123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- MODULE p4zsbc
- !!======================================================================
- !! *** MODULE p4sbc ***
- !! TOP : PISCES surface boundary conditions of external inputs of nutrients
- !!======================================================================
- !! History : 3.5 ! 2012-07 (O. Aumont, C. Ethe) Original code
- !!----------------------------------------------------------------------
- #if defined key_pisces
- !!----------------------------------------------------------------------
- !! 'key_pisces' PISCES bio-model
- !!----------------------------------------------------------------------
- !! p4z_sbc : Read and interpolate time-varying nutrients fluxes
- !! p4z_sbc_init : Initialization of p4z_sbc
- !!----------------------------------------------------------------------
- USE oce_trc ! shared variables between ocean and passive tracers
- USE trc ! passive tracers common variables
- USE sms_pisces ! PISCES Source Minus Sink variables
- USE iom ! I/O manager
- USE fldread ! time interpolation
- IMPLICIT NONE
- PRIVATE
- PUBLIC p4z_sbc
- PUBLIC p4z_sbc_init
- !! * Shared module variables
- LOGICAL , PUBLIC :: ln_dust !: boolean for dust input from the atmosphere
- LOGICAL , PUBLIC :: ln_solub !: boolean for variable solubility of atmospheric iron
- LOGICAL , PUBLIC :: ln_river !: boolean for river input of nutrients
- LOGICAL , PUBLIC :: ln_ndepo !: boolean for atmospheric deposition of N
- LOGICAL , PUBLIC :: ln_ironsed !: boolean for Fe input from sediments
- LOGICAL , PUBLIC :: ln_hydrofe !: boolean for Fe input from hydrothermal vents
- LOGICAL , PUBLIC :: ln_ironice !: boolean for Fe input from sea ice
- REAL(wp), PUBLIC :: sedfeinput !: Coastal release of Iron
- REAL(wp), PUBLIC :: dustsolub !: Solubility of the dust
- REAL(wp), PUBLIC :: mfrac !: Mineral Content of the dust
- REAL(wp), PUBLIC :: icefeinput !: Iron concentration in sea ice
- REAL(wp), PUBLIC :: wdust !: Sinking speed of the dust
- REAL(wp), PUBLIC :: nitrfix !: Nitrogen fixation rate
- REAL(wp), PUBLIC :: diazolight !: Nitrogen fixation sensitivty to light
- REAL(wp), PUBLIC :: concfediaz !: Fe half-saturation Cste for diazotrophs
- REAL(wp) :: hratio !: Fe:3He ratio assumed for vent iron supply
- LOGICAL , PUBLIC :: ll_sbc
- !! * Module variables
- LOGICAL :: ll_solub
- INTEGER, PARAMETER :: jpriv = 7 !: Maximum number of river input fields
- INTEGER, PARAMETER :: jr_dic = 1 !: index of dissolved inorganic carbon
- INTEGER, PARAMETER :: jr_doc = 2 !: index of dissolved organic carbon
- INTEGER, PARAMETER :: jr_din = 3 !: index of dissolved inorganic nitrogen
- INTEGER, PARAMETER :: jr_don = 4 !: index of dissolved organic nitrogen
- INTEGER, PARAMETER :: jr_dip = 5 !: index of dissolved inorganic phosporus
- INTEGER, PARAMETER :: jr_dop = 6 !: index of dissolved organic phosphorus
- INTEGER, PARAMETER :: jr_dsi = 7 !: index of dissolved silicate
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_dust ! structure of input dust
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_solub ! structure of input dust
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_river ! structure of input riverdic
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ndepo ! structure of input nitrogen deposition
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ironsed ! structure of input iron from sediment
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_hydrofe ! structure of input iron from hydrothermal vents
- INTEGER , PARAMETER :: nbtimes = 365 !: maximum number of times record in a file
- INTEGER :: ntimes_dust, ntimes_riv, ntimes_ndep ! number of time steps in a file
- INTEGER :: ntimes_solub, ntimes_hydro ! number of time steps in a file
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dust, solub !: dust fields
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdic, rivalk !: river input fields
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdin, rivdip !: river input fields
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdsi !: river input fields
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nitdep !: atmospheric N deposition
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ironsed !: Coastal supply of iron
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hydrofe !: Hydrothermal vent supply of iron
- REAL(wp), PUBLIC :: sedsilfrac, sedcalfrac
- REAL(wp), PUBLIC :: rivalkinput, rivdicinput
- REAL(wp), PUBLIC :: rivdininput, rivdipinput, rivdsiinput
- !!* Substitution
- # include "top_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/TOP 3.3 , NEMO Consortium (2010)
- !! $Id$
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE p4z_sbc( kt )
- !!----------------------------------------------------------------------
- !! *** routine p4z_sbc ***
- !!
