123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- % \section{Primitive Equation Model of the Atmosphere \label{PUMA}}
- The primitive equations, which represent the dynamical core of the
- atmospheric model,
- consist of the conservation of momentum and mass, the first law of
- thermodynamics and the equation of state, simplified by the hydrostatic
- approximation.
- \section{A dimensionless set of differential equations \label{EQ}}
- The prognostic equations for the horizontal velocities are
- transformed into equations of the vertical component of the vorticity $\zeta$
- and the divergence $D$.
- A vertical coordinate system where the lower boundary
- exactly coincides with a coordinate surface is defined
- by $\sigma$ (the pressure normalized by
- the surface pressure).
- Latitude $\varphi$ and longitude $\lambda$ represent the horizontal
- coordinates and the poleward convergence of the meridians is explicitly
- introduced re-writing the zonal ($u$) and meridional ($\nu$) velocities:
- $U= u \cos \varphi$ , $V= \nu \cos \varphi$ and $\mu = \sin \varphi$.
- The implicitly treated gravity wave terms
- are linearized about a reference profile $T_0$.
- Therefore, prognostic equation for
- temperature deviations $T'=T-T_0$ are derived;
- we use a constant reference temperature $T_0=250K$ for all
- $\sigma$ levels.
- The turbulent flux divergences due to prior Reynolds averaging
- enter the dynamic and thermodynamic equations as parameterizations formally
- included in the terms: $P_\zeta , P_D , P_T$.\\
- A dimensionless set of differential equations is derived
- by scaling vorticity $\zeta$ and divergence $D$
- by angular velocity of the earth
- $\Omega$, pressure $p$ by a
- constant surface
- pressure $p_s$, temperatures $T$ and $T'$ by $a^2 \Omega^2 /R$ and
- the orography and geopotential $\psi$
- by $a^2 \Omega^2 / g$ ($g$ is the acceleration of gravity
- and $R$ the gas constant for dry air).
- The dimensionless primitive
- equations in the $(\lambda , \mu, \sigma)$-coordinates
- \cite{hoskins} are given by\\
- Conservation of momentum (vorticity and divergence equation)
- \begin{equation}
- {\displaystyle \frac{\partial \zeta + f}{\partial t} = \frac{1}{(1 - \mu^2)} \frac{\partial F_\nu}{\partial \lambda} - \frac{\partial F_u}{\partial \mu} + P_\zeta} \label{vort}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial D}{\partial t} = \frac{1}{(1 - \mu^2)} \frac{\partial F_u}{\partial \lambda} + \frac{\partial F_\nu}{\partial \mu} - \bigtriangledown^2 E - \bigtriangledown^2 (\phi + T_0 \ln p_s ) + P_D}\label{div}
- \end{equation}
- Hydrostatic approximation (using the equation of state)
- \begin{equation}
- {\displaystyle 0 = \frac{\partial \phi}{\partial \ln \sigma} + T} \label{hydroute}
- \end{equation}
- Conservation of mass (continuity equation)
- \begin{equation}
- {\displaystyle \frac{\partial \ln p_s}{\partial t}
- = - \int\limits_{0}^{1} A d \sigma}\label{konti}
- \end{equation}
- Thermodynamic equation
- \begin{equation}
- {\displaystyle \frac{\partial T'}{\partial t} = F_T - \dot{\sigma}
- \frac{\partial T}{\partial \sigma} + \kappa W T + \frac{J}{c_p} + P_{T}}
- \label{temp}
- \end{equation}
- with the notations\\
- ${\displaystyle F_u = ( \zeta + f ) V - \dot{\sigma} \frac{\partial U}{\partial \sigma} - T' \frac{\partial \ln p_s}{\partial \lambda}}$
- ${\displaystyle F_\nu = - (\zeta + f)U - \dot{\sigma} \frac{\partial V}{\partial\sigma} - (1 - \mu^2) T' \frac{\partial \ln p_s}{\partial \mu}}$
- ${\displaystyle F_T = - \frac{1}{(1 - \mu^2)} \frac{\partial (U T')}{\partial \lambda} - \frac{\partial (VT')}{\partial \mu} + D T'} $
- ${\displaystyle E = \frac{U^2 + V^2}{2(1 - \mu^2)}}$
- ${\displaystyle
- \dot {\sigma}= \sigma \int\limits_{0}^{1} A d \sigma
- - \int\limits_{0}^{\sigma} A d \sigma }$\\
- ${\displaystyle
- W= \frac {\omega} {p} =
- \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma} A d
- \sigma }$\\
- $A=D+\vec{V} \cdot \nabla \ln p_s
- = \frac{1}{p_s} \nabla \cdot p_s \vec{V}$.\\
- Here is $\dot{\sigma}$ the
- vertical velocity in the $\sigma$ system, $J$ the diabatic heating
- per unit mass and $E$
- the kinetic energy per unit mass.
