mo_aero_nucl.F90 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. #include "tm5.inc"
  2. MODULE mo_aero_nucl
  3. ! *mo_aero_nucl* holds routines calculating the nucleation rate
  4. !
  5. ! Author:
  6. ! -------
  7. ! Philip Stier, MPI-Met, Hamburg, 01/2003
  8. !
  9. ! Purpose:
  10. ! --------
  11. ! This module holds the routines for the calculation of the nucleation
  12. ! rate for the binary nucleation in the sulfate water system.
  13. ! These routines are called and applied within HAM from the routine
  14. ! m7_nuck.
  15. ! The old parameterization of Kulmala (1998), that apparently contains
  16. ! some errors is kept for consistency. It is recommended to use the
  17. ! new scheme of Vehkamaeki et al. (2002). However, this parameterization
  18. ! is no longer analytically integrable, the effect of this is to be
  19. ! scrutinized.
  20. ! The modularized version of the Kulmala parameterization has been tested
  21. ! to give bit-identical results with the old version.
  22. !
  23. ! References:
  24. ! -----------
  25. ! Vehkamaeki et al. (2002), An improved parameterization for sulfuric
  26. ! acid/water nucleation rates for tropospheric and stratospheric
  27. ! conditions, J. Geophys. Res, 107, D22, 4622
  28. ! Kulmala et al. (1998), Parameterizations for sulfuric acid/water
  29. ! nucleation rates. J. Geophys. Res., 103, No D7, 8301-8307
  30. ! Vignati, E. (1999), Modelling Interactions between Aerosols and
  31. ! Gaseous Compounds in the Polluted Marine Atmosphere. PhD-Thesis,
  32. ! RISO National Laborartory Copenhagen, Riso-R-1163(EN)
  33. IMPLICIT NONE
  34. CONTAINS
  35. SUBROUTINE nucl_kulmala(kproma, kbdim, klev, & ! ECHAM5 dims
  36. pso4g, ptp1, prelhum, &
  37. pbnrate, palpha, pbeta )
  38. ! Authors:
  39. ! --------
  40. ! P. Stier, MPI-Met, Hamburg, from the original f77 code
  41. ! in the routine m7_nuck 2001-2003
  42. ! J. Wilson, E. Vignati, JRC/EI, original source 09/2000
  43. !
  44. ! Purpose:
  45. ! --------
  46. ! This routine calculates the instananeous nucleation rate
  47. ! znucrate [molec. cm-3 s-1] from a given gas phase H2SO4 concentration
  48. ! pso4g [molec. cm-3]. It also calculates the integrated change of
  49. ! H2SO4 gas phase mass over one timestep due to nucleation
  50. ! pa4delt(:,:,1) [molec. cm-3] as well as the number of nucleated
  51. ! particles panew [1] during the timestep.
  52. !
  53. ! Interface:
  54. ! ----------
  55. ! *nucl_kulmala* is called from *m7_nuck*
  56. !
  57. ! Method:
  58. ! -------
  59. ! Kulmala et al. (1998) 's formula for binary nucleation is
  60. ! rewritten to take the form znucrate = exp[zalpha+ln(pso4g)*beta].
  61. ! Equation numbers are taken from Kulmala et al. (1998).
  62. ! After the calculation of the nucleation rate znucrate, it is
  63. ! integrated in 2) analytically over one timestep, i.e.:
  64. !
  65. ! Integration of:
  66. !
  67. ! znucrate=d(critn*znav)/dt=exp[zalpha + zbeta*ln(znav)]
  68. !
  69. ! gives znav(t0+dt, znav(t0)) where znav(t0) is pso4g.
  70. ! znav is temporarily stored in zso4g_new and confined between
  71. ! 0 and pso4g.
  72. ! The number of nucleated particles is then calculated by
  73. ! assuming a fixed critical mass critn of newly nucleated
  74. ! particles and dividing the total mass of nucleated sulfate
  75. ! by this critical mass of one nucleated particle.
  76. !
  77. ! Externals:
  78. ! ----------
  79. ! None
  80. USE mo_aero_m7, ONLY: bk
  81. IMPLICIT NONE
  82. INTEGER :: kproma, kbdim, klev
  83. REAL :: pso4g(kbdim,klev), ptp1(kbdim,klev), &
  84. prelhum(kbdim,klev), pbnrate(kbdim,klev), &
  85. palpha(kbdim,klev), pbeta(kbdim,klev)
  86. INTEGER :: jl, jk
  87. REAL :: znwv, zln_nac, ztk, zsupsat, &
  88. zpeh2o, zpeh2so4, zra, zxal, &
  89. ztkn, zssn, zdelta
  90. !---1) Calculation of the nucleation rate: ----------------------------
  91. DO jk=1,klev
  92. DO jl=1,kproma
  93. IF (pso4g(jl,jk) .GT. 1e-5) THEN
  94. ztk=ptp1(jl,jk)
  95. zsupsat=prelhum(jl,jk)
  96. !
