emission_pom.F90 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. !
  2. #define TRACEBACK write (gol,'("in ",a," (",a,", line",i5,")")') rname, __FILE__, __LINE__; call goErr
  3. #define IF_NOTOK_RETURN(action) if (status/=0) then; TRACEBACK; action; return; end if
  4. #define IF_ERROR_RETURN(action) if (status> 0) then; TRACEBACK; action; return; end if
  5. !
  6. #include "tm5.inc"
  7. !
  8. !-----------------------------------------------------------------------------
  9. ! TM5 !
  10. !-----------------------------------------------------------------------------
  11. !BOP
  12. !
  13. ! !MODULE: EMISSION_POM
  14. !
  15. ! !DESCRIPTION: data and methods for Particulate Organic Matter (POM) emissions.
  16. !
  17. ! POM is a sum of fossil and biofuel, vegetation fire, and SOA emissions.
  18. !
  19. ! Dimension properties:
  20. ! 1) from fossil fuel = 0.015 um and sigma = 1.59
  21. ! 2) from vegetation fires = 0.04 um sigma = 1.59
  22. ! 3) POM from SOA has the characteristics of secondary
  23. ! products from monoterpine oxidation, which probably
  24. ! condense on pre-existing particles. Therefore only mass
  25. ! is calculated and added to the POM mass field if there
  26. ! are particles in the one or more soluble modes, if not
  27. ! they are formed in the Aitken soluble mode.
  28. ! The distribution of the total condensing SOA mass (M) in
  29. ! modes is
  30. !
  31. ! Solubility properties (from Stier et al.ACP, 2005):
  32. ! 1) POM from fossil fuel emissions is considered 65% soluble
  33. ! 2) POM from vegetation fire emissions is considered 65% soluble
  34. ! 3) POM from SOA is considered 100% soluble (Kanakidou et al. ACP, 2004)
  35. !
  36. !>>> TvN
  37. ! The latest revision allows to apply
  38. ! different sizes for the emissions from
  39. ! different sectors, as well as for
  40. ! biofuel emissions.
  41. ! Also, different solubility fractions can
  42. ! now be assumed for emissions from biomass burning,
  43. ! biofuel combustion and fossil fuel combustion.
  44. ! See settings in emission_data.F90.
  45. !
  46. ! The soluble and insoluble SOA fractions are assumed to
  47. ! condense onto particles in the Aitken modes,
  48. ! as in the previous version by E. Vignati.
  49. ! However, this assumption is questionable
  50. ! in regions where biomass burning is important,
  51. ! since emissions from vegetation fires
  52. ! are now assumed to occur in the accumulation modes.
  53. ! (Stier et al. assume condensation
  54. ! in the soluble Aitken and accumulation modes,
  55. ! but it is not clear how the condensation is/should be distributed
  56. ! over the two soluble modes in that case.)
  57. !
  58. ! The formation of new particles has been removed.
  59. ! Previously, a cut-off was applied based on emis_number
  60. ! (i.e. the number of particles emitted in a gridbox per month)
  61. ! from all sectors excluding the surrogate SOA emissions.
  62. ! This criterion is unrealistic
  63. ! in the sense that it does not describe any physical process,
  64. ! but was only used to select the cells without primary OA emissions.
  65. ! We have tested that the inclusion of such a cutoff for new particle formation
  66. ! has only very marginal impacts on the results, and can therefore be removed
  67. ! (in any case when starting from reasonable initial concentrations).
  68. !
  69. ! Note that in the ECHAM version described by Zhang et al.
  70. ! fossil fuel and biofuel emissions are considered
  71. ! 100% and 65% soluble, respectively.
  72. ! Since these sources are not distinguished in the currently used
  73. ! emission data sets, we keep the solubility of both sources
  74. ! at 65%, as was done by Stier et al.
  75. !<<< TvN
  76. !
  77. !\\
  78. !\\
  79. ! !INTERFACE:
  80. !
  81. MODULE EMISSION_POM
  82. !
  83. ! !USES:
  84. !
  85. use GO, only : gol, goErr, goPr
  86. use tm5_distgrid, only : dgrid, get_distgrid, scatter, gather
  87. use dims, only : nregions, okdebug
  88. use global_types, only : emis_data, d3_data
  89. use emission_data, only : emis_input_dir_aerocom
  90. use emission_data, only : emis_input_year_oc
  91. use emission_read, only : used_providers_aer, has_aer_emis
  92. implicit none
  93. private
  94. !
  95. ! !PUBLIC MEMBER FUNCTIONS:
  96. !
  97. public :: emission_pom_init ! allocate
  98. public :: emission_pom_done ! deallocate
  99. public :: emission_pom_declare ! read data
  100. !
  101. ! !PRIVATE DATA MEMBERS:
  102. !
  103. character(len=*), parameter :: mname = 'emission_pom'
  104. type(emis_data), dimension(:,:), allocatable :: pom_emis_2d, pom_bf_emis_2d
  105. type(d3_data), dimension(:,:), allocatable :: pom_emis_3d
  106. integer :: pom_2dsec, pom_3dsec
  107. !
  108. ! !REVISION HISTORY:
  109. ! ? ??? 2005 - Elisabetta Vignati - changed for coupling with M7
  110. ! 1 Sep 2010 - Achim Strunk - introduced AR5 emissions
  111. ! - reorganised the array structures and
  112. ! vertical distribution facility
  113. ! - cleaning
  114. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  115. !
  116. ! !REMARKS:
  117. !
  118. !EOP
  119. !------------------------------------------------------------------------
  120. CONTAINS
  121. !--------------------------------------------------------------------------
  122. ! TM5 !
  123. !--------------------------------------------------------------------------
  124. !BOP
  125. !
  126. ! !IROUTINE: EMISSION_POM_INIT
  127. !