- The streamfunction $\psi$ and the velocity potential $\chi$ represent the
- nondivergent and the irrotational part of the velocity field\\
- ${\displaystyle U = -(1-\mu^2) \frac{\partial \psi}{\partial \mu} + \frac{\partial \chi}{\partial \lambda}}$
- and
- ${\displaystyle V = \frac{\partial \psi}{\partial \lambda} + (1-\mu^2) \frac{\partial \chi}{\partial \mu}}$
- with $ \zeta = \nabla^2 \psi $
- and
- $ D = \nabla^2 \chi $.
- % \section{Moisture \label{Moist}}
- % ** Frank **
- \section{Mode splitting \label{Mode}}
- The fast gravity wave modes are linearized around
- a reference temperature profile $\vec{T_0}$.
- Now, the differential equations (\ref{vort}-\ref{temp}) can be separated into
- fast (linear) gravity modes and
- the slower non-linear terms ($N_D, N_p, N_T $).
- The linear terms of the equations contain the effect of the
- divergence (or the gravity waves) on
- the surface pressure tendency, the temperature tendency and the
- geopotential.
- A discussion of the impact of the reference profile
- on the stability of the semi-implicit numerical scheme is
- presented by \cite{simmons1978}.
- \begin{equation}
- {\displaystyle\frac{ \partial D }{\partial t}=
- { N_D} - \bigtriangledown^2 (\phi + T_0 \ln p_s)}\label{Mdiv}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial \phi}{\partial \ln \sigma} = - T}\label{Mhydro}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial \ln p_s}{\partial t}
- = N_p - \int\limits_{0}^{1} D d \sigma}\label{Mkonti}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial T'}{\partial t} = N_T-
- \dot {\sigma}_L
- \frac{\partial T_0}{\partial \sigma} + \kappa W_L T_0 } \label{Mtemp}
- \end{equation}\\
- with the non-linear terms\\
- ${\displaystyle
- {\displaystyle N_D = \frac{1}{(1 - \mu^2)} \frac{\partial F_u}{\partial \lambda} + \frac{F_\nu}{\partial \mu} - \bigtriangledown^2 E + P_D}
- }$
- ${\displaystyle
- {\displaystyle N_p
- = - \int\limits_{0}^{1} [A-D] d \sigma}
- }$
- ${\displaystyle
- {\displaystyle N_T = F_T
- - \dot{\sigma}_N \frac{\partial T_0}{\partial \sigma}
- - \dot{\sigma} \frac{\partial T'}{\partial \sigma}
- + \kappa W_N T_0 + \kappa W T'
- + \frac{J}{c_p} + P_{T}}
- }$\\
- and the notations\\
- ${\displaystyle
- \dot {\sigma}_L = \sigma \int\limits_{0}^{1} D d \sigma
- - \int\limits_{0}^{\sigma} D d \sigma }$\\
- ${\displaystyle
- \dot {\sigma}_N = \sigma \int\limits_{0}^{1} [A-D] d \sigma
- - \int\limits_{0}^{\sigma} [A-D] d \sigma }$\\
- ${\displaystyle
- W_L = - \frac{1}{\sigma} \int\limits_{0}^{\sigma} D d \sigma }$\\
- ${\displaystyle
- W_N =
- \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma}
- [A - D] d\sigma }$\\
- $A-D=\vec{V} \cdot \nabla \ln p_s$ \\
- ${\displaystyle
- \dot {\sigma}=\dot {\sigma_L} + \dot {\sigma_N}
- = \sigma \int\limits_{0}^{1} A d \sigma
- - \int\limits_{0}^{\sigma} A d \sigma }$\\
- ${\displaystyle
- W= W_L+W_N =
- \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma} A d
- \sigma }$\\
- %A combination of the linear terms, the matrix $ {\cal B} = {\cal L}_{\phi} {\cal L}_T + \vec{T}_0 \vec{L}_p = {\cal B}(\sigma , \kappa , \vec{T}_0)$ is constant in time.
