atmos.tex 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. % \section{Primitive Equation Model of the Atmosphere \label{PUMA}}
  2. The primitive equations, which represent the dynamical core of the
  3. atmospheric model,
  4. consist of the conservation of momentum and mass, the first law of
  5. thermodynamics and the equation of state, simplified by the hydrostatic
  6. approximation.
  7. \section{A dimensionless set of differential equations \label{EQ}}
  8. The prognostic equations for the horizontal velocities are
  9. transformed into equations of the vertical component of the vorticity $\zeta$
  10. and the divergence $D$.
  11. A vertical coordinate system where the lower boundary
  12. exactly coincides with a coordinate surface is defined
  13. by $\sigma$ (the pressure normalized by
  14. the surface pressure).
  15. Latitude $\varphi$ and longitude $\lambda$ represent the horizontal
  16. coordinates and the poleward convergence of the meridians is explicitly
  17. introduced re-writing the zonal ($u$) and meridional ($\nu$) velocities:
  18. $U= u \cos \varphi$ , $V= \nu \cos \varphi$ and $\mu = \sin \varphi$.
  19. The implicitly treated gravity wave terms
  20. are linearized about a reference profile $T_0$.
  21. Therefore, prognostic equation for
  22. temperature deviations $T'=T-T_0$ are derived;
  23. we use a constant reference temperature $T_0=250K$ for all
  24. $\sigma$ levels.
  25. The turbulent flux divergences due to prior Reynolds averaging
  26. enter the dynamic and thermodynamic equations as parameterizations formally
  27. included in the terms: $P_\zeta , P_D , P_T$.\\
  28. A dimensionless set of differential equations is derived
  29. by scaling vorticity $\zeta$ and divergence $D$
  30. by angular velocity of the earth
  31. $\Omega$, pressure $p$ by a
  32. constant surface
  33. pressure $p_s$, temperatures $T$ and $T'$ by $a^2 \Omega^2 /R$ and
  34. the orography and geopotential $\psi$
  35. by $a^2 \Omega^2 / g$ ($g$ is the acceleration of gravity
  36. and $R$ the gas constant for dry air).
  37. The dimensionless primitive
  38. equations in the $(\lambda , \mu, \sigma)$-coordinates
  39. \cite{hoskins} are given by\\
  40. Conservation of momentum (vorticity and divergence equation)
  41. \begin{equation}
  42. {\displaystyle \frac{\partial \zeta + f}{\partial t} = \frac{1}{(1 - \mu^2)} \frac{\partial F_\nu}{\partial \lambda} - \frac{\partial F_u}{\partial \mu} + P_\zeta} \label{vort}
  43. \end{equation}
  44. \begin{equation}
  45. {\displaystyle \frac{\partial D}{\partial t} = \frac{1}{(1 - \mu^2)} \frac{\partial F_u}{\partial \lambda} + \frac{\partial F_\nu}{\partial \mu} - \bigtriangledown^2 E - \bigtriangledown^2 (\phi + T_0 \ln p_s ) + P_D}\label{div}
  46. \end{equation}
  47. Hydrostatic approximation (using the equation of state)
  48. \begin{equation}
  49. {\displaystyle 0 = \frac{\partial \phi}{\partial \ln \sigma} + T} \label{hydroute}
  50. \end{equation}
  51. Conservation of mass (continuity equation)
  52. \begin{equation}
  53. {\displaystyle \frac{\partial \ln p_s}{\partial t}
  54. = - \int\limits_{0}^{1} A d \sigma}\label{konti}
  55. \end{equation}
  56. Thermodynamic equation
  57. \begin{equation}
  58. {\displaystyle \frac{\partial T'}{\partial t} = F_T - \dot{\sigma}
  59. \frac{\partial T}{\partial \sigma} + \kappa W T + \frac{J}{c_p} + P_{T}}
  60. \label{temp}
  61. \end{equation}
  62. with the notations\\
  63. ${\displaystyle F_u = ( \zeta + f ) V - \dot{\sigma} \frac{\partial U}{\partial \sigma} - T' \frac{\partial \ln p_s}{\partial \lambda}}$
  64. ${\displaystyle F_\nu = - (\zeta + f)U - \dot{\sigma} \frac{\partial V}{\partial\sigma} - (1 - \mu^2) T' \frac{\partial \ln p_s}{\partial \mu}}$
  65. ${\displaystyle F_T = - \frac{1}{(1 - \mu^2)} \frac{\partial (U T')}{\partial \lambda} - \frac{\partial (VT')}{\partial \mu} + D T'} $
  66. ${\displaystyle E = \frac{U^2 + V^2}{2(1 - \mu^2)}}$
  67. ${\displaystyle
  68. \dot {\sigma}= \sigma \int\limits_{0}^{1} A d \sigma
  69. - \int\limits_{0}^{\sigma} A d \sigma }$\\
  70. ${\displaystyle
  71. W= \frac {\omega} {p} =
  72. \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma} A d
  73. \sigma }$\\
  74. $A=D+\vec{V} \cdot \nabla \ln p_s
  75. = \frac{1}{p_s} \nabla \cdot p_s \vec{V}$.\\
  76. Here is $\dot{\sigma}$ the
  77. vertical velocity in the $\sigma$ system, $J$ the diabatic heating
  78. per unit mass and $E$
  79. the kinetic energy per unit mass.