  128. ! !DESCRIPTION: Allocate space needed to handle the emissions.
  129. !\\
  130. !\\
  131. ! !INTERFACE:
  132. !
  133. SUBROUTINE EMISSION_POM_INIT( status )
  134. !
  135. ! !USES:
  136. !
  137. use dims, only : lm
  138. use emission_read, only : providers_def, numb_providers
  139. use emission_data, only : LAR5BMB
  140. use emission_read, only : n_ar5_ant_sec, n_ar5_shp_sec, n_ar5_air_sec, n_ar5_bmb_sec
  141. use emission_read, only : ar5_cat_ant, ar5_cat_shp, ar5_cat_air, ar5_cat_bmb
  142. !
  143. ! !OUTPUT PARAMETERS:
  144. !
  145. integer, intent(out) :: status
  146. !
  147. ! !REVISION HISTORY:
  148. ! 1 Oct 2010 - Achim Strunk - v0
  149. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  150. !
  151. ! !REMARKS:
  152. !
  153. !EOP
  154. !------------------------------------------------------------------------
  155. !BOC
  156. character(len=*), parameter :: rname = mname//'/Emission_POM_Init'
  157. integer :: region, lsec
  158. integer :: lmr, lprov, i1, i2, j1, j2
  159. ! --- begin --------------------------------------
  160. status = 0
  161. if(.not. has_aer_emis) return
  162. ! nb of sectors
  163. pom_2dsec = 0
  164. pom_3dsec = 0
  165. do lprov = 1, numb_providers
  166. if (count(used_providers_aer.eq.providers_def(lprov)%name)/=0) then
  167. if (trim(providers_def(lprov)%name) .eq. 'AR5') then
  168. ! nb of available sectors in AR5 depends on category
  169. pom_2dsec = pom_2dsec + n_ar5_ant_sec*count('OC'.eq.ar5_cat_ant) + &
  170. n_ar5_shp_sec*count('OC'.eq.ar5_cat_shp)
  171. if (LAR5BMB) pom_2dsec = pom_2dsec + n_ar5_bmb_sec*count('OC'.eq.ar5_cat_bmb)
  172. pom_3dsec = pom_3dsec + count('OC'.eq.ar5_cat_air)
  173. else
  174. pom_2dsec = pom_2dsec + providers_def(lprov)%nsect2d
  175. pom_3dsec = pom_3dsec + providers_def(lprov)%nsect3d
  176. endif
  177. endif
  178. enddo
  179. allocate( pom_emis_2d( nregions, pom_2dsec ) )
  180. allocate( pom_bf_emis_2d( nregions, pom_2dsec ) )
  181. allocate( pom_emis_3d( nregions, pom_3dsec ) )
  182. ! allocate information arrays (2d and 3d)
  183. do region=1,nregions
  184. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, I_STOP=i2, J_STRT=j1, J_STOP=j2 )
  185. lmr = lm(region)
  186. do lsec=1,pom_2dsec
  187. allocate( pom_emis_2d(region,lsec)%surf(i1:i2,j1:j2) )
  188. allocate( pom_bf_emis_2d(region,lsec)%surf(i1:i2,j1:j2) )
  189. end do
  190. do lsec=1,pom_3dsec
  191. allocate( pom_emis_3d(region,lsec)%d3(i1:i2,j1:j2,lmr) )
  192. end do
  193. enddo
  194. ! ok
  195. status = 0
  196. END SUBROUTINE EMISSION_POM_INIT
  197. !EOC
  198. !--------------------------------------------------------------------------
  199. ! TM5 !
  200. !--------------------------------------------------------------------------
  201. !BOP
  202. !
  203. ! !IROUTINE: EMISSION_POM_DONE
  204. !
  205. ! !DESCRIPTION: Free memory.
  206. !\\
  207. !\\
  208. ! !INTERFACE:
  209. !
  210. SUBROUTINE EMISSION_POM_DONE( status )
  211. !
  212. ! !OUTPUT PARAMETERS:
  213. !
  214. integer, intent(out) :: status
  215. !
  216. ! !REVISION HISTORY:
  217. ! 1 Oct 2010 - Achim Strunk - v0
  218. !
  219. !EOP
  220. !------------------------------------------------------------------------
  221. !BOC
  222. character(len=*), parameter :: rname = mname//'/Emission_POM_Done'
  223. integer :: region, lsec
  224. ! --- begin --------------------------------------
  225. status = 0
  226. if(.not. has_aer_emis) return
  227. do region = 1, nregions
  228. do lsec=1,pom_2dsec
  229. deallocate( pom_emis_2d(region,lsec)%surf )
  230. deallocate( pom_bf_emis_2d(region,lsec)%surf )
  231. end do
  232. do lsec=1,pom_3dsec
  233. deallocate( pom_emis_3d(region,lsec)%d3 )
  234. end do
  235. end do
  236. deallocate( pom_emis_2d )
  237. deallocate( pom_bf_emis_2d )
  238. deallocate( pom_emis_3d )
  239. ! ok
  240. status = 0
  241. END SUBROUTINE EMISSION_POM_DONE
  242. !EOC
  243. !--------------------------------------------------------------------------
  244. ! TM5 !
  245. !--------------------------------------------------------------------------
  246. !BOP
  247. !
  248. ! !IROUTINE: EMISSION_POM_DECLARE
  249. !
  250. ! !DESCRIPTION: Opens, reads and evaluates input files (per month).
  251. ! Provides emissions on 2d/3d-arrays which are then given
  252. ! to emis_number and emis_mass, which are used in
  253. ! sedimentation. (no *_apply!)
  254. !\\
  255. !\\
  256. ! !INTERFACE:
  257. !
  258. SUBROUTINE EMISSION_POM_DECLARE( status )
  259. !
  260. ! !USES:
  261. !
