emission_pom.F90 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. !
  2. #define TRACEBACK write (gol,'("in ",a," (",a,", line",i5,")")') rname, __FILE__, __LINE__; call goErr
  3. #define IF_NOTOK_RETURN(action) if (status/=0) then; TRACEBACK; action; return; end if
  4. #define IF_ERROR_RETURN(action) if (status> 0) then; TRACEBACK; action; return; end if
  5. !
  6. #include "tm5.inc"
  7. !
  8. !-----------------------------------------------------------------------------
  9. ! TM5 !
  10. !-----------------------------------------------------------------------------
  11. !BOP
  12. !
  13. ! !MODULE: EMISSION_POM
  14. !
  15. ! !DESCRIPTION: data and methods for Particulate Organic Matter (POM) emissions.
  16. !
  17. ! POM is a sum of fossil fuel emissions, vegetation fire emission, and SOA emissions.
  18. !
  19. ! Dimension properties:
  20. ! 1) from fossil fuel = 0.015 um and sigma = 1.59
  21. ! 2) from vegetation fires = 0.04 um sigma = 1.59
  22. ! 3) POM from SOA has the characteristics of secondary
  23. ! products from monoterpine oxidation, which probably
  24. ! condense on pre-existing particles. Therefore only mass
  25. ! is calculated and added to the POM mass field if there
  26. ! are particles in the one or more soluble modes, if not
  27. ! they are formed in the Aitken soluble mode.
  28. ! The distribution of the total condensing SOA mass (M) in
  29. ! modes is
  30. !
  31. ! Solubility properties (from Stier et al.ACP, 2005):
  32. ! 1) POM from fossil fuel emissions is considered 65% soluble
  33. ! 2) POM from vegetation fire emissions is considered 65% soluble
  34. ! 3) POM from SOA is considered 100% soluble (Kanakidou et al. ACP, 2004)
  35. !
  36. !>>> TvN
  37. ! The emission radii have been modified
  38. ! following the AeroCom recommendations of Dentener et al. (ACP, 2006),
  39. ! adapted for the M7 modes by Stier et al. (JGR, 2005).
  40. ! The soluble fraction of the emissions from vegetation fires are now emitted
  41. ! in the accumulation mode (see mo_aero.F90).
  42. ! For the insoluble fraction, the mean emission radius is
  43. ! is assumed to be the same as for fossil-fuel emissions
  44. ! (as in Stier et al.)
  45. !
  46. ! Furthermore, POM from SOA is considered 65% soluble,
  47. ! as recommended by AeroCom.
  48. ! The above mentioned paper by Kanakidou et al.
  49. ! does not seem to support 100% solubility.
  50. !
  51. ! The soluble and insoluble SOA fractions are assumed to
  52. ! condense onto particles in the Aitken modes,
  53. ! as in the previous version by E. Vignati.
  54. ! However, this assumption is questionable
  55. ! in regions where biomass burning is important,
  56. ! since emissions from vegetation fires
  57. ! are now assumed to occur in the accumulation modes.
  58. ! (Stier et al. assume condensation
  59. ! in the soluble Aitken and accumulation modes,
  60. ! but it is not clear how the condensation is/should be distributed
  61. ! over the two soluble modes in that case.)
  62. !
  63. ! The formation of new particles has been removed.
  64. ! Previously, a cut-off was applied based on emis_number
  65. ! (i.e. the number of particles emitted in a gridbox per month)
  66. ! from all sectors excluding the surrogate SOA emissions.
  67. ! This criterion is unrealistic
  68. ! in the sense that it does not describe any physical process,
  69. ! but was only used to select the cells without primary OA emissions.
  70. ! We have tested that the inclusion of such a cutoff for new particle formation
  71. ! has only very marginal impacts on the results, and can therefore be removed
  72. ! (in any case when starting from reasonable initial concentrations).
  73. !
  74. ! Note that in the ECHAM version described by Zhang et al.
  75. ! fossil fuel and biofuel emissions are considered
  76. ! 100% and 65% soluble, respectively.
  77. ! Since these sources are not distinguished in the currently used
  78. ! emission data sets, we keep the solubility of both sources
  79. ! at 65%, as was done by Stier et al.
  80. !<<< TvN
  81. !
  82. !\\
  83. !\\
  84. ! !INTERFACE:
  85. !
  86. MODULE EMISSION_POM
  87. !
  88. ! !USES:
  89. !
  90. use GO, only : gol, goErr, goPr
  91. use tm5_distgrid, only : dgrid, get_distgrid, scatter, gather
  92. use dims, only : nregions, okdebug
  93. use global_types, only : emis_data, d3_data
  94. use emission_data, only : emis_input_dir_aerocom
  95. use emission_data, only : emis_input_year
  96. use emission_read, only : used_providers_aer, has_aer_emis
  97. implicit none
  98. private
  99. !