  97. !--- 1.1) Restrict t, and rh to limits where the parameterization ok:
  98. !
  99. ztkn = MAX(ztk, 220.0)
  100. zssn = MIN(zsupsat, 0.90)
  101. !
  102. !--- 1.2) Equlibrium vapour pressures (Jaeker-Mirabel (1995), JGR):
  103. !
  104. !--- H2O equlibrium vapour pressure (Tabata):
  105. !
  106. zpeh2o=0.750064*(10.**(8.42926609-1827.17843/ &
  107. ztkn-71208.271/ztkn/ztkn))*1333./bk/ztkn
  108. !
  109. !--- H2SO4 equlibrium vapour pressure at 360
  110. !@@@ Check source: which Ayers?
  111. !
  112. zpeh2so4=EXP(-10156./ztkn+16.259)*7.6e2*1333./bk/ztkn
  113. !
  114. !--- H2SO4 equlibrium vapour pressure - correction of ayers
  115. ! by kulmala - currently not used
  116. !
  117. ! payers=exp(-10156/360+16.259)*7.6e2
  118. ! zpeh2so4=exp(log(payers)+10156*(-1./ztkn+1./360.+0.38/(905-360) * &
  119. ! (1+log(360./ztkn)-360./ztkn)))*1333/bk/ztkn
  120. !
  121. !--- 1.3) Relative acidity (0.0 -1.0):
  122. !
  123. zra=pso4g(jl,jk)/zpeh2so4
  124. !
  125. !--- 1.4) Water vapour molecule concentration [cm-3]:
  126. !
  127. znwv=zsupsat*zpeh2o
  128. !
  129. !--- 1.5) Factor delta in Eq. 22:
  130. !
  131. zdelta=1.0+(ztkn-273.15)/273.15
  132. !
  133. !--- 1.6) Molefraction of H2SO4 in the critical cluster
  134. ! minus the H2SO4(g) term in Eq. 17:
  135. !
  136. zxal = 1.2233-0.0154*zra/(zra+zssn)-0.0415*LOG(znwv)+ 0.0016*ztkn
  137. !
  138. !--- 1.7) Exponent of the critical cluster (Eq. 18):
  139. !
  140. zln_nac = -14.5125+0.1335*ztkn-10.5462*zssn+1958.4*zssn/ztkn
  141. !
  142. !--- 1.8) Sum of all terms in Eq. 20 containing H2SO4(g):
  143. !
  144. pbeta(jl,jk) = 25.1289 - 4890.8/ztkn + 7643.4*0.0102/ztkn - &
  145. 2.2479*zdelta*zssn - 1.9712*0.0102*zdelta/zssn
  146. !
  147. !--- 1.9) Sum all terms in Eq. 20 not containing H2SO4(g):
  148. !
  149. palpha(jl,jk) = zln_nac*(-25.1289 + 4890.8/ztkn + 2.2479*zdelta*zssn) - &
  150. 1743.3/ztkn + zxal*(7643.4/ztkn - 1.9712*zdelta/zssn)
  151. !
  152. !--- 1.10) Nucleation rate [cm-3 s-1] (Kulmala et al., 1998):
  153. !
  154. pbnrate(jl,jk) = EXP(palpha(jl,jk)+LOG(pso4g(jl,jk))*pbeta(jl,jk))
  155. ELSE
  156. palpha(jl,jk) =0.
  157. pbeta(jl,jk) =0.
  158. pbnrate(jl,jk)=0.
  159. END IF ! pso4g(jl,jk) .GT. 1e-5
  160. END DO ! kproma
  161. END DO !klev
  162. END SUBROUTINE nucl_kulmala
  163. SUBROUTINE nucl_vehkamaeki(kproma, kbdim, klev, & ! ECHAM5 dimensions
  164. ptp1, prhd, pmolecH2SO4, & ! ECHAM5 temperature, relative humidity
  165. pxtrnucr, pntot ) ! nucleation rate, number of molecules in the
  166. ! critical cluster
  167. !
  168. ! Authors:
  169. ! ---------
  170. ! C. TIMMRECK, MPI HAMBURG 2002
  171. !
  172. ! Purpose
  173. ! ---------
  174. ! Calculation of classical nucleation rate
  175. !