  262. use binas, only : pi
  263. use partools, only : isRoot, par_broadcast
  264. use toolbox, only : coarsen_emission, distribute_emis2D
  265. use dims, only : im, jm, lm, idate, sec_month, nlon360, nlat180
  266. use chem_param, only : xmc, sigma_lognormal, pom_density
  267. use chem_param, only : mode_aii, mode_ais, mode_acs
  268. use MDF, only : MDF_Open, MDF_NETCDF, MDF_Get_Var
  269. use MDF, only : MDF_Close, MDF_READ, MDF_Inq_VarID
  270. use emission_data, only : emis_mass, emis_number
  271. use emission_data, only : rad_emi_ff_sol, rad_emi_ff_insol
  272. use emission_data, only : rad_emi_ene_sol, rad_emi_ene_insol
  273. use emission_data, only : rad_emi_ind_sol, rad_emi_ind_insol
  274. use emission_data, only : rad_emi_tra_sol, rad_emi_tra_insol
  275. use emission_data, only : rad_emi_shp_sol, rad_emi_shp_insol
  276. use emission_data, only : rad_emi_air_sol, rad_emi_air_insol
  277. use emission_data, only : rad_emi_bf_sol, rad_emi_bf_insol
  278. use emission_data, only : rad_emi_bb_sol, rad_emi_bb_insol
  279. !use emission_data, only : rad_soa
  280. use emission_data, only : frac_pom_sol_ff, frac_pom_sol_bf, frac_pom_sol_bb, frac_soa_sol
  281. !use emission_data, only : oc2pom
  282. use emission_data, only : oc2pom_ff, oc2pom_bf, oc2pom_bb, oc2pom_soa
  283. use emission_data, only : msg_emis, emis_temp, emission_vdist_by_sector
  284. use emission_data, only : vd_class_name_len
  285. ! ---------------- CMIP6 - AR5 - GFED - RETRO - MACC --------------------
  286. use emission_data, only : LAR5BMB
  287. use emission_data, only : emis_input_dir_mac
  288. use emission_data, only : emis_input_dir_retro
  289. use emission_data, only : emis_input_dir_gfed
  290. use emission_read, only : emission_ar5_regrid_aircraft
  291. use emission_read, only : emission_cmip6_ReadSector
  292. use emission_read, only : emission_cmip6bmb_ReadSector
  293. use emission_read, only : emission_ar5_ReadSector
  294. use emission_read, only : emission_macc_ReadSector
  295. use emission_read, only : emission_gfed_ReadSector
  296. use emission_read, only : emission_retro_ReadSector
  297. use emission_read, only : sector_name_len
  298. use emission_read, only : sectors_def, numb_sectors
  299. use emission_read, only : ar5_dim_3ddata
  300. !RM
  301. use mo_aero, only : nsoa
  302. !
  303. ! !OUTPUT PARAMETERS:
  304. !
  305. integer, intent(out) :: status
  306. !
  307. ! !REVISION HISTORY:
  308. ! 1 Oct 2010 - Achim Strunk - revamped for AR5
  309. ! 26 Jun 2012 - P. Le Sager - adapted for lon-lat MPI domain decomposition
  310. !
  311. !EOP
  312. !------------------------------------------------------------------------
  313. !BOC
  314. character(len=*), parameter :: rname = mname//'/emission_pom_declare'
  315. integer :: region, hasData
  316. integer, parameter :: add_field=0
  317. integer, parameter :: amonth=2
  318. !real :: rad_aver_mass
  319. real :: numbscale_exp
  320. integer :: imr, jmr, lmr, lsec, i1, i2, j1, j2, l
  321. real(kind=4), dimension(:,:,: ), allocatable :: hdfr3
  322. integer :: fid, varid ! hdf related
  323. ! ---------------------------------------------------------------
  324. real, dimension(:,:), allocatable :: field2d
  325. real, dimension(:,:,:), allocatable :: field3d, field3d2
  326. real, dimension(:,:), allocatable :: field2d_bf
  327. integer :: mode_sol
  328. real :: mass2numb_fact
  329. real :: mass2numb_ff_sol, mass2numb_ff_insol
  330. real :: mass2numb_ene_sol, mass2numb_ene_insol
  331. real :: mass2numb_ind_sol, mass2numb_ind_insol
  332. real :: mass2numb_tra_sol, mass2numb_tra_insol
  333. real :: mass2numb_shp_sol, mass2numb_shp_insol
  334. real :: mass2numb_air_sol, mass2numb_air_insol
  335. real :: mass2numb_bf_sol, mass2numb_bf_insol
  336. real :: mass2numb_bb_sol, mass2numb_bb_insol
  337. real :: mass2numb_nonbf_sol, mass2numb_nonbf_insol
  338. real :: oc2pom
  339. type(d3_data), dimension(nregions) :: emis3d, work, work_bf, work3d
  340. type(d3_data), dimension(nregions) :: frac_bf
  341. type(emis_data),dimension(nregions) :: wrk2D, wrk2D_bf, emis_glb
  342. integer :: seccount2d, seccount3d
  343. character(len=sector_name_len) :: tmpsector
  344. character(len=vd_class_name_len) :: tmpvsplit
  345. ! --- begin -----------------------------------------
  346. status = 0
  347. if(.not. has_aer_emis) return
  348. write(gol,'(" EMISS-INFO ------------- read POM emissions -------------")'); call goPr
  349. ! Reset emissions
  350. do region = 1, nregions
  351. do lsec=1,pom_2dsec
  352. pom_emis_2d(region,lsec)%surf = 0.0
  353. pom_bf_emis_2d(region,lsec)%surf = 0.0
  354. end do
  355. do lsec=1,pom_3dsec
  356. pom_emis_3d(region,lsec)%d3 = 0.0
  357. end do
  358. end do
  359. ! Allocate work arrays