- !! ** purpose : read and interpolate the external sources of nutrients
- !!
- !! ** method : read the files and interpolate the appropriate variables
- !!
- !! ** input : external netcdf files
- !!
- !!----------------------------------------------------------------------
- !! * arguments
- INTEGER, INTENT( in ) :: kt ! ocean time step
- !! * local declarations
- INTEGER :: ji,jj
- REAL(wp) :: zcoef, zyyss
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('p4z_sbc')
- !
- ! Compute dust at nit000 or only if there is more than 1 time record in dust file
- IF( ln_dust ) THEN
- IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_dust > 1 ) ) THEN
- CALL fld_read( kt, 1, sf_dust )
- IF( nn_ice_tr == -1 .AND. .NOT. ln_ironice ) THEN
- dust(:,:) = MAX( rtrn, sf_dust(1)%fnow(:,:,1) )
- ELSE
- dust(:,:) = MAX( rtrn, sf_dust(1)%fnow(:,:,1) ) * ( 1.0 - fr_i(:,:) )
- ENDIF
- ENDIF
- ENDIF
- IF( ll_solub ) THEN
- IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_solub > 1 ) ) THEN
- CALL fld_read( kt, 1, sf_solub )
- solub(:,:) = sf_solub(1)%fnow(:,:,1)
- ENDIF
- ENDIF
- ! N/P and Si releases due to coastal rivers
- ! Compute river at nit000 or only if there is more than 1 time record in river file
- ! -----------------------------------------
- IF( ln_river ) THEN
- IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_riv > 1 ) ) THEN
- CALL fld_read( kt, 1, sf_river )
- DO jj = 1, jpj
- DO ji = 1, jpi
- zcoef = ryyss * e1e2t(ji,jj) * h_rnf(ji,jj)
- rivalk(ji,jj) = sf_river(jr_dic)%fnow(ji,jj,1) &
- & * 1.E3 / ( 12. * zcoef + rtrn )
- rivdic(ji,jj) = ( sf_river(jr_dic)%fnow(ji,jj,1) + sf_river(jr_doc)%fnow(ji,jj,1) ) &
- & * 1.E3 / ( 12. * zcoef + rtrn )
- rivdin(ji,jj) = ( sf_river(jr_din)%fnow(ji,jj,1) + sf_river(jr_don)%fnow(ji,jj,1) ) &
- & * 1.E3 / rno3 / ( 14. * zcoef + rtrn )
- rivdip(ji,jj) = ( sf_river(jr_dip)%fnow(ji,jj,1) + sf_river(jr_dop)%fnow(ji,jj,1) ) &
- & * 1.E3 / po4r / ( 31. * zcoef + rtrn )
- rivdsi(ji,jj) = sf_river(jr_dsi)%fnow(ji,jj,1) &
- & * 1.E3 / ( 28.1 * zcoef + rtrn )
- END DO
- END DO
- ENDIF
- ENDIF
- ! Compute N deposition at nit000 or only if there is more than 1 time record in N deposition file
- IF( ln_ndepo ) THEN
- ! from kg m-2 s-1 to molC l-1 s-1
- IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_ndep > 1 ) ) THEN
- zcoef = 14.E6 * rno3 * ryyss
- CALL fld_read( kt, 1, sf_ndepo )
- nitdep(:,:) = MAX( rtrn, sf_ndepo(1)%fnow(:,:,1) ) / zcoef / fse3t(:,:,1)
- ENDIF
- IF( lk_vvl ) THEN
- zcoef = 14.E6 * rno3 * ryyss
- nitdep(:,:) = MAX ( rtrn, sf_ndepo(1)%fnow(:,:,1) ) / zcoef / fse3t(:,:,1)
- ENDIF
- ENDIF
- !
- IF( nn_timing == 1 ) CALL timing_stop('p4z_sbc')
- !
