ocean.tex 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. \chapter{Slab Ocean Model}
  2. The slab ocean model consists of a prognostic equation at each ocean
  3. point for the oceanic mixed-layer temperature $T_{mix}$.
  4. The prognostic equation for $T_{mix}$ is given by
  5. \begin{equation}
  6. \frac{dT_{mix}}{dt} = \frac{Q_A+Q_O}{\rho_w c_{p_w} h_{mix}}
  7. \end{equation}
  8. where $\rho_w$ (=1030kg/m$^3$) is the density and $c_{pw}$ (=4180J/kg/K)
  9. the heat capacity of ocean water.
  10. $h_{mix}$ is a prescribed ocean mixed layer depth (default = 50m).
  11. $Q_A$ denotes the net atmospheric heat flux into the ocean
  12. which consists of the net solar and long wave radiation
  13. and the sensible and latent heat fluxes.
  14. The ocean mixed layer heat flux ($Q_O$) represents the oceanic transport and
  15. the deep water exchange. Commonly $Q_O$ is prescribed from monthly mean data
  16. which are obtained from climatologies of the uncoupled model by computing
  17. \begin{equation}
  18. Q_{O} = <Q_{A}^{u}> - <\frac {dT_{mix}}{dt} \rho_w c_{p_w} h_{mix}>
  19. \end{equation}
  20. where $<Q_{A}^{u}>$ and $<dT_{mix}/{dt}>$
  21. are the climatological (monthly)
  22. averages of the net
  23. atmospheric heat flux and the mixed layer temperature tendency,
  24. respectively, both taken from the uncoupled (i.e.~prescribed SST) simulation.
  25. In addition to a prescribed oceanic heat transport, horizontal and
  26. vertical diffusion can be switched on optionally.
  27. In the case of vertical diffusion
  28. a user defined number $n$ of layers with prescribed thicknesses $h_{mix}^{n}$
  29. are coupled via diffusion
  30. \begin{equation}
  31. \frac{\partial T_{mix}}{\partial t} = \frac{\partial}{\partial z} \left( K_v
  32. \frac{\partial T_{mix}}{\partial z} \right)
  33. \end{equation}
  34. with the (level depentend) diffusion coefficient $K_v$ (set to a default value
  35. of 0.0001m$^2$/s for all levels). The equation is solved using a
  36. back-substitution method.
  37. Horizontal diffusion of $T_{mix}$ is given by
  38. \begin{equation}
  39. \frac{\partial T_{mix}}{\partial t} = K_h {\nabla}^2 T_{mix}
  40. \end{equation}
  41. for each level. The default value of $K_h$ is 1000m$^2$/s.
  42. %%% Local Variables:
  43. %%% mode: latex
  44. %%% TeX-master: t
  45. %%% End: