123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- MODULE icbthm
- !!======================================================================
- !! *** MODULE icbthm ***
- !! Icebergs: thermodynamics routines for icebergs
- !!======================================================================
- !! History : 3.3.1 ! 2010-01 (Martin&Adcroft) Original code
- !! - ! 2011-03 (Madec) Part conversion to NEMO form
- !! - ! Removal of mapping from another grid
- !! - ! 2011-04 (Alderson) Split into separate modules
- !! - ! 2011-05 (Alderson) Use tmask instead of tmask_i
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! icb_thm : initialise
- !! reference for equations - M = Martin + Adcroft, OM 34, 2010
- !!----------------------------------------------------------------------
- USE par_oce ! NEMO parameters
- USE dom_oce ! NEMO domain
- USE in_out_manager ! NEMO IO routines, numout in particular
- USE lib_mpp ! NEMO MPI routines, ctl_stop in particular
- USE phycst ! NEMO physical constants
- USE sbc_oce
- USE icb_oce ! define iceberg arrays
- USE icbutl ! iceberg utility routines
- USE icbdia ! iceberg budget routines
- IMPLICIT NONE
- PRIVATE
- PUBLIC icb_thm ! routine called in icbstp.F90 module
- !! $Id: icbthm.F90 2355 2015-05-20 07:11:50Z ufla $
- CONTAINS
- SUBROUTINE icb_thm( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE icb_thm ***
- !!
- !! ** Purpose : compute the iceberg thermodynamics.
- !!
- !! ** Method : - See Martin & Adcroft, Ocean Modelling 34, 2010
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! timestep number, just passed to icb_utl_print_berg
- !
- INTEGER :: ii, ij
- REAL(wp) :: zM, zT, zW, zL, zSST, zVol, zLn, zWn, zTn, znVol, zIC, zDn
- REAL(wp) :: zMv, zMe, zMb, zmelt, zdvo, zdva, zdM, zSs, zdMe, zdMb, zdMv
- REAL(wp) :: zMnew, zMnew1, zMnew2, zheat
- REAL(wp) :: zMbits, znMbits, zdMbitsE, zdMbitsM, zLbits, zAbits, zMbb
- REAL(wp) :: zxi, zyj, zff, z1_rday, z1_e1e2, zdt, z1_dt, z1_dt_e1e2
- TYPE(iceberg), POINTER :: this, next
- TYPE(point) , POINTER :: pt
- !!----------------------------------------------------------------------
- !
- z1_rday = 1._wp / rday
-
- ! we're either going to ignore berg fresh water melt flux and associated heat
- ! or we pass it into the ocean, so at this point we set them both to zero,
- ! accumulate the contributions to them from each iceberg in the while loop following
- ! and then pass them (or not) to the ocean
- !
- berg_grid%floating_melt(:,:) = 0._wp
- berg_grid%calving_hflx(:,:) = 0._wp
-
- this => first_berg
- DO WHILE( associated(this) )
- !
- pt => this%current_point
- nknberg = this%number(1)
- CALL icb_utl_interp( pt%xi, pt%e1, pt%uo, pt%ui, pt%ua, pt%ssh_x, &
- & pt%yj, pt%e2, pt%vo, pt%vi, pt%va, pt%ssh_y, &
- & pt%sst, pt%cn, pt%hi, zff )
- !
- zSST = pt%sst
- zIC = MIN( 1._wp, pt%cn + rn_sicn_shift ) ! Shift sea-ice concentration !!gm ???