- END SUBROUTINE p4z_sbc
- SUBROUTINE p4z_sbc_init
- !!----------------------------------------------------------------------
- !! *** routine p4z_sbc_init ***
- !!
- !! ** purpose : initialization of the external sources of nutrients
- !!
- !! ** method : read the files and compute the budget
- !! called at the first timestep (nittrc000)
- !!
- !! ** input : external netcdf files
- !!
- !!----------------------------------------------------------------------
- !
- INTEGER :: ji, jj, jk, jm, ifpr
- INTEGER :: ii0, ii1, ij0, ij1
- INTEGER :: numdust, numsolub, numriv, numiron, numdepo, numhydro
- INTEGER :: ierr, ierr1, ierr2, ierr3
- INTEGER :: ios ! Local integer output status for namelist read
- INTEGER :: ik50 ! last level where depth less than 50 m
- INTEGER :: isrow ! index for ORCA1 starting row
- REAL(wp) :: zexpide, zdenitide, zmaskt
- REAL(wp) :: ztimes_dust, ztimes_riv, ztimes_ndep
- REAL(wp), DIMENSION(nbtimes) :: zsteps ! times records
- REAL(wp), DIMENSION(:), ALLOCATABLE :: rivinput
- REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zriver, zcmask
- !
- CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
- TYPE(FLD_N), DIMENSION(jpriv) :: slf_river ! array of namelist informations on the fields to read
- TYPE(FLD_N) :: sn_dust, sn_solub, sn_ndepo, sn_ironsed, sn_hydrofe ! informations about the fields to be read
- TYPE(FLD_N) :: sn_riverdoc, sn_riverdic, sn_riverdsi ! informations about the fields to be read
- TYPE(FLD_N) :: sn_riverdin, sn_riverdon, sn_riverdip, sn_riverdop
- !
- NAMELIST/nampissbc/cn_dir, sn_dust, sn_solub, sn_riverdic, sn_riverdoc, sn_riverdin, sn_riverdon, &
- & sn_riverdip, sn_riverdop, sn_riverdsi, sn_ndepo, sn_ironsed, sn_hydrofe, &
- & ln_dust, ln_solub, ln_river, ln_ndepo, ln_ironsed, ln_ironice, ln_hydrofe, &
- & sedfeinput, dustsolub, icefeinput, wdust, mfrac, nitrfix, diazolight, concfediaz, hratio
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('p4z_sbc_init')
- !
- ! !* set file information
- REWIND( numnatp_ref ) ! Namelist nampissbc in reference namelist : Pisces external sources of nutrients
- READ ( numnatp_ref, nampissbc, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampissbc in reference namelist', lwp )
- REWIND( numnatp_cfg ) ! Namelist nampissbc in configuration namelist : Pisces external sources of nutrients
- READ ( numnatp_cfg, nampissbc, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampissbc in configuration namelist', lwp )
- IF(lwm) WRITE ( numonp, nampissbc )
- IF ( ( nn_ice_tr >= 0 ) .AND. ln_ironice ) THEN
- IF(lwp) THEN
- WRITE(numout,*) ' ln_ironice incompatible with nn_ice_tr = ', nn_ice_tr
- WRITE(numout,*) ' Specify your sea ice iron concentration in nampisice instead '
- WRITE(numout,*) ' ln_ironice is forced to .FALSE. '
- ENDIF
- ln_ironice = .FALSE.