- The index $L$ denote the linear and $N$ the non-linear part in
- the vertical advection ($\dot {\sigma} \frac{\partial T}{\partial \sigma}$)
- and the adiabatic
- heating or cooling ($\kappa W T$ with $W= \frac {\omega} {p}$).
- The non-linear terms are solve explicitly in the physical space (on the
- Gaussian grid; section \ref{Trans}) and the linear terms
- are calculated implicitly in the spectral space (for the spherical harmonics;
- see section \ref{Trans}).
- \section{Numerics \label{Num}}
- Solving the equations requires a suitable numerical representation of the
- spatial fields and their time change. A conventional approach is
- spectral representation in the horizontal using the
- transform method, finite differences in the vertical,
- and a semi-implicit time stepping.
-
- \subsection{Spectral Transform method \label{Trans}}
- The spectral method used in the computation of the nonlinear terms
- involves storing of a large number of so-called
- interaction coefficients, the number of which
- increases very fast with increasing resolution.
- The computing time and storing
- space requirements exceed all practical limits for high
- resolution models. Furthermore, there are problems to incorporate
- locally dependent physical
- processes, such as release of precipitation or a convective
- adjustment.
- Therefore, the equations are solved using the spectral
- transform method \cite{orszag1970, eliassen1970}.
- This method uses an auxiliary grid in the physical space
- where point values of the dependent variables are computed.\\
- The prognostic variables are represented in the horizontal by truncated series of spherical harmonics
- ($Q$ stands for $\zeta, D,T$ and $ \ln p_s$)
- \begin{equation}
- {\displaystyle Q(\lambda , \mu , \sigma , t) = \sum_{m = - M}^{M} \sum_{n =
- |m|}^{M} Q_n^m (\sigma , t) P_n^m (\mu) e ^{im\lambda} }
- \end{equation}
- \begin{center}
- $= Q_n^0 (\sigma , t) P_n^0 (\mu)
- + 2 \sum_{m = 1}^{M} \sum_{n =
- m}^{M} Q_n^m (\sigma , t) P_n^m (\mu) e ^{im\lambda}$
- \end{center}
- For each variable the spectral coefficient is defined by
- \begin{equation}
- {\displaystyle Q_n^m (\sigma , t) = \frac{1}{4 \pi} \int\limits_{-1}^{1}
- \int\limits_{0}^{2 \pi} Q(\lambda , \mu , \sigma , t) P_n^m (\mu) e^{ -i m
- \lambda} d \lambda d \mu}
- \end{equation}
- The spectral coefficients $Q_n^m (\sigma , t)$
- are obtained by Gaussian quadrature
- of the Fourier coefficients $F^m$ at each latitude $\varphi$ which
- are calculated by Fast Fourier
- Transformation with \\
- ${\displaystyle F^m (\mu, \sigma , t) = \frac{1}{4 \pi} \int\limits_{0}^{2 \pi} Q(\lambda , \mu , \sigma , t) e^{ -i m \lambda} d \lambda}$\\
- The auxiliary grid in the physical space (Gaussian grid)
- is defined by $M_g$ equally spaced longitudes
- and $J_g$ Gaussian latitudes with
- $M_g \ge 3 M + 1$ and $J_g \ge 0.5 (3 M + 1)$.