  80. The streamfunction $\psi$ and the velocity potential $\chi$ represent the
  81. nondivergent and the irrotational part of the velocity field\\
  82. ${\displaystyle U = -(1-\mu^2) \frac{\partial \psi}{\partial \mu} + \frac{\partial \chi}{\partial \lambda}}$
  83. and
  84. ${\displaystyle V = \frac{\partial \psi}{\partial \lambda} + (1-\mu^2) \frac{\partial \chi}{\partial \mu}}$
  85. with $ \zeta = \nabla^2 \psi $
  86. and
  87. $ D = \nabla^2 \chi $.
  88. % \section{Moisture \label{Moist}}
  89. % ** Frank **
  90. \section{Mode splitting \label{Mode}}
  91. The fast gravity wave modes are linearized around
  92. a reference temperature profile $\vec{T_0}$.
  93. Now, the differential equations (\ref{vort}-\ref{temp}) can be separated into
  94. fast (linear) gravity modes and
  95. the slower non-linear terms ($N_D, N_p, N_T $).
  96. The linear terms of the equations contain the effect of the
  97. divergence (or the gravity waves) on
  98. the surface pressure tendency, the temperature tendency and the
  99. geopotential.
  100. A discussion of the impact of the reference profile
  101. on the stability of the semi-implicit numerical scheme is
  102. presented by \cite{simmons1978}.
  103. \begin{equation}
  104. {\displaystyle\frac{ \partial D }{\partial t}=
  105. { N_D} - \bigtriangledown^2 (\phi + T_0 \ln p_s)}\label{Mdiv}
  106. \end{equation}
  107. \begin{equation}
  108. {\displaystyle \frac{\partial \phi}{\partial \ln \sigma} = - T}\label{Mhydro}
  109. \end{equation}
  110. \begin{equation}
  111. {\displaystyle \frac{\partial \ln p_s}{\partial t}
  112. = N_p - \int\limits_{0}^{1} D d \sigma}\label{Mkonti}
  113. \end{equation}
  114. \begin{equation}
  115. {\displaystyle \frac{\partial T'}{\partial t} = N_T-
  116. \dot {\sigma}_L
  117. \frac{\partial T_0}{\partial \sigma} + \kappa W_L T_0 } \label{Mtemp}
  118. \end{equation}\\
  119. with the non-linear terms\\
  120. ${\displaystyle
  121. {\displaystyle N_D = \frac{1}{(1 - \mu^2)} \frac{\partial F_u}{\partial \lambda} + \frac{F_\nu}{\partial \mu} - \bigtriangledown^2 E + P_D}
  122. }$
  123. ${\displaystyle
  124. {\displaystyle N_p
  125. = - \int\limits_{0}^{1} [A-D] d \sigma}
  126. }$
  127. ${\displaystyle
  128. {\displaystyle N_T = F_T
  129. - \dot{\sigma}_N \frac{\partial T_0}{\partial \sigma}
  130. - \dot{\sigma} \frac{\partial T'}{\partial \sigma}
  131. + \kappa W_N T_0 + \kappa W T'
  132. + \frac{J}{c_p} + P_{T}}
  133. }$\\
  134. and the notations\\
  135. ${\displaystyle
  136. \dot {\sigma}_L = \sigma \int\limits_{0}^{1} D d \sigma
  137. - \int\limits_{0}^{\sigma} D d \sigma }$\\
  138. ${\displaystyle
  139. \dot {\sigma}_N = \sigma \int\limits_{0}^{1} [A-D] d \sigma
  140. - \int\limits_{0}^{\sigma} [A-D] d \sigma }$\\
  141. ${\displaystyle
  142. W_L = - \frac{1}{\sigma} \int\limits_{0}^{\sigma} D d \sigma }$\\
  143. ${\displaystyle
  144. W_N =
  145. \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma}
  146. [A - D] d\sigma }$\\
  147. $A-D=\vec{V} \cdot \nabla \ln p_s$ \\
  148. ${\displaystyle
  149. \dot {\sigma}=\dot {\sigma_L} + \dot {\sigma_N}
  150. = \sigma \int\limits_{0}^{1} A d \sigma
  151. - \int\limits_{0}^{\sigma} A d \sigma }$\\
  152. ${\displaystyle
  153. W= W_L+W_N =
  154. \vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma} A d
  155. \sigma }$\\
  156. %A combination of the linear terms, the matrix $ {\cal B} = {\cal L}_{\phi} {\cal L}_T + \vec{T}_0 \vec{L}_p = {\cal B}(\sigma , \kappa , \vec{T}_0)$ is constant in time.