- ENDIF
- IF(lwp) THEN
- WRITE(numout,*) ' '
- WRITE(numout,*) ' namelist : nampissbc '
- WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~ '
- WRITE(numout,*) ' dust input from the atmosphere ln_dust = ', ln_dust
- WRITE(numout,*) ' Variable solubility of iron input ln_solub = ', ln_solub
- WRITE(numout,*) ' river input of nutrients ln_river = ', ln_river
- WRITE(numout,*) ' atmospheric deposition of n ln_ndepo = ', ln_ndepo
- WRITE(numout,*) ' Fe input from sediments ln_ironsed = ', ln_ironsed
- WRITE(numout,*) ' Fe input from seaice ln_ironice = ', ln_ironice
- WRITE(numout,*) ' fe input from hydrothermal vents ln_hydrofe = ', ln_hydrofe
- WRITE(numout,*) ' coastal release of iron sedfeinput = ', sedfeinput
- WRITE(numout,*) ' solubility of the dust dustsolub = ', dustsolub
- WRITE(numout,*) ' Mineral Fe content of the dust mfrac = ', mfrac
- WRITE(numout,*) ' Iron concentration in sea ice icefeinput = ', icefeinput
- WRITE(numout,*) ' sinking speed of the dust wdust = ', wdust
- WRITE(numout,*) ' nitrogen fixation rate nitrfix = ', nitrfix
- WRITE(numout,*) ' nitrogen fixation sensitivty to light diazolight = ', diazolight
- WRITE(numout,*) ' fe half-saturation cste for diazotrophs concfediaz = ', concfediaz
- WRITE(numout,*) ' Fe to 3He ratio assumed for vent iron supply hratio = ', hratio
- END IF
- IF( ln_dust .OR. ln_river .OR. ln_ndepo ) THEN ; ll_sbc = .TRUE.
- ELSE ; ll_sbc = .FALSE.
- ENDIF
- IF( ln_dust .AND. ln_solub ) THEN ; ll_solub = .TRUE.
- ELSE ; ll_solub = .FALSE.
- ENDIF
- ! dust input from the atmosphere
- ! ------------------------------
- IF( ln_dust ) THEN
- !
- IF(lwp) WRITE(numout,*) ' initialize dust input from atmosphere '
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
- !
- ALLOCATE( dust(jpi,jpj) ) ! allocation
- !
- ALLOCATE( sf_dust(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst
- IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_dust structure' )
- !
- CALL fld_fill( sf_dust, (/ sn_dust /), cn_dir, 'p4z_sed_init', 'Atmospheric dust deposition', 'nampissed' )
- ALLOCATE( sf_dust(1)%fnow(jpi,jpj,1) )
- IF( sn_dust%ln_tint ) ALLOCATE( sf_dust(1)%fdta(jpi,jpj,1,2) )
- !
- IF( Agrif_Root() ) THEN ! Only on the master grid
- ! Get total input dust ; need to compute total atmospheric supply of Si in a year
- CALL iom_open ( TRIM( sn_dust%clname ) , numdust )
- CALL iom_gettime( numdust, zsteps, kntime=ntimes_dust) ! get number of record in file`
- ENDIF
- END IF
- ! Solubility of dust deposition of iron
- ! Only if ln_dust and ln_solubility set to true (ll_solub = .true.)
- ! -----------------------------------------------------------------
- IF( ll_solub ) THEN
- !
- IF(lwp) WRITE(numout,*) ' initialize variable solubility of Fe '
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
- !
- ALLOCATE( solub(jpi,jpj) ) ! allocation
- !
- ALLOCATE( sf_solub(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst
- IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_solub structure' )
- !
- CALL fld_fill( sf_solub, (/ sn_solub /), cn_dir, 'p4z_sed_init', 'Solubility of atm. iron ', 'nampissed' )
- ALLOCATE( sf_solub(1)%fnow(jpi,jpj,1) )
- IF( sn_solub%ln_tint ) ALLOCATE( sf_solub(1)%fdta(jpi,jpj,1,2) )
- ! get number of record in file
- CALL iom_open ( TRIM( sn_solub%clname ) , numsolub )
- CALL iom_gettime( numsolub, zsteps, kntime=ntimes_solub) ! get number of record in file
- CALL iom_close( numsolub )
- ENDIF
- ! nutrient input from rivers
- ! --------------------------
- IF( ln_river ) THEN
- !
- slf_river(jr_dic) = sn_riverdic ; slf_river(jr_doc) = sn_riverdoc ; slf_river(jr_din) = sn_riverdin
- slf_river(jr_don) = sn_riverdon ; slf_river(jr_dip) = sn_riverdip ; slf_river(jr_dop) = sn_riverdop
- slf_river(jr_dsi) = sn_riverdsi
- !
- ALLOCATE( rivdic(jpi,jpj), rivalk(jpi,jpj), rivdin(jpi,jpj), rivdip(jpi,jpj), rivdsi(jpi,jpj) )
- !
- ALLOCATE( sf_river(jpriv), rivinput(jpriv), STAT=ierr1 ) !* allocate and fill sf_river (forcing structure) with sn_river_
- rivinput(:) = 0.0
- IF( ierr1 > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_irver structure' )
- !