  360. do region = 1, nregions
  361. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, I_STOP=i2, J_STRT=j1, J_STOP=j2 )
  362. lmr = lm(region)
  363. allocate( work3d(region)%d3 (i1:i2,j1:j2, ar5_dim_3ddata) ) ; work3d(region)%d3 = 0.0
  364. allocate( emis3d(region)%d3 (i1:i2,j1:j2, lmr ) ) ; emis3d(region)%d3 = 0.0
  365. allocate( frac_bf(region)%d3 (i1:i2,j1:j2, 1 ) )
  366. end do
  367. ! Global arrays for coarsening
  368. do region = 1, nregions
  369. if (isRoot)then
  370. allocate(work(region)%d3(im(region),jm(region),ar5_dim_3ddata))
  371. allocate(work_bf(region)%d3(im(region),jm(region),1))
  372. else
  373. allocate(work(region)%d3(1,1,1))
  374. allocate(work_bf(region)%d3(1,1,1))
  375. end if
  376. enddo
  377. do region = 1, nregions
  378. wrk2D(region)%surf => work(region)%d3(:,:,1)
  379. wrk2D_bf(region)%surf => work_bf(region)%d3(:,:,1)
  380. end do
  381. ! -----------------------------
  382. ! get emissions (ATTENTION: THIS IS Organic Carbon! )
  383. write(gol,'(1x,80("-"))') ; call goPr
  384. write(gol,*) ' WARNING: OC emissions are used instead of POM !' ; call goPr
  385. !write(gol,*) ' masses are transformed using constant factor oc2pom' ; call goPr
  386. write(gol,*) ' masses are transformed using constant factors' ; call goPr
  387. write(gol,*) ' for vegetation fires and other sources' ; call goPr
  388. write(gol,'(1x,80("-"))') ; call goPr
  389. ! --------------------------------
  390. ! do a loop over available sectors
  391. ! --------------------------------
  392. ! count 2d and 3d sectors
  393. seccount2d = 0
  394. seccount3d = 0
  395. ! always allocate here 3d data set (for 2d sectors it will be filled in first layer only)
  396. if (isRoot) then
  397. allocate( field3d( nlon360, nlat180, ar5_dim_3ddata ) ) ; field3d = 0.0
  398. allocate( field2d_bf( nlon360, nlat180 ) ) ; field2d_bf = 0.0
  399. else
  400. allocate( field3d( 1, 1, 1 ) )
  401. allocate( field2d_bf( 1, 1 ) )
  402. end if
  403. ! mass to number conversion factors for the relevant modes
  404. numbscale_exp = EXP(1.5*(LOG(sigma_lognormal(mode_aii)))**2)
  405. mass2numb_fact = 3./(4.*pi*(numbscale_exp**3)*pom_density)
  406. mass2numb_ff_insol = mass2numb_fact/(rad_emi_ff_insol**3)
  407. mass2numb_ene_insol = mass2numb_fact/(rad_emi_ene_insol**3)
  408. mass2numb_ind_insol = mass2numb_fact/(rad_emi_ind_insol**3)
  409. mass2numb_tra_insol = mass2numb_fact/(rad_emi_tra_insol**3)
  410. mass2numb_shp_insol = mass2numb_fact/(rad_emi_shp_insol**3)
  411. mass2numb_air_insol = mass2numb_fact/(rad_emi_air_insol**3)
  412. mass2numb_bf_insol = mass2numb_fact/(rad_emi_bf_insol**3)
  413. mass2numb_bb_insol = mass2numb_fact/(rad_emi_bb_insol**3)
  414. numbscale_exp = EXP(1.5*(LOG(sigma_lognormal(mode_ais)))**2)
  415. mass2numb_fact = 3./(4.*pi*(numbscale_exp**3)*pom_density)
  416. mass2numb_ff_sol = mass2numb_fact/(rad_emi_ff_sol**3)
  417. mass2numb_ene_sol = mass2numb_fact/(rad_emi_ene_sol**3)
  418. mass2numb_ind_sol = mass2numb_fact/(rad_emi_ind_sol**3)
  419. mass2numb_tra_sol = mass2numb_fact/(rad_emi_tra_sol**3)
  420. mass2numb_shp_sol = mass2numb_fact/(rad_emi_shp_sol**3)
  421. mass2numb_air_sol = mass2numb_fact/(rad_emi_air_sol**3)
  422. numbscale_exp = EXP(1.5*(LOG(sigma_lognormal(mode_acs)))**2)
  423. mass2numb_fact = 3./(4.*pi*(numbscale_exp**3)*pom_density)
  424. mass2numb_bf_sol = mass2numb_fact/(rad_emi_bf_sol**3)
  425. mass2numb_bb_sol = mass2numb_fact/(rad_emi_bb_sol**3)
  426. sec : do lsec = 1, numb_sectors
  427. if (count(used_providers_aer.eq.sectors_def(lsec)%prov).eq.0) cycle
  428. if (associated(sectors_def(lsec)%species)) then
  429. if (count('OC'.eq.sectors_def(lsec)%species).eq.0) cycle
  430. if ((trim(sectors_def(lsec)%catname) .eq. 'biomassburning').and.(.not.LAR5BMB)) cycle
  431. endif
  432. field3d = 0.0
  433. field2d_bf = 0.0
  434. if( sectors_def(lsec)%f3d ) then
  435. seccount3d = seccount3d + 1
  436. else
  437. seccount2d = seccount2d + 1
  438. end if
  439. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  440. oc2pom = oc2pom_bb
  441. else
  442. oc2pom = oc2pom_ff
  443. endif
  444. if (isRoot) then ! READ
  445. select case( trim(sectors_def(lsec)%prov) )
  446. case( 'CMIP6' )
  447. call emission_cmip6_ReadSector( 'OC', emis_input_year_oc, idate(2), lsec, field3d, status, field2d_bf )
  448. IF_NOTOK_RETURN(status=1;deallocate(field3d,field2d_bf))
  449. case( 'CMIP6BMB' )
  450. call emission_cmip6bmb_ReadSector( 'OC', emis_input_year_oc, idate(2), lsec, field3d, status )
  451. IF_NOTOK_RETURN(status=1;deallocate(field3d))
  452. case( 'AR5' )
  453. ! Screen out agricultural and solvent sectors for OC,
  454. ! because they are zero in the RCPs
  455. ! and not present in the historical files.