  100. ! !PUBLIC MEMBER FUNCTIONS:
  101. !
  102. public :: emission_pom_init ! allocate
  103. public :: emission_pom_done ! deallocate
  104. public :: emission_pom_declare ! read data
  105. !
  106. ! !PRIVATE DATA MEMBERS:
  107. !
  108. character(len=*), parameter :: mname = 'emission_pom'
  109. type(emis_data), dimension(:,:), allocatable :: pom_emis_2d
  110. type(d3_data), dimension(:,:), allocatable :: pom_emis_3d
  111. integer :: pom_2dsec, pom_3dsec
  112. !
  113. ! !REVISION HISTORY:
  114. ! ? ??? 2005 - Elisabetta Vignati - changed for coupling with M7
  115. ! 1 Sep 2010 - Achim Strunk - introduced AR5 emissions
  116. ! - reorganised the array structures and
  117. ! vertical distribution facility
  118. ! - cleaning
  119. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  120. !
  121. ! !REMARKS:
  122. !
  123. !EOP
  124. !------------------------------------------------------------------------
  125. CONTAINS
  126. !--------------------------------------------------------------------------
  127. ! TM5 !
  128. !--------------------------------------------------------------------------
  129. !BOP
  130. !
  131. ! !IROUTINE: EMISSION_POM_INIT
  132. !
  133. ! !DESCRIPTION: Allocate space needed to handle the emissions.
  134. !\\
  135. !\\
  136. ! !INTERFACE:
  137. !
  138. SUBROUTINE EMISSION_POM_INIT( status )
  139. !
  140. ! !USES:
  141. !
  142. use dims, only : lm
  143. use emission_read, only : providers_def, numb_providers
  144. use emission_data, only : LAR5BMB
  145. use emission_read, only : n_ar5_ant_sec, n_ar5_shp_sec, n_ar5_air_sec, n_ar5_bmb_sec
  146. use emission_read, only : ar5_cat_ant, ar5_cat_shp, ar5_cat_air, ar5_cat_bmb
  147. !
  148. ! !OUTPUT PARAMETERS:
  149. !
  150. integer, intent(out) :: status
  151. !
  152. ! !REVISION HISTORY:
  153. ! 1 Oct 2010 - Achim Strunk - v0
  154. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  155. !
  156. ! !REMARKS:
  157. !
  158. !EOP
  159. !------------------------------------------------------------------------
  160. !BOC
  161. character(len=*), parameter :: rname = mname//'/Emission_POM_Init'
  162. integer :: region, lsec
  163. integer :: lmr, lprov, i1, i2, j1, j2
  164. ! --- begin --------------------------------------
  165. status = 0
  166. if(.not. has_aer_emis) return
  167. ! nb of sectors
  168. pom_2dsec = 0
  169. pom_3dsec = 0
  170. do lprov = 1, numb_providers
  171. if (count(used_providers_aer.eq.providers_def(lprov)%name)/=0) then
  172. if (trim(providers_def(lprov)%name) .eq. 'AR5') then
  173. ! nb of available sectors in AR5 depends on category
  174. pom_2dsec = pom_2dsec + n_ar5_ant_sec*count('OC'.eq.ar5_cat_ant) + &
  175. n_ar5_shp_sec*count('OC'.eq.ar5_cat_shp)
  176. if (LAR5BMB) pom_2dsec = pom_2dsec + n_ar5_bmb_sec*count('OC'.eq.ar5_cat_bmb)
  177. pom_3dsec = pom_3dsec + count('OC'.eq.ar5_cat_air)
  178. else
  179. pom_2dsec = pom_2dsec + providers_def(lprov)%nsect2d
  180. pom_3dsec = pom_3dsec + providers_def(lprov)%nsect3d
  181. endif
  182. endif
  183. enddo
  184. allocate( pom_emis_2d( nregions, pom_2dsec ) )
  185. allocate( pom_emis_3d( nregions, pom_3dsec ) )
  186. ! allocate information arrays (2d and 3d)
  187. do region=1,nregions
  188. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, I_STOP=i2, J_STRT=j1, J_STOP=j2 )
  189. lmr = lm(region)
  190. do lsec=1,pom_2dsec
  191. allocate( pom_emis_2d(region,lsec)%surf(i1:i2,j1:j2) )
  192. end do
  193. do lsec=1,pom_3dsec
  194. allocate( pom_emis_3d(region,lsec)%d3(i1:i2,j1:j2,lmr) )
  195. end do
  196. enddo
  197. ! ok
  198. status = 0
  199. END SUBROUTINE EMISSION_POM_INIT
  200. !EOC
  201. !--------------------------------------------------------------------------
  202. ! TM5 !
  203. !--------------------------------------------------------------------------
  204. !BOP
  205. !
  206. ! !IROUTINE: EMISSION_POM_DONE
  207. !
  208. ! !DESCRIPTION: Free memory.
  209. !\\
  210. !\\
  211. ! !INTERFACE:
  212. !
  213. SUBROUTINE EMISSION_POM_DONE( status )
  214. !
  215. ! !OUTPUT PARAMETERS:
  216. !
  217. integer, intent(out) :: status
  218. !
  219. ! !REVISION HISTORY:
  220. ! 1 Oct 2010 - Achim Strunk - v0
  221. !
  222. !EOP
  223. !------------------------------------------------------------------------
  224. !BOC
  225. character(len=*), parameter :: rname = mname//'/Emission_POM_Done'
  226. integer :: region, lsec
  227. ! --- begin --------------------------------------
  228. status = 0
  229. if(.not. has_aer_emis) return
  230. do region = 1, nregions
  231. do lsec=1,pom_2dsec
  232. deallocate( pom_emis_2d(region,lsec)%surf )
  233. end do
  234. do lsec=1,pom_3dsec
  235. deallocate( pom_emis_3d(region,lsec)%d3 )
  236. end do
  237. end do
  238. deallocate( pom_emis_2d )
  239. deallocate( pom_emis_3d )
  240. ! ok
  241. status = 0
  242. END SUBROUTINE EMISSION_POM_DONE
  243. !EOC
  244. !--------------------------------------------------------------------------
  245. ! TM5 !
  246. !--------------------------------------------------------------------------
  247. !BOP
  248. !
  249. ! !IROUTINE: EMISSION_POM_DECLARE
  250. !
  251. ! !DESCRIPTION: Opens, reads and evaluates input files (per month).
  252. ! Provides emissions on 2d/3d-arrays which are then given
  253. ! to emis_number and emis_mass, which are used in
  254. ! sedimentation. (no *_apply!)
  255. !\\
  256. !\\
  257. ! !INTERFACE:
  258. !
  259. SUBROUTINE EMISSION_POM_DECLARE( status )
  260. !
  261. ! !USES:
  262. !
  263. use binas, only : pi
  264. use partools, only : isRoot, par_broadcast
  265. use toolbox, only : coarsen_emission, distribute_emis2D
  266. use dims, only : im, jm, lm, idate, sec_month, nlon360, nlat180
  267. use chem_param, only : xmc, sigma_lognormal, pom_density
  268. use chem_param, only : mode_aii, mode_ais, mode_acs
  269. use chem_param, only : rad_emi_ff, rad_emi_vg, rad_emi_vg_insol
  270. !use chem_param, only : rad_soa
  271. use chem_param, only : frac_pom_sol_ff, frac_pom_sol_vg, frac_soa_sol
  272. use MDF, only : MDF_Open, MDF_HDF4, MDF_Get_Var
  273. use MDF, only : MDF_Close, MDF_READ, MDF_Inq_VarID
  274. use emission_data, only : emis_mass, emis_number
  275. !use emission_data, only : oc2pom
  276. use emission_data, only : oc2pom_ff, oc2pom_vg, oc2pom_soa
  277. use emission_data, only : msg_emis, emis_temp, emission_vdist_by_sector
  278. use emission_data, only : vd_class_name_len
  279. ! ---------------- AR5 - GFED - RETRO - MACC --------------------
  280. use emission_data, only : LAR5BMB
  281. use emission_data, only : emis_input_dir_mac
  282. use emission_data, only : emis_input_dir_retro
  283. use emission_data, only : emis_input_dir_gfed
  284. use emission_read, only : emission_ar5_regrid_aircraft
  285. use emission_read, only : emission_ar5_ReadSector
  286. use emission_read, only : emission_macc_ReadSector
  287. use emission_read, only : emission_gfed_ReadSector
  288. use emission_read, only : emission_retro_ReadSector
  289. use emission_read, only : sector_name_len
  290. use emission_read, only : sectors_def, numb_sectors
  291. use emission_read, only : ar5_dim_3ddata
  292. !
  293. ! !OUTPUT PARAMETERS:
  294. !
  295. integer, intent(out) :: status
  296. !
  297. ! !REVISION HISTORY:
  298. ! 1 Oct 2010 - Achim Strunk - revamped for AR5
  299. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  300. !