- CALL fld_fill( sf_river, slf_river, cn_dir, 'p4z_sed_init', 'Input from river ', 'nampissed' )
- DO ifpr = 1, jpriv
- ALLOCATE( sf_river(ifpr)%fnow(jpi,jpj,1 ) )
- IF( slf_river(ifpr)%ln_tint ) ALLOCATE( sf_river(ifpr)%fdta(jpi,jpj,1,2) )
- END DO
- IF( Agrif_Root() ) THEN ! Only on the master grid
- ! Get total input rivers ; need to compute total river supply in a year
- DO ifpr = 1, jpriv
- CALL iom_open ( TRIM( slf_river(ifpr)%clname ), numriv )
- CALL iom_gettime( numriv, zsteps, kntime=ntimes_riv)
- ALLOCATE( zriver(jpi,jpj,ntimes_riv) )
- DO jm = 1, ntimes_riv
- CALL iom_get( numriv, jpdom_data, TRIM( slf_river(ifpr)%clvar ), zriver(:,:,jm), jm )
- END DO
- CALL iom_close( numriv )
- ztimes_riv = 1._wp / FLOAT(ntimes_riv)
- DO jm = 1, ntimes_riv
- rivinput(ifpr) = rivinput(ifpr) + glob_sum( zriver(:,:,jm) * tmask(:,:,1) * ztimes_riv )
- END DO
- DEALLOCATE( zriver)
- END DO
- ! N/P and Si releases due to coastal rivers
- ! -----------------------------------------
- rivdicinput = (rivinput(jr_dic) + rivinput(jr_doc) ) * 1E3 / 12._wp
- rivdininput = (rivinput(jr_din) + rivinput(jr_don) ) * 1E3 / rno3 / 14._wp
- rivdipinput = (rivinput(jr_dip) + rivinput(jr_dop) ) * 1E3 / po4r / 31._wp
- rivdsiinput = rivinput(jr_dsi) * 1E3 / 28.1_wp
- rivalkinput = rivinput(jr_dic) * 1E3 / 12._wp
- !
- ENDIF
- ELSE
- rivdicinput = 0._wp
- rivdininput = 0._wp
- rivdipinput = 0._wp
- rivdsiinput = 0._wp
- rivalkinput = 0._wp
- END IF
- ! nutrient input from dust
- ! ------------------------
- IF( ln_ndepo ) THEN
- !
- IF(lwp) WRITE(numout,*) ' initialize the nutrient input by dust from ndeposition.orca.nc'
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- !
- ALLOCATE( nitdep(jpi,jpj) ) ! allocation
- !
- ALLOCATE( sf_ndepo(1), STAT=ierr3 ) !* allocate and fill sf_sst (forcing structure) with sn_sst
- IF( ierr3 > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_ndepo structure' )
- !
- CALL fld_fill( sf_ndepo, (/ sn_ndepo /), cn_dir, 'p4z_sed_init', 'Nutrient atmospheric depositon ', 'nampissed' )
- ALLOCATE( sf_ndepo(1)%fnow(jpi,jpj,1) )
- IF( sn_ndepo%ln_tint ) ALLOCATE( sf_ndepo(1)%fdta(jpi,jpj,1,2) )
- !
- IF( Agrif_Root() ) THEN ! Only on the master grid
- ! Get total input dust ; need to compute total atmospheric supply of N in a year
- CALL iom_open ( TRIM( sn_ndepo%clname ), numdepo )
- CALL iom_gettime( numdepo, zsteps, kntime=ntimes_ndep)
- ENDIF
- ENDIF
- ! coastal and island masks
- ! ------------------------
- IF( ln_ironsed ) THEN
- !
- IF(lwp) WRITE(numout,*) ' computation of an island mask to enhance coastal supply of iron'
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- !
- ALLOCATE( ironsed(jpi,jpj,jpk) ) ! allocation
- !
- CALL iom_open ( TRIM( sn_ironsed%clname ), numiron )
- ALLOCATE( zcmask(jpi,jpj,jpk) )
- CALL iom_get ( numiron, jpdom_data, TRIM( sn_ironsed%clvar ), zcmask(:,:,:), 1 )
- CALL iom_close( numiron )
- !