  456. if (trim(sectors_def(lsec)%name) .ne. 'emiss_agr' .and. &
  457. trim(sectors_def(lsec)%name) .ne. 'emiss_slv') then
  458. call emission_ar5_ReadSector( 'OC', emis_input_year_oc, idate(2), lsec, field3d, status )
  459. IF_NOTOK_RETURN(status=1;deallocate(field3d))
  460. endif
  461. case( 'MACC' )
  462. ! Screen out 'soil', 'nat', 'oc', bio', and 'air' since they are not available for OC.
  463. if ( ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_soil')) .and. &
  464. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_nat') ) .and. &
  465. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_oc') ) .and. &
  466. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_bio' ) ) .and. &
  467. ( .not. (trim(sectors_def(lsec)%name) .eq. 'emiss_air') ) ) then
  468. call emission_macc_ReadSector( emis_input_dir_mac, 'OC', emis_input_year_oc, idate(2), &
  469. '0.5x0.5_kg.nc', sectors_def(lsec)%name, 'kg / s', field3d, status )
  470. IF_NOTOK_RETURN(status=1;deallocate(field3d))
  471. end if
  472. case('GFEDv3')
  473. call emission_gfed_ReadSector( emis_input_dir_gfed, 'oc', emis_input_year_oc, idate(2), &
  474. 'GFED', 'kg / s', field3d(:,:,1), status )
  475. IF_NOTOK_RETURN(status=1)
  476. case('RETRO')
  477. call emission_retro_ReadSector( emis_input_dir_retro, 'OC', emis_input_year_oc, idate(2), &
  478. sectors_def(lsec)%name, 'kg / s', field3d(:,:,1), status )
  479. IF_NOTOK_RETURN(status=1)
  480. case default
  481. write(gol,*) "Error in list of providers for POM"; call goErr
  482. status=1; TRACEBACK; return
  483. end select
  484. ! nothing found???
  485. if( sum(field3d) < 100.*TINY(1.0) ) then
  486. if (okdebug) then
  487. write(gol,'("EMISS-INFO - no POM emissions found for ",a," ",a," for month ",i2 )') &
  488. trim(sectors_def(lsec)%prov), trim(sectors_def(lsec)%name), idate(2) ; call goPr
  489. endif
  490. hasData=0
  491. else
  492. if (okdebug) then
  493. write(gol,'("EMISS-INFO - found POM emissions for ",a," ",a," for month ",i2 )') &
  494. trim(sectors_def(lsec)%prov), trim(sectors_def(lsec)%name), idate(2) ; call goPr
  495. endif
  496. ! convert from OC to POM
  497. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  498. field3d = field3d * oc2pom_bb
  499. else
  500. field3d = field3d * oc2pom_ff
  501. ! correct biofuel contribution in surface level
  502. field3d(:,:,1) = field3d(:,:,1) + field2d_bf(:,:) * (oc2pom_bf - oc2pom_ff)
  503. field2d_bf = field2d_bf * oc2pom_bf
  504. endif
  505. ! scale from kg/s to kg/month
  506. field3d = field3d * sec_month ! kg / month
  507. field2d_bf = field2d_bf * sec_month
  508. hasData=1
  509. end if
  510. end if
  511. call Par_broadcast(hasData, status)
  512. IF_NOTOK_RETURN(status=1)
  513. if (hasData == 0) cycle sec
  514. ! distinguish 2d/3d sectors
  515. if( sectors_def(lsec)%f3d ) then
  516. ! ---------------------------------------
  517. ! 3d data (AIRCRAFT), available for CMIP6
  518. ! ---------------------------------------
  519. if (isRoot) then
  520. ! write some numbers
  521. call msg_emis( amonth, trim(sectors_def(lsec)%prov), sectors_def(lsec)%name, 'POM', oc2pom_ff*xmc, sum(field3d) )
  522. ! distribute to work arrays in regions
  523. call Coarsen_Emission( 'POM '//trim(sectors_def(lsec)%name), nlon360, nlat180, ar5_dim_3ddata, &
  524. field3d, work, add_field, status )
  525. IF_NOTOK_RETURN(status=1)
  526. end if
  527. ! scatter, sum up on target array
  528. do region = 1, nregions
  529. call scatter(dgrid(region), work3d(region)%d3, work(region)%d3, 0, status)
  530. IF_NOTOK_RETURN( status=1 )
  531. CALL GET_DISTGRID( dgrid(region), I_STRT=i1, J_STRT=j1)
  532. ! aircraft data: regrid vertically to model layers
  533. call emission_ar5_regrid_aircraft( region, i1, j1, work3d(region)%d3, emis3d(region)%d3, status )
  534. IF_NOTOK_RETURN( status=1 )
  535. pom_emis_3d(region,seccount3d)%d3 = pom_emis_3d(region,seccount3d)%d3 + emis3d(region)%d3
  536. end do
  537. ! add to emis target arrays
  538. do region = 1, nregions
  539. emis_mass (region,mode_aii)%d4(:,:,:,2) = &
  540. emis_mass (region,mode_aii)%d4(:,:,:,2) + &