- \subsection{Vertical discretization}
- The prognostic variables vorticity, temperature and
- divergence are calculated at full levels and the vertical velocity at half
- levels. Therefore, the vertical advection for the level r is calculated
- ($Q$ stands for $\zeta, D,T$ and $ \ln p_s$)
- \begin{equation}
- {\displaystyle ( \dot{\sigma} \frac{\partial Q}{\partial \sigma} )
- \hat{=}
- \frac{1}{2\Delta \sigma_r } [\dot{\sigma}_{r + 0.5} (Q_{r+1} - Q_r) + \dot{\sigma}_{r - 0.5} (Q_r - Q_{r-1})]}
- \end{equation}
- For the hydrostatic approximation (3)
- an angular momentum
- conserving finite-difference scheme
- \cite{simmons1981}
- is used which solves the equation at half levels
- ($r+0.5 ;r=1,...,n; n=$ number of levels)
- \begin{equation}
- \displaystyle
- \frac{\partial \phi}{\partial \ln \sigma}+T
- \hat{=}
- \phi_{r+0.5}-\phi_{r-0.5}+
- T_r \cdot \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}
- \end{equation}
- Full level values ($r$)
- of geopotential are given by
- \begin{equation}
- \phi_{r}=\phi_{r+0.5}+\alpha_r T_r
- \end{equation}
- with
- ${\displaystyle \alpha_r=1-\frac{\sigma_{r-0.5}}{\Delta \sigma_r}
- \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}}$
- and
- $ \Delta \sigma_r=\sigma_{r+0.5} - \sigma_{r-0.5}$\\
- %The analogues for the integral formulation in (4) and (5)are given by \\
- %$ \int\limits_{0}^{1} D d \sigma $ and
- %$ \int\limits_{0}^{\sigma} D d \sigma $
- %$\rightarrow $
- %${\displaystyle \sum_{k=1}^{n} D_k \Delta \sigma_k }$ and
- %${\displaystyle \sum_{k=1}^{r} D_k \Delta \sigma_k }$
- %with $ \Delta \sigma_k=\sigma_{k+0.5} - \sigma_{k-0.5}$\\
- \subsection{Semi-implicit time stepping}
- Sound waves are filtered by the hydrostatic
- approximation (filter for vertical sound waves) and the lower boundary
- condition in pressure or sigma-coordinates
- (vanishing vertical velocity at the surface, i.e.
- the total derivative of the surface pressure is zero;
- filter for horizontal sound waves).
- But the fast propagation of the gravity
- waves strongly reduce the time step of explicit
- numerical schemes, therefore mode splitting is used
- (section \ref{Mode}) and an implicit scheme for the
- divergence is applied (see below).
- The vorticity equation is computed by an explicit scheme (leap frog) and the
- common Robert/Asselin time filter is used \cite{haltiner1982}.\\
- The implicit formulation for the divergence is derived
- using the conservation of mass, the hydrostatic approximation
- and the thermodynamic equation (eq. \ref{Mdiv}-\ref{Mtemp}) approximated
- by its finite difference analogues in time ($t$) using the
- notation (for each variable $D$, $T$, $\ln p_s$, and $\phi$)\\
- ${\displaystyle \delta_t Q = \frac{Q^{t + \Delta t} - Q^{t - \Delta t}}{2
- \Delta t}}$ \hspace{0.8cm}
- and \hspace{0.8cm}
- ${\displaystyle \overline{Q}^t = 0.5 (Q^{t + \Delta t} + Q^{t - \Delta t})
- =Q^{t - \Delta t} + \Delta t \delta_t Q} $\\
- The divergence is calculated by the
- non-linear term at time step $t$ and the
- linearized term which is a function of the geopotential
- (or the temperature tendency) and
- the surface pressure tendency.