  301. !EOP
  302. !------------------------------------------------------------------------
  303. !BOC
  304. character(len=*), parameter :: rname = mname//'/emission_pom_declare'
  305. integer :: region, hasData
  306. integer, parameter :: add_field=0
  307. integer, parameter :: amonth=2
  308. real :: rad_aver_mass, numbscale
  309. integer :: imr, jmr, lmr, lsec, i1, i2, j1, j2
  310. real(kind=4), dimension(:,:,: ), allocatable :: hdfr3
  311. integer :: fid, varid ! hdf related
  312. ! ---------------------------------------------------------------
  313. ! AR5
  314. real, dimension(:,:), allocatable :: field2d
  315. real, dimension(:,:,:), allocatable :: field3d, field3d2
  316. integer :: mode_sol
  317. real :: rad_emi_sol, rad_emi_insol
  318. real :: mass2numb_sol, mass2numb_insol
  319. real :: fracpomsol
  320. real :: oc2pom
  321. type(d3_data), dimension(nregions) :: emis3d, work, work3d
  322. type(emis_data),dimension(nregions) :: wrk2D, emis_glb
  323. integer :: seccount2d, seccount3d
  324. character(len=sector_name_len) :: tmpsector
  325. character(len=vd_class_name_len) :: tmpvsplit
  326. ! --- begin -----------------------------------------
  327. status = 0
  328. if(.not. has_aer_emis) return
  329. write(gol,'(" EMISS-INFO ------------- read POM emissions -------------")'); call goPr
  330. ! EV pom emitted in the insoluble aitken mode
  331. ! Reset emissions
  332. do region = 1, nregions
  333. do lsec=1,pom_2dsec
  334. pom_emis_2d(region,lsec)%surf = 0.0
  335. end do
  336. do lsec=1,pom_3dsec
  337. pom_emis_3d(region,lsec)%d3 = 0.0
  338. end do
  339. end do
  340. ! Allocate work arrays
  341. do region = 1, nregions
  342. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, I_STOP=i2, J_STRT=j1, J_STOP=j2 )
  343. lmr = lm(region)
  344. allocate( work3d(region)%d3 (i1:i2,j1:j2, ar5_dim_3ddata) ) ; work3d(region)%d3 = 0.0
  345. allocate( emis3d(region)%d3 (i1:i2,j1:j2, lmr ) ) ; emis3d(region)%d3 = 0.0
  346. end do
  347. ! Global arrays for coarsening
  348. do region = 1, nregions
  349. if (isRoot)then
  350. allocate(work(region)%d3(im(region),jm(region),ar5_dim_3ddata))
  351. else
  352. allocate(work(region)%d3(1,1,1))
  353. end if
  354. enddo
  355. do region = 1, nregions
  356. wrk2D(region)%surf => work(region)%d3(:,:,1)
  357. end do
  358. ! -----------------------------
  359. ! get emissions (ATTENTION: THIS IS Organic Carbon! )
  360. write(gol,'(1x,80("-"))') ; call goPr
  361. write(gol,*) ' WARNING: OC emissions are used instead of POM !' ; call goPr
  362. !write(gol,*) ' masses are transformed using constant factor oc2pom' ; call goPr
  363. write(gol,*) ' masses are transformed using constant factors' ; call goPr
  364. write(gol,*) ' for vegetation fires and other sources' ; call goPr
  365. write(gol,'(1x,80("-"))') ; call goPr
  366. ! --------------------------------
  367. ! do a loop over available sectors
  368. ! --------------------------------
  369. ! count 2d and 3d sectors
  370. seccount2d = 0
  371. seccount3d = 0
  372. ! always allocate here 3d data set (for 2d sectors it will be filled in first layer only)
  373. if (isRoot) then
  374. allocate( field3d( nlon360, nlat180, ar5_dim_3ddata ) ) ; field3d = 0.0
  375. else
  376. allocate( field3d( 1, 1, 1 ) )
  377. end if
  378. sec : do lsec = 1, numb_sectors
  379. if (count(used_providers_aer.eq.sectors_def(lsec)%prov).eq.0) cycle
  380. if (associated(sectors_def(lsec)%species)) then
  381. if (count('OC'.eq.sectors_def(lsec)%species).eq.0) cycle
  382. if ((trim(sectors_def(lsec)%catname) .eq. 'biomassburning').and.(.not.LAR5BMB)) cycle
  383. endif
  384. field3d = 0.0
  385. if( sectors_def(lsec)%f3d ) then
  386. seccount3d = seccount3d + 1
  387. else
  388. seccount2d = seccount2d + 1
  389. end if
  390. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  391. oc2pom = oc2pom_vg
  392. else
  393. oc2pom = oc2pom_ff
  394. endif
  395. if (isRoot) then ! READ
  396. select case( trim(sectors_def(lsec)%prov) )
  397. case( 'AR5' )
  398. ! Screen out agricultural and solvent sectors for OC,
  399. ! because they are zero in the RCPs
  400. ! and not present in the historical files.