  157. The index $L$ denote the linear and $N$ the non-linear part in
  158. the vertical advection ($\dot {\sigma} \frac{\partial T}{\partial \sigma}$)
  159. and the adiabatic
  160. heating or cooling ($\kappa W T$ with $W= \frac {\omega} {p}$).
  161. The non-linear terms are solve explicitly in the physical space (on the
  162. Gaussian grid; section \ref{Trans}) and the linear terms
  163. are calculated implicitly in the spectral space (for the spherical harmonics;
  164. see section \ref{Trans}).
  165. \section{Numerics \label{Num}}
  166. Solving the equations requires a suitable numerical representation of the
  167. spatial fields and their time change. A conventional approach is
  168. spectral representation in the horizontal using the
  169. transform method, finite differences in the vertical,
  170. and a semi-implicit time stepping.
  171. \subsection{Spectral Transform method \label{Trans}}
  172. The spectral method used in the computation of the nonlinear terms
  173. involves storing of a large number of so-called
  174. interaction coefficients, the number of which
  175. increases very fast with increasing resolution.
  176. The computing time and storing
  177. space requirements exceed all practical limits for high
  178. resolution models. Furthermore, there are problems to incorporate
  179. locally dependent physical
  180. processes, such as release of precipitation or a convective
  181. adjustment.
  182. Therefore, the equations are solved using the spectral
  183. transform method \cite{orszag1970, eliassen1970}.
  184. This method uses an auxiliary grid in the physical space
  185. where point values of the dependent variables are computed.\\
  186. The prognostic variables are represented in the horizontal by truncated series of spherical harmonics
  187. ($Q$ stands for $\zeta, D,T$ and $ \ln p_s$)
  188. \begin{equation}
  189. {\displaystyle Q(\lambda , \mu , \sigma , t) = \sum_{m = - M}^{M} \sum_{n =
  190. |m|}^{M} Q_n^m (\sigma , t) P_n^m (\mu) e ^{im\lambda} }
  191. \end{equation}
  192. \begin{center}
  193. $= Q_n^0 (\sigma , t) P_n^0 (\mu)
  194. + 2 \sum_{m = 1}^{M} \sum_{n =
  195. m}^{M} Q_n^m (\sigma , t) P_n^m (\mu) e ^{im\lambda}$
  196. \end{center}
  197. For each variable the spectral coefficient is defined by
  198. \begin{equation}
  199. {\displaystyle Q_n^m (\sigma , t) = \frac{1}{4 \pi} \int\limits_{-1}^{1}
  200. \int\limits_{0}^{2 \pi} Q(\lambda , \mu , \sigma , t) P_n^m (\mu) e^{ -i m
  201. \lambda} d \lambda d \mu}
  202. \end{equation}
  203. The spectral coefficients $Q_n^m (\sigma , t)$
  204. are obtained by Gaussian quadrature
  205. of the Fourier coefficients $F^m$ at each latitude $\varphi$ which
  206. are calculated by Fast Fourier
  207. Transformation with \\
  208. ${\displaystyle F^m (\mu, \sigma , t) = \frac{1}{4 \pi} \int\limits_{0}^{2 \pi} Q(\lambda , \mu , \sigma , t) e^{ -i m \lambda} d \lambda}$\\
  209. The auxiliary grid in the physical space (Gaussian grid)
  210. is defined by $M_g$ equally spaced longitudes
  211. and $J_g$ Gaussian latitudes with
  212. $M_g \ge 3 M + 1$ and $J_g \ge 0.5 (3 M + 1)$.