- zM = pt%mass
- zT = pt%thickness ! total thickness
- ! D = (rn_rho_bergs/pp_rho_seawater)*zT ! draught (keel depth)
- ! F = zT - D ! freeboard
- zW = pt%width
- zL = pt%length
- zxi = pt%xi ! position in (i,j) referential
- zyj = pt%yj
- ii = INT( zxi + 0.5 ) ! T-cell of the berg
- ii = mi1( ii )
- ij = INT( zyj + 0.5 )
- ij = mj1( ij )
- zVol = zT * zW * zL
- zdt = berg_dt ; z1_dt = 1._wp / zdt
- ! Environment
- zdvo = SQRT( (pt%uvel-pt%uo)**2 + (pt%vvel-pt%vo)**2 )
- zdva = SQRT( (pt%ua -pt%uo)**2 + (pt%va -pt%vo)**2 )
- zSs = 1.5 * SQRT( zdva ) + 0.1 * zdva ! Sea state (eqn M.A9)
- ! Melt rates in m/s (i.e. division by rday)
- zMv = MAX( 7.62e-3*zSST+1.29e-3*(zSST**2) , 0._wp ) * z1_rday ! Buoyant convection at sides (eqn M.A10)
- zMb = MAX( 0.58*(zdvo**0.8)*(zSST+4.0)/(zL**0.2) , 0._wp ) * z1_rday ! Basal turbulent melting (eqn M.A7 )
- zMe = MAX( 1./12.*(zSST+2.)*zSs*(1+cos(rpi*(zIC**3))) , 0._wp ) * z1_rday ! Wave erosion (eqn M.A8 )
- IF( ln_operator_splitting ) THEN ! Operator split update of volume/mass
- zTn = MAX( zT - zMb*zdt , 0._wp ) ! new total thickness (m)
- znVol = zTn * zW * zL ! new volume (m^3)
- zMnew1 = (znVol/zVol) * zM ! new mass (kg)
- zdMb = zM - zMnew1 ! mass lost to basal melting (>0) (kg)
- !
- zLn = MAX( zL - zMv*zdt , 0._wp ) ! new length (m)
- zWn = MAX( zW - zMv*zdt , 0._wp ) ! new width (m)
- znVol = zTn * zWn * zLn ! new volume (m^3)
- zMnew2 = (znVol/zVol) * zM ! new mass (kg)
- zdMv = zMnew1 - zMnew2 ! mass lost to buoyant convection (>0) (kg)
- !
- zLn = MAX( zLn - zMe*zdt , 0._wp ) ! new length (m)
- zWn = MAX( zWn - zMe*zdt , 0._wp ) ! new width (m)
- znVol = zTn * zWn * zLn ! new volume (m^3)
- zMnew = ( znVol / zVol ) * zM ! new mass (kg)
- zdMe = zMnew2 - zMnew ! mass lost to erosion (>0) (kg)
- zdM = zM - zMnew ! mass lost to all erosion and melting (>0) (kg)
- !
- ELSE ! Update dimensions of berg
- zLn = MAX( zL -(zMv+zMe)*zdt ,0._wp ) ! (m)
- zWn = MAX( zW -(zMv+zMe)*zdt ,0._wp ) ! (m)
- zTn = MAX( zT - zMb *zdt ,0._wp ) ! (m)
- ! Update volume and mass of berg
- znVol = zTn*zWn*zLn ! (m^3)
- zMnew = (znVol/zVol)*zM ! (kg)
- zdM = zM - zMnew ! (kg)
- zdMb = (zM/zVol) * (zW* zL ) *zMb*zdt ! approx. mass loss to basal melting (kg)
- zdMe = (zM/zVol) * (zT*(zW+zL)) *zMe*zdt ! approx. mass lost to erosion (kg)
- zdMv = (zM/zVol) * (zT*(zW+zL)) *zMv*zdt ! approx. mass loss to buoyant convection (kg)
- ENDIF
- IF( rn_bits_erosion_fraction > 0._wp ) THEN ! Bergy bits
- !