  401. if (trim(sectors_def(lsec)%name) .ne. 'emiss_agr' .and. &
  402. trim(sectors_def(lsec)%name) .ne. 'emiss_slv') then
  403. call emission_ar5_ReadSector( 'OC', emis_input_year, idate(2), lsec, field3d, status )
  404. IF_NOTOK_RETURN(status=1;deallocate(field3d))
  405. endif
  406. case( 'MACC' )
  407. ! Screen out 'soil', 'nat', 'oc', bio', 'oc', and 'air' since they are not available for BC.
  408. if ( ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_soil')) .and. &
  409. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_nat') ) .and. &
  410. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_oc') ) .and. &
  411. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_bio' ) ) .and. &
  412. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_air') ) ) then
  413. call emission_macc_ReadSector( emis_input_dir_mac, 'OC', emis_input_year, idate(2), &
  414. '0.5x0.5_kg.nc', sectors_def(lsec)%name, 'kg / s', field3d, status )
  415. IF_NOTOK_RETURN(status=1;deallocate(field3d))
  416. end if
  417. case('GFEDv3')
  418. call emission_gfed_ReadSector( emis_input_dir_gfed, 'oc', emis_input_year, idate(2), &
  419. 'GFED', 'kg / s', field3d(:,:,1), status )
  420. IF_NOTOK_RETURN(status=1)
  421. case('RETRO')
  422. call emission_retro_ReadSector( emis_input_dir_retro, 'OC', emis_input_year, idate(2), &
  423. sectors_def(lsec)%name, 'kg / s', field3d(:,:,1), status )
  424. IF_NOTOK_RETURN(status=1)
  425. case default
  426. write(gol,*) "Error in list of providers for POM"; call goErr
  427. status=1; TRACEBACK; return
  428. end select
  429. ! nothing found???
  430. if( sum(field3d) < 100.*TINY(1.0) ) then
  431. if (okdebug) then
  432. write(gol,'("EMISS-INFO - no POM emissions found for ",a," ",a," for month ",i2 )') &
  433. trim(sectors_def(lsec)%prov), trim(sectors_def(lsec)%name), idate(2) ; call goPr
  434. endif
  435. hasData=0
  436. else
  437. if (okdebug) then
  438. write(gol,'("EMISS-INFO - found POM emissions for ",a," ",a," for month ",i2 )') &
  439. trim(sectors_def(lsec)%prov), trim(sectors_def(lsec)%name), idate(2) ; call goPr
  440. endif
  441. ! convert from OC to POM using oc2pom (set in emission_data)
  442. field3d = field3d * oc2pom
  443. ! scale from kg/s to kg/month
  444. field3d = field3d * sec_month ! kg / month
  445. hasData=1
  446. end if
  447. end if
  448. call Par_broadcast(hasData, status)
  449. IF_NOTOK_RETURN(status=1)
  450. if (hasData == 0) cycle sec
  451. ! special values for biomass burning emissions
  452. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  453. mode_sol = mode_acs
  454. rad_emi_sol = rad_emi_vg
  455. rad_emi_insol = rad_emi_vg_insol
  456. fracpomsol = frac_pom_sol_vg
  457. else
  458. mode_sol = mode_ais
  459. rad_emi_sol = rad_emi_ff
  460. rad_emi_insol = rad_emi_ff
  461. fracpomsol = frac_pom_sol_ff
  462. end if
  463. ! mass to number factors for the soluble and insoluble Aitken modes
  464. ! and soluble accumulation modes
  465. numbscale = rad_emi_insol*EXP(1.5*(LOG(sigma_lognormal(mode_aii)))**2)
  466. mass2numb_insol = 3./(4.*pi*(numbscale**3)*pom_density)
  467. numbscale = rad_emi_sol*EXP(1.5*(LOG(sigma_lognormal(mode_sol)))**2)
  468. mass2numb_sol = 3./(4.*pi*(numbscale**3)*pom_density)
  469. ! distinguish 2d/3d sectors
  470. if( sectors_def(lsec)%f3d ) then
  471. ! ---------------------------
  472. ! 3d data (AIRCRAFT)
  473. ! ---------------------------
  474. !DBG
  475. ! ! up to now only aircraft (it should be this)
  476. ! if( trim(sectors_def(lsec)%name) /= 'emiss_air' ) then