  176. ! calculation of the nucleation rate after Vehkamaeki et al. (2002)
  177. ! The calculation of the nucrate ZKNH2SO4 is in cm^-3 s^-1
  178. ! and a coarse approxmation for the first class
  179. !
  180. ! Modifications:
  181. ! --------------
  182. ! R. Hommel; rewrite in f90, adopted to ECHAM5; MPI HAMBURG; Dec. 2002
  183. ! P. Stier; bugfixes, modularisation and optimization; MPI HAMBURG; 2003-2004
  184. !
  185. ! H2SO4 still fixed to xxx molc/cm3, no sulfur cycle coupling yet
  186. !
  187. ! References:
  188. ! -----------
  189. ! Vehkamaeki et al. (2002), An improved parameterization for sulfuric
  190. ! acid/water nucleation rates for tropospheric and stratospheric
  191. ! conditions, J. Geophys. Res, 107, D22, 4622
  192. !
  193. ! Parameters
  194. ! ----------
  195. ! prho = prhop_neu in *sam*
  196. !
  197. ! prhd = relative humidity in sam_aeroprop & sam_nucl
  198. !
  199. ! pxtrnucr = nucleation rate in [1/m3s]
  200. ! xrhoc = density of the critical nucleus in kg/m^3
  201. ! zrxc = ?
  202. !
  203. USE mo_control, ONLY: nrow
  204. !----------------------------------------------------
  205. IMPLICIT NONE
  206. !----------------------------------------------------
  207. INTEGER :: kproma, kbdim, klev
  208. INTEGER :: jk, jl,jrow
  209. !----------------------------------------------------
  210. !
  211. REAL :: ptp1(kbdim,klev), prhd(kbdim,klev), &
  212. pxtrnucr(kbdim,klev), &
  213. pmolecH2SO4(kbdim,klev), & ! revisited, ok
  214. pntot(kbdim,klev)
  215. !----------------------------------------------------
  216. ! Local Arrays
  217. REAL :: zrxc(kbdim)
  218. REAL :: zrhoa, zrh, zt, x, zjnuc, zrc, &
  219. zxmole, zntot
  220. !--- 0) Initializations:
  221. jrow=nrow(2)
  222. DO jk=1, klev
  223. DO jl=1,kproma
  224. !----1.) Parameterization of nucleation rate after Vehkamaeki et al. (2002)
  225. ! t: temperature in K (190.15-300.15K)
  226. ! zrh: saturatio ratio of water (0.0001-1)
  227. ! zrhoa: sulfuric acid concentration in 1/cm3 (10^4-10^11 1/cm3)
  228. ! jnuc: nucleation rate in 1/cm3s (10^-7-10^10 1/cm3s)
  229. ! ntot: total number of molecules in the critical cluster (ntot>4)
  230. ! x: molefraction of H2SO4 in the critical cluster
  231. ! rc: radius of the critical cluster in nm
  232. ! Calculate nucleation only for valid thermodynamic conditions:
  233. IF( (pmolecH2SO4(jl,jk)>=1.E+4) .AND. &
  234. (prhd(jl,jk) >=1.E-4) .AND. &
  235. (ptp1(jl,jk)>=190.15 .AND. ptp1(jl,jk)<=300.15) ) THEN
  236. zrhoa=MIN(pmolecH2SO4(jl,jk),1.e11)
  237. zrh=MIN(prhd(jl,jk),1.0)
  238. zt=ptp1(jl,jk)
  239. ! Equation (11) - molefraction of H2SO4 in the critical cluster
  240. x=0.7409967177282139 - 0.002663785665140117*zt &
  241. + 0.002010478847383187*LOG(zrh) &
  242. - 0.0001832894131464668*zt*LOG(zrh) &
  243. + 0.001574072538464286*LOG(zrh)**2 &
  244. - 0.00001790589121766952*zt*LOG(zrh)**2 &
  245. + 0.0001844027436573778*LOG(zrh)**3 &