  541. (1.-frac_pom_sol_ff) * pom_emis_3d(region,seccount3d)%d3(:,:,:)
  542. emis_mass (region,mode_ais)%d4(:,:,:,3) = &
  543. emis_mass (region,mode_ais)%d4(:,:,:,3) + &
  544. ( frac_pom_sol_ff) * pom_emis_3d(region,seccount3d)%d3(:,:,:)
  545. emis_number(region,mode_aii)%d4(:,:,:,2) = &
  546. emis_number(region,mode_aii)%d4(:,:,:,2) + &
  547. (1.-frac_pom_sol_ff) * pom_emis_3d(region,seccount3d)%d3(:,:,:) * mass2numb_air_insol
  548. emis_number(region,mode_ais)%d4(:,:,:,3) = &
  549. emis_number(region,mode_ais)%d4(:,:,:,3) + &
  550. ( frac_pom_sol_ff) * pom_emis_3d(region,seccount3d)%d3(:,:,:) * mass2numb_air_sol
  551. end do
  552. else ! 2d sector
  553. ! ---------------------------
  554. ! 2d data (Anthropogenic, Ships, Biomassburning)
  555. ! ---------------------------
  556. if (isRoot) then ! print total & regrid
  557. ! in the following print statement
  558. ! a possible difference between oc2pom_bf and oc2pom_ff
  559. ! is not accounted for,
  560. ! but this has no further consequences
  561. call msg_emis( amonth, trim(sectors_def(lsec)%prov), sectors_def(lsec)%name, 'POM', oc2pom*xmc, &
  562. sum(field3d(:,:,1)) )
  563. IF_NOTOK_RETURN(status=1)
  564. call coarsen_emission( 'POM '//sectors_def(lsec)%name, nlon360, nlat180, field3d(:,:,1), wrk2D, add_field, status)
  565. IF_NOTOK_RETURN(status=1)
  566. call coarsen_emission( 'POM solid biofuel '//sectors_def(lsec)%name, nlon360, nlat180, field2d_bf(:,:), wrk2D_bf, add_field, status)
  567. IF_NOTOK_RETURN(status=1)
  568. end if
  569. ! get temporary array for vertical distribution
  570. do region = 1, nregions
  571. call scatter(dgrid(region), pom_emis_2d(region,seccount2d)%surf, work(region)%d3(:,:,1), 0, status)
  572. IF_NOTOK_RETURN(status=1)
  573. call scatter(dgrid(region), pom_bf_emis_2d(region,seccount2d)%surf, work_bf(region)%d3(:,:,1), 0, status)
  574. IF_NOTOK_RETURN(status=1)
  575. emis3d(region)%d3 = 0.0
  576. ! do vertical distribution
  577. call emission_vdist_by_sector( sectors_def(lsec)%vdisttype, 'POM', region, pom_emis_2d(region,seccount2d), &
  578. emis3d(region), status )
  579. IF_NOTOK_RETURN(status=1)
  580. if( trim(sectors_def(lsec)%catname) == 'biomassburning' ) then
  581. ! add to emis target arrays
  582. emis_mass (region,mode_aii)%d4(:,:,:,2) = &
  583. emis_mass (region,mode_aii)%d4(:,:,:,2) + emis3d(region)%d3(:,:,:) * &
  584. (1.-frac_pom_sol_bb)
  585. emis_number(region,mode_aii)%d4(:,:,:,2) = &
  586. emis_number(region,mode_aii)%d4(:,:,:,2) + emis3d(region)%d3(:,:,:) * &
  587. (1.-frac_pom_sol_bb) * mass2numb_bb_insol
  588. emis_mass (region,mode_acs)%d4(:,:,:,3) = &
  589. emis_mass (region,mode_acs)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:) * &
  590. frac_pom_sol_bb
  591. emis_number(region,mode_acs)%d4(:,:,:,3) = &
  592. emis_number(region,mode_acs)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:) * &
  593. frac_pom_sol_bb * mass2numb_bb_sol
  594. else
  595. ! currenly only for CMIP6 sector names
  596. select case( trim(sectors_def(lsec)%name) )
  597. case ('ENE')
  598. mass2numb_nonbf_sol = mass2numb_ene_sol
  599. mass2numb_nonbf_insol = mass2numb_ene_insol
  600. case ('IND')
  601. mass2numb_nonbf_sol = mass2numb_ind_sol
  602. mass2numb_nonbf_insol = mass2numb_ind_insol
  603. case ('TRA')
  604. mass2numb_nonbf_sol = mass2numb_tra_sol
  605. mass2numb_nonbf_insol = mass2numb_tra_insol
  606. case ('SHP')
  607. mass2numb_nonbf_sol = mass2numb_shp_sol
  608. mass2numb_nonbf_insol = mass2numb_shp_insol
  609. case default
  610. mass2numb_nonbf_sol = mass2numb_ff_sol
  611. mass2numb_nonbf_insol = mass2numb_ff_insol
  612. end select
  613. if ( trim(sectors_def(lsec)%prov) == 'CMIP6' ) then
  614. ! calculate mass fraction related to solid biofuel
  615. where ( pom_emis_2d(region,seccount2d)%surf(:,:) > tiny(0.0) )
  616. frac_bf(region)%d3(:,:,1) = pom_bf_emis_2d(region,seccount2d)%surf(:,:) / &
  617. pom_emis_2d(region,seccount2d)%surf(:,:)
  618. elsewhere
  619. frac_bf(region)%d3(:,:,1) = 0.0
  620. endwhere
  621. ! for safety, prevent fractions larger than unity.