  477. ! write(gol,'(80("-"))') ; call goPr
  478. ! write(gol,'("ERROR: 3d sector `",a,"` not available !")') sectors_def(lsec)%name ; call goErr
  479. ! write(gol,'(80("-"))') ; call goPr
  480. ! deallocate( field3d )
  481. ! status=1; return
  482. ! end if
  483. if (isRoot) then
  484. ! write some numbers
  485. call msg_emis( amonth, trim(sectors_def(lsec)%prov), sectors_def(lsec)%name, 'POM', oc2pom*xmc, sum(field3d) )
  486. ! distribute to work arrays in regions
  487. call Coarsen_Emission( 'POM '//trim(sectors_def(lsec)%name), nlon360, nlat180, ar5_dim_3ddata, &
  488. field3d, work, add_field, status )
  489. IF_NOTOK_RETURN(status=1)
  490. end if
  491. ! scatter, sum up on target array
  492. do region = 1, nregions
  493. call scatter(dgrid(region), work3d(region)%d3, work(region)%d3, 0, status)
  494. IF_NOTOK_RETURN( status=1 )
  495. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, J_STRT=j1)
  496. ! aircraft data: regrid vertically to model layers
  497. call emission_ar5_regrid_aircraft( region, i1, j1, work3d(region)%d3, emis3d(region)%d3, status )
  498. IF_NOTOK_RETURN( status=1 )
  499. pom_emis_3d(region,seccount3d)%d3 = pom_emis_3d(region,seccount3d)%d3 + emis3d(region)%d3
  500. end do
  501. ! add to emis target arrays
  502. do region = 1, nregions
  503. emis_mass (region,mode_aii)%d4(:,:,:,2) = &
  504. emis_mass (region,mode_aii)%d4(:,:,:,2) + &
  505. (1.-fracpomsol) * pom_emis_3d(region,seccount3d)%d3(:,:,:)
  506. emis_mass (region,mode_ais)%d4(:,:,:,3) = &
  507. emis_mass (region,mode_ais)%d4(:,:,:,3) + &
  508. ( fracpomsol) * pom_emis_3d(region,seccount3d)%d3(:,:,:)
  509. emis_number(region,mode_aii)%d4(:,:,:,2) = &
  510. emis_number(region,mode_aii)%d4(:,:,:,2) + &
  511. (1.-fracpomsol) * pom_emis_3d(region,seccount3d)%d3(:,:,:) * mass2numb_insol
  512. emis_number(region,mode_ais)%d4(:,:,:,3) = &
  513. emis_number(region,mode_ais)%d4(:,:,:,3) + &
  514. ( fracpomsol) * pom_emis_3d(region,seccount3d)%d3(:,:,:) * mass2numb_sol
  515. end do
  516. else ! 2d sector
  517. ! ---------------------------
  518. ! 2d data (Anthropogenic, Ships, Biomassburning)
  519. ! ---------------------------
  520. if (isRoot) then ! print total & regrid
  521. call msg_emis( amonth, trim(sectors_def(lsec)%prov), sectors_def(lsec)%name, 'POM', oc2pom*xmc, &
  522. sum(field3d(:,:,1)) )
  523. IF_NOTOK_RETURN(status=1)
  524. call coarsen_emission( 'POM '//sectors_def(lsec)%name, nlon360, nlat180, field3d(:,:,1), wrk2D, add_field, status)
  525. IF_NOTOK_RETURN(status=1)
  526. end if
  527. ! get temporary array for vertical distribution
  528. do region = 1, nregions
  529. call scatter(dgrid(region), pom_emis_2d(region,seccount2d)%surf, work(region)%d3(:,:,1), 0, status)
  530. IF_NOTOK_RETURN(status=1)
  531. emis3d(region)%d3 = 0.0
  532. ! do vertical distribution
  533. call emission_vdist_by_sector( sectors_def(lsec)%vdisttype, 'POM', region, pom_emis_2d(region,seccount2d), &
  534. emis3d(region), status )
  535. IF_NOTOK_RETURN(status=1)
  536. ! add to emis target arrays
  537. ! insoluble emissions to Aitken mode
  538. emis_mass (region,mode_aii)%d4(:,:,:,2) = &
  539. emis_mass (region,mode_aii)%d4(:,:,:,2) + &
  540. (1.-fracpomsol) * emis3d(region)%d3(:,:,:)
  541. emis_number(region,mode_aii)%d4(:,:,:,2) = &
  542. emis_number(region,mode_aii)%d4(:,:,:,2) + &
  543. (1.-fracpomsol) * emis3d(region)%d3(:,:,:) * mass2numb_insol
  544. ! soluble emissions from vegetation fires to accumulation mode,
  545. ! other soluble emissions to Aitken mode