  246. - 1.503452308794887e-6*zt*LOG(zrh)**3 &
  247. - 0.003499978417957668*LOG(zrhoa) &
  248. + 0.0000504021689382576*zt*LOG(zrhoa)
  249. zxmole=x
  250. ! Equation (12) - nucleation rate in 1/cm3s
  251. zjnuc=0.1430901615568665 + 2.219563673425199*zt - &
  252. 0.02739106114964264*zt**2 + &
  253. 0.00007228107239317088*zt**3 + 5.91822263375044/x + &
  254. 0.1174886643003278*LOG(zrh) + 0.4625315047693772*zt*LOG(zrh) - &
  255. 0.01180591129059253*zt**2*LOG(zrh) + &
  256. 0.0000404196487152575*zt**3*LOG(zrh) + &
  257. (15.79628615047088*LOG(zrh))/x - &
  258. 0.215553951893509*LOG(zrh)**2 - &
  259. 0.0810269192332194*zt*LOG(zrh)**2 + &
  260. 0.001435808434184642*zt**2*LOG(zrh)**2 - &
  261. 4.775796947178588e-6*zt**3*LOG(zrh)**2 - &
  262. (2.912974063702185*LOG(zrh)**2)/x - &
  263. 3.588557942822751*LOG(zrh)**3 + &
  264. 0.04950795302831703*zt*LOG(zrh)**3 - &
  265. 0.0002138195118737068*zt**2*LOG(zrh)**3 + &
  266. 3.108005107949533e-7*zt**3*LOG(zrh)**3 - &
  267. (0.02933332747098296*LOG(zrh)**3)/x + &
  268. 1.145983818561277*LOG(zrhoa) - &
  269. 0.6007956227856778*zt*LOG(zrhoa) + &
  270. 0.00864244733283759*zt**2*LOG(zrhoa) - &
  271. 0.00002289467254710888*zt**3*LOG(zrhoa) - &
  272. (8.44984513869014*LOG(zrhoa))/x + &
  273. 2.158548369286559*LOG(zrh)*LOG(zrhoa) + &
  274. 0.0808121412840917*zt*LOG(zrh)*LOG(zrhoa) - &
  275. 0.0004073815255395214*zt**2*LOG(zrh)*LOG(zrhoa) - &
  276. 4.019572560156515e-7*zt**3*LOG(zrh)*LOG(zrhoa) + &
  277. (0.7213255852557236*LOG(zrh)*LOG(zrhoa))/x + &
  278. 1.62409850488771*LOG(zrh)**2*LOG(zrhoa) - &
  279. 0.01601062035325362*zt*LOG(zrh)**2*LOG(zrhoa) + &
  280. 0.00003771238979714162*zt**2*LOG(zrh)**2*LOG(zrhoa) + &
  281. 3.217942606371182e-8*zt**3*LOG(zrh)**2*LOG(zrhoa) - &
  282. (0.01132550810022116*LOG(zrh)**2*LOG(zrhoa))/x + &
  283. 9.71681713056504*LOG(zrhoa)**2 - &
  284. 0.1150478558347306*zt*LOG(zrhoa)**2 + &
  285. 0.0001570982486038294*zt**2*LOG(zrhoa)**2 + &
  286. 4.009144680125015e-7*zt**3*LOG(zrhoa)**2 + &
  287. (0.7118597859976135*LOG(zrhoa)**2)/x - &
  288. 1.056105824379897*LOG(zrh)*LOG(zrhoa)**2 + &
  289. 0.00903377584628419*zt*LOG(zrh)*LOG(zrhoa)**2 - &
  290. 0.00001984167387090606*zt**2*LOG(zrh)*LOG(zrhoa)**2 + &
  291. 2.460478196482179e-8*zt**3*LOG(zrh)*LOG(zrhoa)**2 - &
  292. (0.05790872906645181*LOG(zrh)*LOG(zrhoa)**2)/x - &
  293. 0.1487119673397459*LOG(zrhoa)**3 + &
  294. 0.002835082097822667*zt*LOG(zrhoa)**3 - &
  295. 9.24618825471694e-6*zt**2*LOG(zrhoa)**3 + &
  296. 5.004267665960894e-9*zt**3*LOG(zrhoa)**3 - &
  297. (0.01270805101481648*LOG(zrhoa)**3)/x
  298. zjnuc=EXP(zjnuc) ! add. Eq. (12) [1/(cm^3s)]
  299. ! Equation (13) - total number of molecules in the critical cluster
  300. zntot=-0.002954125078716302 - 0.0976834264241286*zt + &
  301. 0.001024847927067835*zt**2 - 2.186459697726116e-6*zt**3 - &
  302. 0.1017165718716887/x - 0.002050640345231486*LOG(zrh) - &
  303. 0.007585041382707174*zt*LOG(zrh) + &