- \begin{equation}
- \delta_t { D} = { N_D}^t - \bigtriangledown^2 (\overline{\phi}^t + T_0 [\ln
- p_s^{t - \Delta t} + \Delta t \; \delta_t \ln p_s])
- \end{equation}
- \begin{equation}
- \overline{\phi-\phi_s}^t = L_{\phi} [T^{t - \Delta t} + \Delta t \delta_t T]
- = L_{\phi} [T^{t - \Delta t} + \Delta t \; \delta_t T']
- \end{equation}
- \begin{equation}
- \delta_t \ln p_s = {N_p}^t - L_p [D^{t - \Delta t} + \Delta t \; \delta_t D]
- \end{equation}
- \begin{equation}
- \delta_t T' = {N_T}^t - L_T [D^{t - \Delta t} + \Delta t \; \delta_t D]
- \end{equation}
- The implicit formulation of the divergence equation is derived from the
- finite difference analogues of the new time step
- $t+\Delta t$ applied for each level $ r$ ($r=1,...n$) which can also
- formulated as a vector $\vec{D}$ with the n components.\\
- ${\left(\begin{array}{*{4}{c}}
- 1-b_{11} & b_{21} & \cdots & b_{n1} \\
- b_{12} & 1-b_{22} & \ddots & \vdots \\
- \vdots & \vdots & \ddots & \vdots \\
- b_{1n} & b_{2n} & \cdots & 1-b_{nn} \\
- \end{array}
- \right)
- \left(\begin{array}{*{1}{c}}
- D_{1}^{t+\Delta t} \\
- D_{2}^{t+\Delta t} \\
- \vdots \\
- D_{n}^{t+\Delta t} \\
- \end{array}
- \right)
- =
- \left(\begin{array}{*{1}{c}}
- D_{1}^{t-\Delta t} \\
- D_{2}^{t-\Delta t} \\
- \vdots \\
- D_{n}^{t-\Delta t} \\
- \end{array}
- \right)
- +2 \Delta t
- \left(\begin{array}{*{1}{c}}
- R_{1} \\
- R_{2} \\
- \vdots \\
- R_{n} \\
- \end{array}
- \right)}$\\
- In matrix formulation\\
- $({\cal I} - {\cal B} \Delta t^2 \bigtriangledown^2) \vec{D}^{t + \Delta t} =
- \vec{D}^{t-\Delta t}
- + 2 \Delta t [ \vec{N}_D - \bigtriangledown^2
- (\vec{\phi}^{t - \Delta t} + \vec{T}_0 \ln p_s^{t- \Delta t})]$ \\
- \begin{equation}
- - 2 \Delta t^2 \bigtriangledown^2 ({\cal L}_{\phi} \vec{N}_T + \vec{T}_0 N_p )
- \end{equation}\\
- The matrix $ {\cal B} = {\cal L}_{\phi} {\cal L}_T + \vec{T}_0 \vec{L}_p =
- {\cal B}(\sigma , \kappa , \vec{T}_0)$
- is constant in time.
- The variables ${\vec{D},\vec{T},\vec{T}',\vec{\phi}-\vec{\phi}_s}$
- are represented by column vectors with values
- at each layer, as are also $\vec{N}_D$ and $\vec{N}_T$.
- ${\cal L}_{\phi}$ and ${\cal L}_T$ are constant matrices, $\vec{L}_p$
- is a row vector (see Appendix C).
- The matrix $ {\cal B}$ can be calculated seperately for
- each spectral coefficient because in the linearized part
- the spectral modes are independent of each other.
- \begin{equation}
- (\vec{D}_n^{m})^{t + \Delta t} =
- ({\cal I} + {\cal B} \Delta t^2 c_n)^{-1}
- [(\vec{D}_n^{m})^{t - \Delta t}
- + 2 \Delta t \vec{R}]
- \end{equation}
- \begin{equation}
- (\vec{D}_n^{m})^{t + \Delta t} =
- (\frac{{\cal I}}{c_n} + {\cal B} \Delta t^2)^{-1}
- [\frac{1}{c_n}(\vec{D}_n^{m})^{t - \Delta t}
- + \frac{2 \Delta t}{c_n} \vec{R}]
- \end{equation}\\
- with $\bigtriangledown^2 (P_n^m (\mu) e^{ -i m \lambda})=- n(n+1) P_n^m (\mu) e^{
- -i m \lambda} =- c_n P_n^m (\mu) e^{ -i m \lambda} $.
- % Numerical Recipes routines
- % (lubksb and ludcmp) are used for matrix manipulation \cite [] {Press:1992}.\\
|