  546. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  547. emis_mass (region,mode_acs)%d4(:,:,:,3) = &
  548. emis_mass (region,mode_acs)%d4(:,:,:,3) + &
  549. ( fracpomsol) * emis3d(region)%d3(:,:,:)
  550. emis_number(region,mode_acs)%d4(:,:,:,3) = &
  551. emis_number(region,mode_acs)%d4(:,:,:,3) + &
  552. ( fracpomsol) * emis3d(region)%d3(:,:,:) * mass2numb_sol
  553. else
  554. emis_mass (region,mode_ais)%d4(:,:,:,3) = &
  555. emis_mass (region,mode_ais)%d4(:,:,:,3) + &
  556. ( fracpomsol) * emis3d(region)%d3(:,:,:)
  557. emis_number(region,mode_ais)%d4(:,:,:,3) = &
  558. emis_number(region,mode_ais)%d4(:,:,:,3) + &
  559. ( fracpomsol) * emis3d(region)%d3(:,:,:) * mass2numb_sol
  560. endif
  561. end do
  562. end if
  563. end do sec ! sectors
  564. deallocate( field3d )
  565. do region = 1, nregions
  566. if (associated(wrk2D(region)%surf)) nullify(wrk2D(region)%surf)
  567. deallocate( work(region)%d3 )
  568. end do
  569. ! check sectors found
  570. if( seccount2d /= pom_2dsec ) then
  571. write(gol,'(80("-"))') ; call goPr
  572. write(gol,'("ERROR: 2d sectors do not equal total number:",i4," /= ",i4," !")') seccount2d, pom_2dsec ; call goErr
  573. write(gol,'(80("-"))') ; call goPr
  574. status=1; return
  575. end if
  576. if( seccount3d /= pom_3dsec ) then
  577. write(gol,'(80("-"))') ; call goPr
  578. write(gol,'("ERROR: 3d sectors do not equal total number:",i4," /= ",i4," !")') seccount3d, pom_3dsec ; call goErr
  579. write(gol,'(80("-"))') ; call goPr
  580. status=1; return
  581. end if
  582. ! ---------------------------------------------------
  583. ! SOA condenses onto existing particles in the Aitken soluble mode
  584. ! ---------------------------------------------------
  585. ! select case( emis_input_provider )
  586. ! case( 'AR5','MACC' )
  587. write(gol,'(80("-"))') ; call goPr
  588. write(gol,*) ' WARNING: SOA emissions are employed in boxes ' ; call goPr
  589. write(gol,*) ' with too few particles in mode_ais! ' ; call goPr
  590. write(gol,*) ' Masses of SOA are neglected !!! ' ; call goPr
  591. write(gol,'(80("-"))') ; call goPr
  592. ! end select
  593. tmpsector = 'anthropogenic'
  594. ! assume SOA emissions to be vertically split due to this class:
  595. tmpvsplit = 'nearsurface'
  596. ! work arrays
  597. if (isRoot) then
  598. do region = 1, nregions
  599. allocate(emis_glb(region)%surf(im(region), jm(region)))
  600. end do
  601. else
  602. do region = 1, nregions
  603. allocate(emis_glb(region)%surf(1,1))
  604. end do
  605. end if
  606. ! Read
  607. if (isRoot) then
  608. allocate( hdfr3(nlon360,nlat180,1) ) ; hdfr3 = 0.0
  609. allocate( field2d(nlon360,nlat180) ) ; field2d = 0.0
  610. call MDF_Open( trim(emis_input_dir_aerocom)//'/SOA.hdf', MDF_HDF4, MDF_READ, fid, status)
  611. IF_NOTOK_RETURN(status=1)
  612. call MDF_Inq_VarID( fid, 'FIELD', varid, status)
  613. IF_NOTOK_RETURN(status=1)
  614. call MDF_Get_Var( fid, varid, hdfr3, status, start=(/1,1,idate(2)/), count=(/nlon360,nlat180,1/))
  615. IF_NOTOK_RETURN(status=1)
  616. CALL MDF_Close( fid, status )
  617. IF_NOTOK_RETURN(status=1)
  618. ! paste to 2d field
  619. field2d = hdfr3(:,:,1)
  620. !>>> TvN
  621. ! SOA emissions are provided in Tg POM, and are based on
  622. ! the assumption that 15% of the emitted terpene mass is converted to SOA
  623. ! (Kanakidou et al., ACP, 2005; Dentener et al., ACP, 2006).
  624. ! However, it seems that such an assumption
  625. ! is inconsistent with a POM to OC ratio of about 2.0 for freshly formed SOA
  626. ! (Aiken et al., Environ. Sci. Technol., 2008).