  304. 0.0001926539658089536*zt**2*LOG(zrh) - &
  305. 6.70429719683894e-7*zt**3*LOG(zrh) - &
  306. (0.2557744774673163*LOG(zrh))/x + &
  307. 0.003223076552477191*LOG(zrh)**2 + &
  308. 0.000852636632240633*zt*LOG(zrh)**2 - &
  309. 0.00001547571354871789*zt**2*LOG(zrh)**2 + &
  310. 5.666608424980593e-8*zt**3*LOG(zrh)**2 + &
  311. (0.03384437400744206*LOG(zrh)**2)/x + &
  312. 0.04743226764572505*LOG(zrh)**3 - &
  313. 0.0006251042204583412*zt*LOG(zrh)**3 + &
  314. 2.650663328519478e-6*zt**2*LOG(zrh)**3 - &
  315. 3.674710848763778e-9*zt**3*LOG(zrh)**3 - &
  316. (0.0002672510825259393*LOG(zrh)**3)/x - &
  317. 0.01252108546759328*LOG(zrhoa) + &
  318. 0.005806550506277202*zt*LOG(zrhoa) - &
  319. 0.0001016735312443444*zt**2*LOG(zrhoa) + &
  320. 2.881946187214505e-7*zt**3*LOG(zrhoa) + &
  321. (0.0942243379396279*LOG(zrhoa))/x - &
  322. 0.0385459592773097*LOG(zrh)*LOG(zrhoa) - &
  323. 0.0006723156277391984*zt*LOG(zrh)*LOG(zrhoa) + &
  324. 2.602884877659698e-6*zt**2*LOG(zrh)*LOG(zrhoa) + &
  325. 1.194163699688297e-8*zt**3*LOG(zrh)*LOG(zrhoa) - &
  326. (0.00851515345806281*LOG(zrh)*LOG(zrhoa))/x - &
  327. 0.01837488495738111*LOG(zrh)**2*LOG(zrhoa) + &
  328. 0.0001720723574407498*zt*LOG(zrh)**2*LOG(zrhoa) - &
  329. 3.717657974086814e-7*zt**2*LOG(zrh)**2*LOG(zrhoa) - &
  330. 5.148746022615196e-10*zt**3*LOG(zrh)**2*LOG(zrhoa) + &
  331. (0.0002686602132926594*LOG(zrh)**2*LOG(zrhoa))/x - &
  332. 0.06199739728812199*LOG(zrhoa)**2 + &
  333. 0.000906958053583576*zt*LOG(zrhoa)**2 - &
  334. 9.11727926129757e-7*zt**2*LOG(zrhoa)**2 - &
  335. 5.367963396508457e-9*zt**3*LOG(zrhoa)**2 - &
  336. (0.007742343393937707*LOG(zrhoa)**2)/x + &
  337. 0.0121827103101659*LOG(zrh)*LOG(zrhoa)**2 - &
  338. 0.0001066499571188091*zt*LOG(zrh)*LOG(zrhoa)**2 + &
  339. 2.534598655067518e-7*zt**2*LOG(zrh)*LOG(zrhoa)**2 - &
  340. 3.635186504599571e-10*zt**3*LOG(zrh)*LOG(zrhoa)**2 + &
  341. (0.0006100650851863252*LOG(zrh)*LOG(zrhoa)**2)/x + &
  342. 0.0003201836700403512*LOG(zrhoa)**3 - &
  343. 0.0000174761713262546*zt*LOG(zrhoa)**3 + &
  344. 6.065037668052182e-8*zt**2*LOG(zrhoa)**3 - &
  345. 1.421771723004557e-11*zt**3*LOG(zrhoa)**3 + &
  346. (0.0001357509859501723*LOG(zrhoa)**3)/x
  347. zntot=EXP(zntot) ! add. Eq. (13)
  348. ! Equation (14) - radius of the critical cluster in nm
  349. zrc=EXP(-1.6524245+0.42316402*x+0.33466487*LOG(zntot)) ! [nm]
  350. ! Conversion [nm -> m]
  351. zrxc(jl)=zrc*1e-9
  352. !----1.2) Limiter
  353. IF(zjnuc<1.e-7 .OR. zntot<4.0) zjnuc=0.0
  354. ! limitation to 1E+10 [1/cm3s]
  355. zjnuc=MIN(zjnuc,1.e10)
  356. pxtrnucr(jl,jk) = zjnuc
  357. ! convert total number of molecules in the critical cluster
  358. ! to number of sulfate molecules:
  359. pntot(jl,jk)=zntot*zxmole
  360. ELSE ! pmolecH2SO4, ptp1 , prhd out of range
  361. pntot(jl,jk) =0.0
  362. pxtrnucr(jl,jk)=0.0
  363. END IF
  364. END DO ! kproma
  365. END DO ! klev
  366. END SUBROUTINE nucl_vehkamaeki
  367. END MODULE mo_aero_nucl