji-1,jj,jk) * un(ji-1,jj,jk) & + e1v(ji,jj)*fse3v(ji,jj,jk) * vn(ji,jj,jk) - e1v(ji,jj-1)*fse3v(ji,jj-1,jk) * vn(ji,jj-1,jk) ) & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) END DO END DO IF( .NOT. AGRIF_Root() ) THEN IF ((nbondi == 1).OR.(nbondi == 2)) hdivn(nlci-1 , : ,jk) = 0.e0 ! east IF ((nbondi == -1).OR.(nbondi == 2)) hdivn(2 , : ,jk) = 0.e0 ! west IF ((nbondj == 1).OR.(nbondj == 2)) hdivn(: ,nlcj-1 ,jk) = 0.e0 ! north IF ((nbondj == -1).OR.(nbondj == 2)) hdivn(: ,2 ,jk) = 0.e0 ! south ENDIF ! ! -------- ! relative vorticity ! rot ! ! -------- DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. rotn(ji,jj,jk) = ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) & & * fmask(ji,jj,jk) / ( e1f(ji,jj) * e2f(ji,jj) ) END DO END DO ! ! =============== END DO ! End of slab ! ! =============== IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) IF( ln_divisf .AND. (nn_isf .GT. 0) ) CALL sbc_isf_div( hdivn ) ! ice shelf (update hdivn field) IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field) ! CALL lbc_lnk( hdivn, 'T', 1. ) ; CALL lbc_lnk( rotn , 'F', 1. ) ! lateral boundary cond. (no sign change) ! IF( nn_timing == 1 ) CALL timing_stop('div_cur') ! END SUBROUTINE div_cur #endif !!====================================================================== END MODULE divcur