  627. ! The VOCs with the largest potential for SOA formation
  628. ! are mono-terpenes (C10H16), which account for 40-80%
  629. ! of the overall terpene emissions, and seqsquiterpenes (C15H24),
  630. ! which have a 100% SOA yield.
  631. ! The full weight to carbon weight ratios for these components
  632. ! are 1.133 and 1.16, respectively.
  633. ! Therefore, it seems reasonable to increase the SOA emissions
  634. ! as provided in the AeroCom input file
  635. ! by a factor of about ocpom_soa/1.15.
  636. ! Increasing the SOA emissions from AeroCom,
  637. ! which amount to 19.2 Tg/yr, is also consistent with AR5,
  638. ! where 20 Tg/yr is assumed to be a lower bound.
  639. field2d = field2d * oc2pom_soa/1.15
  640. !<<< TvN
  641. deallocate(hdfr3)
  642. ! prompt some numbers
  643. call msg_emis( amonth, 'AEROCOM', 'SOA-'//trim(tmpsector), 'POM', oc2pom_soa*xmc, sum(field2d) )
  644. IF_NOTOK_RETURN(status=1;deallocate(field2d))
  645. ! initialise/reset emis_temp(regions)
  646. do region = 1, nregions
  647. emis_temp(region)%surf = 0.0
  648. end do
  649. ! regrid from field2d to emis_glb
  650. call coarsen_emission( 'SOA '//trim(tmpsector), nlon360, nlat180, field2d, emis_glb, add_field, status)
  651. IF_NOTOK_RETURN(status=1;deallocate(field2d))
  652. deallocate( field2d )
  653. end if
  654. !>>> TvN
  655. ! EV total particle number emitted in a gridbox
  656. !rad_aver_mass = rad_soa*EXP(1.5*(LOG(sigma_lognormal(mode_ais)))**2)
  657. !mass_to_numb = 3./(4.*pi*(rad_aver_mass**3)*pom_density)
  658. ! Scatter, vertical distribution
  659. ! ------------------------------
  660. do region = 1, nregions
  661. call scatter(dgrid(region), emis_temp(region)%surf, emis_glb(region)%surf, 0, status)
  662. IF_NOTOK_RETURN(status=1)
  663. emis3d(region)%d3 = 0.0
  664. call emission_vdist_by_sector( tmpvsplit, 'SOA', region, emis_temp(region), emis3d(region), status )
  665. IF_NOTOK_RETURN(status=1)
  666. ! --------------
  667. ! Comment by EV:
  668. ! Let the SOA condense on the existing aerosols. Not emit the aerosol numbers.
  669. ! Only if there are insufficient aerosols (<1.0), we emit the aerosol numbers.
  670. ! add masses
  671. !emis_mass(region,mode_ais)%d4(:,:,:,3) = &
  672. ! emis_mass(region,mode_ais)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:)
  673. emis_mass(region,mode_ais)%d4(:,:,:,3) = &
  674. emis_mass(region,mode_ais)%d4(:,:,:,3) + &
  675. frac_soa_sol * emis3d(region)%d3(:,:,:)
  676. emis_mass(region,mode_aii)%d4(:,:,:,2) = &
  677. emis_mass(region,mode_aii)%d4(:,:,:,2) + &
  678. (1.-frac_soa_sol) * emis3d(region)%d3(:,:,:)
  679. ! add numbers where appropriate
  680. ! where(emis_number(region,mode_ais)%d4(:,:,:,3) < 1.)
  681. !emis_number(region,mode_ais)%d4(:,:,:,3) = &
  682. ! emis_number(region,mode_ais)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:) * mass_to_numb
  683. ! emis_number(region,mode_ais)%d4(:,:,:,3) = &
  684. ! emis_number(region,mode_ais)%d4(:,:,:,3) + &
  685. ! frac_soa_sol * emis3d(region)%d3(:,:,:) * mass_to_numb
  686. ! endwhere
  687. ! where(emis_number(region,mode_aii)%d4(:,:,:,2) < 1.)
  688. ! emis_number(region,mode_aii)%d4(:,:,:,2) = &
  689. ! emis_number(region,mode_aii)%d4(:,:,:,2) + &
  690. ! (1.-frac_soa_sol) * emis3d(region)%d3(:,:,:) * mass_to_numb
  691. ! endwhere
  692. !<<< TvN
  693. enddo
  694. ! Done
  695. do region = 1, nregions
  696. deallocate(emis_glb(region)%surf)
  697. deallocate( emis3d(region)%d3 )
  698. deallocate( work3d(region)%d3 )
  699. end do
  700. status = 0
  701. END SUBROUTINE EMISSION_POM_DECLARE
  702. !EOC
  703. END MODULE EMISSION_POM