  622. where (frac_bf(region)%d3(:,:,1) > 1.0 )
  623. frac_bf(region)%d3(:,:,1) = 1.0
  624. endwhere
  625. else
  626. frac_bf(region)%d3(:,:,1) = 0.0
  627. endif
  628. do l = 1, lmr
  629. emis_mass (region,mode_aii)%d4(:,:,l,2) = &
  630. emis_mass (region,mode_aii)%d4(:,:,l,2) + emis3d(region)%d3(:,:,l) * &
  631. ( (1.-frac_bf(region)%d3(:,:,1)) * (1.-frac_pom_sol_ff) + &
  632. frac_bf(region)%d3(:,:,1) * (1.-frac_pom_sol_bf) )
  633. emis_number(region,mode_aii)%d4(:,:,l,2) = &
  634. emis_number(region,mode_aii)%d4(:,:,l,2) + emis3d(region)%d3(:,:,l) * &
  635. ( (1.-frac_bf(region)%d3(:,:,1)) * (1.-frac_pom_sol_ff) * mass2numb_nonbf_insol + &
  636. frac_bf(region)%d3(:,:,1) * (1.-frac_pom_sol_bf) * mass2numb_bf_insol )
  637. emis_mass (region,mode_ais)%d4(:,:,l,3) = &
  638. emis_mass (region,mode_ais)%d4(:,:,l,3) + emis3d(region)%d3(:,:,l) * &
  639. ( (1.-frac_bf(region)%d3(:,:,1)) * frac_pom_sol_ff )
  640. emis_number(region,mode_ais)%d4(:,:,l,3) = &
  641. emis_number(region,mode_ais)%d4(:,:,l,3) + emis3d(region)%d3(:,:,l) * &
  642. ( (1.-frac_bf(region)%d3(:,:,1)) * frac_pom_sol_ff * mass2numb_nonbf_sol )
  643. emis_mass (region,mode_acs)%d4(:,:,l,3) = &
  644. emis_mass (region,mode_acs)%d4(:,:,l,3) + emis3d(region)%d3(:,:,l) * &
  645. ( frac_bf(region)%d3(:,:,1) * frac_pom_sol_bf )
  646. emis_number(region,mode_acs)%d4(:,:,l,3) = &
  647. emis_number(region,mode_acs)%d4(:,:,l,3) + emis3d(region)%d3(:,:,l) * &
  648. ( frac_bf(region)%d3(:,:,1) * frac_pom_sol_bf * mass2numb_bf_sol )
  649. enddo
  650. endif
  651. end do
  652. end if
  653. end do sec ! sectors
  654. deallocate( field3d )
  655. deallocate( field2d_bf )
  656. do region = 1, nregions
  657. if (associated(wrk2D(region)%surf)) nullify(wrk2D(region)%surf)
  658. if (associated(wrk2D_bf(region)%surf)) nullify(wrk2D_bf(region)%surf)
  659. deallocate( work(region)%d3 )
  660. deallocate( work_bf(region)%d3 )
  661. deallocate( work3d(region)%d3 )
  662. deallocate( frac_bf(region)%d3 )
  663. end do
  664. ! check sectors found
  665. if( seccount2d /= pom_2dsec ) then
  666. write(gol,'(80("-"))') ; call goPr
  667. write(gol,'("ERROR: 2d sectors do not equal total number:",i4," /= ",i4," !")') seccount2d, pom_2dsec ; call goErr
  668. write(gol,'(80("-"))') ; call goPr
  669. status=1; return
  670. end if
  671. if( seccount3d /= pom_3dsec ) then
  672. write(gol,'(80("-"))') ; call goPr
  673. write(gol,'("ERROR: 3d sectors do not equal total number:",i4," /= ",i4," !")') seccount3d, pom_3dsec ; call goErr
  674. write(gol,'(80("-"))') ; call goPr
  675. status=1; return
  676. end if
  677. ! Old AEROCOM SOA emissions available only when nsoa == 0
  678. ! Otherwise the production of SOA is calculated from isoprene and monoterpene
  679. ! through chemical reactions in ebischeme.f90.
  680. if (nsoa .EQ. 0) then
  681. ! ---------------------------------------------------
  682. ! SOA condenses onto existing particles in the Aitken soluble mode
  683. ! ---------------------------------------------------
  684. ! select case( emis_input_provider )
  685. ! case( 'AR5','MACC' )
  686. write(gol,'(80("-"))') ; call goPr
  687. write(gol,*) ' WARNING: SOA emissions are employed in boxes ' ; call goPr
  688. write(gol,*) ' with too few particles in mode_ais! ' ; call goPr
  689. write(gol,*) ' Masses of SOA are neglected !!! ' ; call goPr
  690. write(gol,'(80("-"))') ; call goPr
  691. ! end select
  692. tmpsector = 'anthropogenic'
  693. ! assume SOA emissions to be vertically split due to this class:
  694. tmpvsplit = 'nearsurface'
  695. ! work arrays
  696. if (isRoot) then
  697. do region = 1, nregions
  698. allocate(emis_glb(region)%surf(im(region), jm(region)))
  699. end do
  700. else
  701. do region = 1, nregions
  702. allocate(emis_glb(region)%surf(1,1))
  703. end do
  704. end if
  705. ! Read
  706. if (isRoot) then
  707. allocate( hdfr3(nlon360,nlat180,1) ) ; hdfr3 = 0.0
  708. allocate( field2d(nlon360,nlat180) ) ; field2d = 0.0
  709. ! FIXME - this is untested, SOA.nc4 needs to be created - but not needed in EC-Earth
  710. call MDF_Open( trim(emis_input_dir_aerocom)//'/SOA.nc4', MDF_NETCDF, MDF_READ, fid, status)
  711. IF_NOTOK_RETURN(status=1)
  712. call MDF_Inq_VarID( fid, 'FIELD', varid, status)
  713. IF_NOTOK_RETURN(status=1)
  714. call MDF_Get_Var( fid, varid, hdfr3, status, start=(/1,1,idate(2)/), count=(/nlon360,nlat180,1/))
  715. IF_NOTOK_RETURN(status=1)
  716. CALL MDF_Close( fid, status )
  717. IF_NOTOK_RETURN(status=1)
  718. ! paste to 2d field
  719. field2d = hdfr3(:,:,1)
  720. !>>> TvN
  721. ! SOA emissions are provided in Tg POM, and are based on
  722. ! the assumption that 15% of the emitted terpene mass is converted to SOA
  723. ! (Kanakidou et al., ACP, 2005; Dentener et al., ACP, 2006).