- ik50 = 5 ! last level where depth less than 50 m
- DO jk = jpkm1, 1, -1
- IF( gdept_1d(jk) > 50. ) ik50 = jk - 1
- END DO
- IF (lwp) WRITE(numout,*)
- IF (lwp) WRITE(numout,*) ' Level corresponding to 50m depth ', ik50,' ', gdept_1d(ik50+1)
- IF (lwp) WRITE(numout,*)
- DO jk = 1, ik50
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1
- IF( tmask(ji,jj,jk) /= 0. ) THEN
- zmaskt = tmask(ji+1,jj,jk) * tmask(ji-1,jj,jk) * tmask(ji,jj+1,jk) &
- & * tmask(ji,jj-1,jk) * tmask(ji,jj,jk+1)
- IF( zmaskt == 0. ) zcmask(ji,jj,jk ) = MAX( 0.1, zcmask(ji,jj,jk) )
- END IF
- END DO
- END DO
- END DO
- !
- CALL lbc_lnk( zcmask , 'T', 1. ) ! lateral boundary conditions on cmask (sign unchanged)
- !
- DO jk = 1, jpk
- DO jj = 1, jpj
- DO ji = 1, jpi
- zexpide = MIN( 8.,( gdept_0(ji,jj,jk) / 500. )**(-1.5) )
- zdenitide = -0.9543 + 0.7662 * LOG( zexpide ) - 0.235 * LOG( zexpide )**2
- zcmask(ji,jj,jk) = zcmask(ji,jj,jk) * MIN( 1., EXP( zdenitide ) / 0.5 )
- END DO
- END DO
- END DO
- ! Coastal supply of iron
- ! -------------------------
- ironsed(:,:,jpk) = 0._wp
- DO jk = 1, jpkm1
- ironsed(:,:,jk) = sedfeinput * zcmask(:,:,jk) / ( e3t_0(:,:,jk) * rday )
- END DO
- DEALLOCATE( zcmask)
- ENDIF
- !
- ! Iron from Hydrothermal vents
- ! ------------------------
- IF( ln_hydrofe ) THEN
- !
- IF(lwp) WRITE(numout,*) ' Input of iron from hydrothermal vents '
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- !
- ALLOCATE( hydrofe(jpi,jpj,jpk) ) ! allocation
- !
- CALL iom_open ( TRIM( sn_hydrofe%clname ), numhydro )
- CALL iom_get ( numhydro, jpdom_data, TRIM( sn_hydrofe%clvar ), hydrofe(:,:,:), 1 )
- CALL iom_close( numhydro )
- !
- DO jk = 1, jpk
- hydrofe(:,:,jk) = ( hydrofe(:,:,jk) * hratio ) / ( e1e2t(:,:) * e3t_0(:,:,jk) * ryyss + rtrn ) / 1000._wp
- ENDDO
- !
- ENDIF
- !
- IF( ll_sbc ) CALL p4z_sbc( nit000 )
- !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) ' Total input of elements from river supply'
- WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- WRITE(numout,*) ' N Supply : ', rivdininput*rno3*1E3/1E12*14.,' TgN/yr'
- WRITE(numout,*) ' Si Supply : ', rivdsiinput*1E3/1E12*28.1,' TgSi/yr'
- WRITE(numout,*) ' P Supply : ', rivdipinput*1E3*po4r/1E12*31.,' TgP/yr'
- WRITE(numout,*) ' Alk Supply : ', rivalkinput*1E3/1E12,' Teq/yr'
- WRITE(numout,*) ' DIC Supply : ', rivdicinput*1E3*12./1E12,'TgC/yr'
- WRITE(numout,*)
- ENDIF
- !
- sedsilfrac = 0.03 ! percentage of silica loss in the sediments
- sedcalfrac = 0.6 ! percentage of calcite loss in the sediments
- !
- IF( nn_timing == 1 ) CALL timing_stop('p4z_sbc_init')
- !
- END SUBROUTINE p4z_sbc_init
- #else
- !!======================================================================
- !! Dummy module : No PISCES bio-model
- !!======================================================================
- CONTAINS
- SUBROUTINE p4z_sbc ! Empty routine
- END SUBROUTINE p4z_sbc
- #endif
- !!======================================================================
- END MODULE p4zsbc
|