- zMbits = pt%mass_of_bits ! mass of bergy bits (kg)
- zdMbitsE = rn_bits_erosion_fraction * zdMe ! change in mass of bits (kg)
- znMbits = zMbits + zdMbitsE ! add new bergy bits to mass (kg)
- zLbits = MIN( zL, zW, zT, 40._wp ) ! assume bergy bits are smallest dimension or 40 meters
- zAbits = ( zMbits / rn_rho_bergs ) / zLbits ! Effective bottom area (assuming T=Lbits)
- zMbb = MAX( 0.58*(zdvo**0.8)*(zSST+2.0)/(zLbits**0.2), 0.) * z1_rday ! Basal turbulent melting (for bits)
- zMbb = rn_rho_bergs * zAbits * zMbb ! in kg/s
- zdMbitsM = MIN( zMbb*zdt , znMbits ) ! bergy bits mass lost to melting (kg)
- znMbits = znMbits-zdMbitsM ! remove mass lost to bergy bits melt
- IF( zMnew == 0._wp ) THEN ! if parent berg has completely melted then
- zdMbitsM = zdMbitsM + znMbits ! instantly melt all the bergy bits
- znMbits = 0._wp
- ENDIF
- ELSE ! No bergy bits
- zAbits = 0._wp
- zdMbitsE = 0._wp
- zdMbitsM = 0._wp
- znMbits = pt%mass_of_bits ! retain previous value incase non-zero
- ENDIF
- ! use tmask rather than tmask_i when dealing with icebergs
- IF( tmask(ii,ij,1) /= 0._wp ) THEN ! Add melting to the grid and field diagnostics
- z1_e1e2 = 1._wp / e1e2t(ii,ij) * this%mass_scaling
- z1_dt_e1e2 = z1_dt * z1_e1e2
- zmelt = ( zdM - ( zdMbitsE - zdMbitsM ) ) * z1_dt ! kg/s
- berg_grid%floating_melt(ii,ij) = berg_grid%floating_melt(ii,ij) + zmelt * z1_e1e2 ! kg/m2/s
- zheat = zmelt * pt%heat_density ! kg/s x J/kg = J/s
- berg_grid%calving_hflx (ii,ij) = berg_grid%calving_hflx (ii,ij) + zheat * z1_e1e2 ! W/m2
- CALL icb_dia_melt( ii, ij, zMnew, zheat, this%mass_scaling, &
- & zdM, zdMbitsE, zdMbitsM, zdMb, zdMe, &
- & zdMv, z1_dt_e1e2 )
- ELSE
- WRITE(numout,*) 'icb_thm: berg ',this%number(:),' appears to have grounded at ',narea,ii,ij
- CALL icb_utl_print_berg( this, kt )
- WRITE(numout,*) 'msk=',tmask(ii,ij,1), e1e2t(ii,ij)
- CALL ctl_stop('icb_thm', 'berg appears to have grounded!')
- ENDIF
- ! Rolling
- zDn = ( rn_rho_bergs / pp_rho_seawater ) * zTn ! draught (keel depth)
- IF( zDn > 0._wp .AND. MAX(zWn,zLn) < SQRT( 0.92*(zDn**2) + 58.32*zDn ) ) THEN
- zT = zTn
- zTn = zWn
- zWn = zT
- endif
- ! Store the new state of iceberg (with L>W)
- pt%mass = zMnew
- pt%mass_of_bits = znMbits
- pt%thickness = zTn
- pt%width = min(zWn,zLn)
- pt%length = max(zWn,zLn)
- next=>this%next
- !!gm add a test to avoid over melting ?
- IF( zMnew <= 0._wp ) THEN ! Delete the berg if completely melted
- CALL icb_utl_delete( first_berg, this )
- !
- ELSE ! Diagnose mass distribution on grid
- z1_e1e2 = 1._wp / e1e2t(ii,ij) * this%mass_scaling
- CALL icb_dia_size( ii, ij, zWn, zLn, zAbits, &
- & this%mass_scaling, zMnew, znMbits, z1_e1e2)
- ENDIF
- !
- this=>next
- !
- END DO
-
- ! now use melt and associated heat flux in ocean (or not)
- !
- IF(.NOT. ln_passive_mode ) THEN
- emp (:,:) = emp (:,:) - berg_grid%floating_melt(:,:)
- !! qns (:,:) = qns (:,:) + berg_grid%calving_hflx (:,:) !!gm heat flux not yet properly coded ==>> need it, SOLVE that!
- ENDIF
- !
- END SUBROUTINE icb_thm
- !!======================================================================
- END MODULE icbthm
|