  724. ! However, it seems that such an assumption
  725. ! is inconsistent with a POM to OC ratio of about 2.0 for freshly formed SOA
  726. ! (Aiken et al., Environ. Sci. Technol., 2008).
  727. ! The VOCs with the largest potential for SOA formation
  728. ! are mono-terpenes (C10H16), which account for 40-80%
  729. ! of the overall terpene emissions, and seqsquiterpenes (C15H24),
  730. ! which have a 100% SOA yield.
  731. ! The full weight to carbon weight ratios for these components
  732. ! are 1.133 and 1.16, respectively.
  733. ! Therefore, it seems reasonable to increase the SOA emissions
  734. ! as provided in the AeroCom input file
  735. ! by a factor of about ocpom_soa/1.15.
  736. ! Increasing the SOA emissions from AeroCom,
  737. ! which amount to 19.2 Tg/yr, is also consistent with AR5,
  738. ! where 20 Tg/yr is assumed to be a lower bound.
  739. field2d = field2d * oc2pom_soa/1.15
  740. !<<< TvN
  741. deallocate(hdfr3)
  742. ! prompt some numbers
  743. call msg_emis( amonth, 'AEROCOM', 'SOA-'//trim(tmpsector), 'POM', oc2pom_soa*xmc, sum(field2d) )
  744. IF_NOTOK_RETURN(status=1;deallocate(field2d))
  745. ! initialise/reset emis_temp(regions)
  746. do region = 1, nregions
  747. emis_temp(region)%surf = 0.0
  748. end do
  749. ! regrid from field2d to emis_glb
  750. call coarsen_emission( 'SOA '//trim(tmpsector), nlon360, nlat180, field2d, emis_glb, add_field, status)
  751. IF_NOTOK_RETURN(status=1;deallocate(field2d))
  752. deallocate( field2d )
  753. end if
  754. !>>> TvN
  755. ! EV total particle number emitted in a gridbox
  756. !rad_aver_mass = rad_soa*EXP(1.5*(LOG(sigma_lognormal(mode_ais)))**2)
  757. !mass_to_numb = 3./(4.*pi*(rad_aver_mass**3)*pom_density)
  758. ! Scatter, vertical distribution
  759. ! ------------------------------
  760. do region = 1, nregions
  761. call scatter(dgrid(region), emis_temp(region)%surf, emis_glb(region)%surf, 0, status)
  762. IF_NOTOK_RETURN(status=1)
  763. emis3d(region)%d3 = 0.0
  764. call emission_vdist_by_sector( tmpvsplit, 'SOA', region, emis_temp(region), emis3d(region), status )
  765. IF_NOTOK_RETURN(status=1)
  766. ! --------------
  767. ! Comment by EV:
  768. ! Let the SOA condense on the existing aerosols. Not emit the aerosol numbers.
  769. ! Only if there are insufficient aerosols (<1.0), we emit the aerosol numbers.
  770. ! add masses
  771. !emis_mass(region,mode_ais)%d4(:,:,:,3) = &
  772. ! emis_mass(region,mode_ais)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:)
  773. ! TB use the new compounds available to track the emissions from SOA.hdf
  774. ! emis_mass(region,mode_ais)%D4(:,:,:,4) put mass as soa-compound
  775. ! emis_mass(region,mode_aii)%D4(:,:,:,3) put mass as soa-compound
  776. emis_mass(region,mode_ais)%d4(:,:,:,4) = &
  777. emis_mass(region,mode_ais)%d4(:,:,:,4) + &
  778. frac_soa_sol * emis3d(region)%d3(:,:,:)
  779. emis_mass(region,mode_aii)%d4(:,:,:,3) = &
  780. emis_mass(region,mode_aii)%d4(:,:,:,3) + &
  781. (1.-frac_soa_sol) * emis3d(region)%d3(:,:,:)
  782. ! add numbers where appropriate
  783. ! where(emis_number(region,mode_ais)%d4(:,:,:,3) < 1.)
  784. !emis_number(region,mode_ais)%d4(:,:,:,3) = &
  785. ! emis_number(region,mode_ais)%d4(:,:,:,3) + emis3d(region)%d3(:,:,:) * mass_to_numb
  786. ! emis_number(region,mode_ais)%d4(:,:,:,3) = &
  787. ! emis_number(region,mode_ais)%d4(:,:,:,3) + &
  788. ! frac_soa_sol * emis3d(region)%d3(:,:,:) * mass_to_numb
  789. ! endwhere
  790. ! where(emis_number(region,mode_aii)%d4(:,:,:,2) < 1.)
  791. ! emis_number(region,mode_aii)%d4(:,:,:,2) = &
  792. ! emis_number(region,mode_aii)%d4(:,:,:,2) + &
  793. ! (1.-frac_soa_sol) * emis3d(region)%d3(:,:,:) * mass_to_numb
  794. ! endwhere
  795. !<<< TvN
  796. enddo
  797. ! Done
  798. do region = 1, nregions
  799. deallocate(emis_glb(region)%surf)
  800. deallocate( emis3d(region)%d3 )
  801. end do
  802. end if
  803. status = 0
  804. END SUBROUTINE EMISSION_POM_DECLARE
  805. !EOC
  806. END MODULE EMISSION_POM