  213. \subsection{Vertical discretization}
  214. The prognostic variables vorticity, temperature and
  215. divergence are calculated at full levels and the vertical velocity at half
  216. levels. Therefore, the vertical advection for the level r is calculated
  217. ($Q$ stands for $\zeta, D,T$ and $ \ln p_s$)
  218. \begin{equation}
  219. {\displaystyle ( \dot{\sigma} \frac{\partial Q}{\partial \sigma} )
  220. \hat{=}
  221. \frac{1}{2\Delta \sigma_r } [\dot{\sigma}_{r + 0.5} (Q_{r+1} - Q_r) + \dot{\sigma}_{r - 0.5} (Q_r - Q_{r-1})]}
  222. \end{equation}
  223. For the hydrostatic approximation (3)
  224. an angular momentum
  225. conserving finite-difference scheme
  226. \cite{simmons1981}
  227. is used which solves the equation at half levels
  228. ($r+0.5 ;r=1,...,n; n=$ number of levels)
  229. \begin{equation}
  230. \displaystyle
  231. \frac{\partial \phi}{\partial \ln \sigma}+T
  232. \hat{=}
  233. \phi_{r+0.5}-\phi_{r-0.5}+
  234. T_r \cdot \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}
  235. \end{equation}
  236. Full level values ($r$)
  237. of geopotential are given by
  238. \begin{equation}
  239. \phi_{r}=\phi_{r+0.5}+\alpha_r T_r
  240. \end{equation}
  241. with
  242. ${\displaystyle \alpha_r=1-\frac{\sigma_{r-0.5}}{\Delta \sigma_r}
  243. \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}}$
  244. and
  245. $ \Delta \sigma_r=\sigma_{r+0.5} - \sigma_{r-0.5}$\\
  246. %The analogues for the integral formulation in (4) and (5)are given by \\
  247. %$ \int\limits_{0}^{1} D d \sigma $ and
  248. %$ \int\limits_{0}^{\sigma} D d \sigma $
  249. %$\rightarrow $
  250. %${\displaystyle \sum_{k=1}^{n} D_k \Delta \sigma_k }$ and
  251. %${\displaystyle \sum_{k=1}^{r} D_k \Delta \sigma_k }$
  252. %with $ \Delta \sigma_k=\sigma_{k+0.5} - \sigma_{k-0.5}$\\
  253. \subsection{Semi-implicit time stepping}
  254. Sound waves are filtered by the hydrostatic
  255. approximation (filter for vertical sound waves) and the lower boundary
  256. condition in pressure or sigma-coordinates
  257. (vanishing vertical velocity at the surface, i.e.
  258. the total derivative of the surface pressure is zero;
  259. filter for horizontal sound waves).
  260. But the fast propagation of the gravity
  261. waves strongly reduce the time step of explicit
  262. numerical schemes, therefore mode splitting is used
  263. (section \ref{Mode}) and an implicit scheme for the
  264. divergence is applied (see below).
  265. The vorticity equation is computed by an explicit scheme (leap frog) and the
  266. common Robert/Asselin time filter is used \cite{haltiner1982}.\\
  267. The implicit formulation for the divergence is derived
  268. using the conservation of mass, the hydrostatic approximation
  269. and the thermodynamic equation (eq. \ref{Mdiv}-\ref{Mtemp}) approximated
  270. by its finite difference analogues in time ($t$) using the
  271. notation (for each variable $D$, $T$, $\ln p_s$, and $\phi$)\\
  272. ${\displaystyle \delta_t Q = \frac{Q^{t + \Delta t} - Q^{t - \Delta t}}{2
  273. \Delta t}}$ \hspace{0.8cm}
  274. and \hspace{0.8cm}
  275. ${\displaystyle \overline{Q}^t = 0.5 (Q^{t + \Delta t} + Q^{t - \Delta t})
  276. =Q^{t - \Delta t} + \Delta t \delta_t Q} $\\
  277. The divergence is calculated by the
  278. non-linear term at time step $t$ and the
  279. linearized term which is a function of the geopotential
  280. (or the temperature tendency) and
  281. the surface pressure tendency.
  282. \begin{equation}
  283. \delta_t { D} = { N_D}^t - \bigtriangledown^2 (\overline{\phi}^t + T_0 [\ln
  284. p_s^{t - \Delta t} + \Delta t \; \delta_t \ln p_s])
  285. \end{equation}
  286. \begin{equation}
  287. \overline{\phi-\phi_s}^t = L_{\phi} [T^{t - \Delta t} + \Delta t \delta_t T]
  288. = L_{\phi} [T^{t - \Delta t} + \Delta t \; \delta_t T']
  289. \end{equation}
  290. \begin{equation}
  291. \delta_t \ln p_s = {N_p}^t - L_p [D^{t - \Delta t} + \Delta t \; \delta_t D]
  292. \end{equation}
  293. \begin{equation}
  294. \delta_t T' = {N_T}^t - L_T [D^{t - \Delta t} + \Delta t \; \delta_t D]
  295. \end{equation}
  296. The implicit formulation of the divergence equation is derived from the
  297. finite difference analogues of the new time step
  298. $t+\Delta t$ applied for each level $ r$ ($r=1,...n$) which can also
  299. formulated as a vector $\vec{D}$ with the n components.\\
  300. ${\left(\begin{array}{*{4}{c}}
  301. 1-b_{11} & b_{21} & \cdots & b_{n1} \\
  302. b_{12} & 1-b_{22} & \ddots & \vdots \\
  303. \vdots & \vdots & \ddots & \vdots \\
  304. b_{1n} & b_{2n} & \cdots & 1-b_{nn} \\
  305. \end{array}
  306. \right)
  307. \left(\begin{array}{*{1}{c}}
  308. D_{1}^{t+\Delta t} \\
  309. D_{2}^{t+\Delta t} \\
  310. \vdots \\
  311. D_{n}^{t+\Delta t} \\
  312. \end{array}
  313. \right)
  314. =
  315. \left(\begin{array}{*{1}{c}}
  316. D_{1}^{t-\Delta t} \\
  317. D_{2}^{t-\Delta t} \\
  318. \vdots \\
  319. D_{n}^{t-\Delta t} \\
  320. \end{array}
  321. \right)
  322. +2 \Delta t
  323. \left(\begin{array}{*{1}{c}}
  324. R_{1} \\
  325. R_{2} \\
  326. \vdots \\
  327. R_{n} \\
  328. \end{array}
  329. \right)}$\\
  330. In matrix formulation\\
  331. $({\cal I} - {\cal B} \Delta t^2 \bigtriangledown^2) \vec{D}^{t + \Delta t} =
  332. \vec{D}^{t-\Delta t}
  333. + 2 \Delta t [ \vec{N}_D - \bigtriangledown^2
  334. (\vec{\phi}^{t - \Delta t} + \vec{T}_0 \ln p_s^{t- \Delta t})]$ \\
  335. \begin{equation}
  336. - 2 \Delta t^2 \bigtriangledown^2 ({\cal L}_{\phi} \vec{N}_T + \vec{T}_0 N_p )
  337. \end{equation}\\
  338. The matrix $ {\cal B} = {\cal L}_{\phi} {\cal L}_T + \vec{T}_0 \vec{L}_p =
  339. {\cal B}(\sigma , \kappa , \vec{T}_0)$
  340. is constant in time.
  341. The variables ${\vec{D},\vec{T},\vec{T}',\vec{\phi}-\vec{\phi}_s}$
  342. are represented by column vectors with values
  343. at each layer, as are also $\vec{N}_D$ and $\vec{N}_T$.
  344. ${\cal L}_{\phi}$ and ${\cal L}_T$ are constant matrices, $\vec{L}_p$
  345. is a row vector (see Appendix C).
  346. The matrix $ {\cal B}$ can be calculated seperately for
  347. each spectral coefficient because in the linearized part
  348. the spectral modes are independent of each other.
  349. \begin{equation}
  350. (\vec{D}_n^{m})^{t + \Delta t} =
  351. ({\cal I} + {\cal B} \Delta t^2 c_n)^{-1}
  352. [(\vec{D}_n^{m})^{t - \Delta t}
  353. + 2 \Delta t \vec{R}]
  354. \end{equation}
  355. \begin{equation}
  356. (\vec{D}_n^{m})^{t + \Delta t} =
  357. (\frac{{\cal I}}{c_n} + {\cal B} \Delta t^2)^{-1}
  358. [\frac{1}{c_n}(\vec{D}_n^{m})^{t - \Delta t}
  359. + \frac{2 \Delta t}{c_n} \vec{R}]
  360. \end{equation}\\
  361. with $\bigtriangledown^2 (P_n^m (\mu) e^{ -i m \lambda})=- n(n+1) P_n^m (\mu) e^{
  362. -i m \lambda} =- c_n P_n^m (\mu) e^{ -i m \lambda} $.
  363. % Numerical Recipes routines
  364. % (lubksb and ludcmp) are used for matrix manipulation \cite [] {Press:1992}.\\