123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- MODULE limthd
- !!======================================================================
- !! *** MODULE limthd ***
- !! LIM-3 : ice thermodynamic
- !!======================================================================
- !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1
- !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting)
- !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations
- !! - ! 2007-04 (M. Vancoppenolle) add lim_thd_glohec, lim_thd_con_dh and lim_thd_con_dif
- !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw
- !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas)
- !! 4.0 ! 2011-02 (G. Madec) dynamical allocation
- !! - ! 2012-05 (C. Rousset) add penetration solar flux
- !!----------------------------------------------------------------------
- #if defined key_lim3
- !!----------------------------------------------------------------------
- !! 'key_lim3' LIM3 sea-ice model
- !!----------------------------------------------------------------------
- !! lim_thd : thermodynamic of sea ice
- !! lim_thd_init : initialisation of sea-ice thermodynamic
- !!----------------------------------------------------------------------
- USE phycst ! physical constants
- USE dom_oce ! ocean space and time domain variables
- USE ice ! LIM: sea-ice variables
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE sbc_ice ! Surface boundary condition: ice fields
- USE thd_ice ! LIM thermodynamic sea-ice variables
- USE dom_ice ! LIM sea-ice domain
- USE limthd_dif ! LIM: thermodynamics, vertical diffusion
- USE limthd_dh ! LIM: thermodynamics, ice and snow thickness variation
- USE limthd_sal ! LIM: thermodynamics, ice salinity
- USE limthd_ent ! LIM: thermodynamics, ice enthalpy redistribution
- USE limthd_lac ! LIM-3 lateral accretion
- USE limitd_th ! remapping thickness distribution
- USE limtab ! LIM: 1D <==> 2D transformation
- USE limvar ! LIM: sea-ice variables
- USE lbclnk ! lateral boundary condition - MPP links
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE in_out_manager ! I/O manager
- USE prtctl ! Print control
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- USE timing ! Timing
- USE limcons ! conservation tests
- USE limctl
- IMPLICIT NONE
- PRIVATE
- PUBLIC lim_thd ! called by limstp module
- PUBLIC lim_thd_init ! called by sbc_lim_init
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010)
- !! $Id: limthd.F90 8176 2017-06-14 16:33:09Z vancop $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE lim_thd( kt )
- !!-------------------------------------------------------------------
- !! *** ROUTINE lim_thd ***
- !!
- !! ** Purpose : This routine manages ice thermodynamics
- !!
- !! ** Action : - Initialisation of some variables
- !! - Some preliminary computation (oceanic heat flux
- !! at the ice base, snow acc.,heat budget of the leads)
- !! - selection of the icy points and put them in an array
- !! - call lim_thd_dif for vertical heat diffusion
- !! - call lim_thd_dh for vertical ice growth and melt
- !! - call lim_thd_ent for enthalpy remapping
- !! - call lim_thd_sal for ice desalination
- !! - call lim_thd_temp to retrieve temperature from ice enthalpy
- !! - back to the geographic grid
- !!
- !! ** References :
- !!---------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! number of iteration
- !!
- INTEGER :: ji, jj, jk, jl ! dummy loop indices
- INTEGER :: nbpb ! nb of icy pts for vertical thermo calculations
- INTEGER :: ii, ij ! temporary dummy loop index
- REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg
- REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b
- REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04)
- REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient
- !
- !!-------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('limthd')
- ! conservation test
- IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- CALL lim_var_glo2eqv
- !------------------------------------------------------------------------!
- ! 1) Initialization of some variables !
- !------------------------------------------------------------------------!
- ftr_ice(:,:,:) = 0._wp ! part of solar radiation transmitted through the ice
- !--------------------
- ! 1.2) Heat content
- !--------------------
- ! Change the units of heat content; from J/m2 to J/m3
- DO jl = 1, jpl
- DO jk = 1, nlay_i
- DO jj = 1, jpj
- DO ji = 1, jpi
- !0 if no ice and 1 if yes
- rswitch = MAX( 0._wp , SIGN( 1._wp , v_i(ji,jj,jl) - epsi20 ) )
- !Energy of melting q(S,T) [J.m-3]
- e_i(ji,jj,jk,jl) = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * REAL( nlay_i )
- END DO
- END DO
- END DO
- DO jk = 1, nlay_s
- DO jj = 1, jpj
- DO ji = 1, jpi
- !0 if no ice and 1 if yes
- rswitch = MAX( 0._wp , SIGN( 1._wp , v_s(ji,jj,jl) - epsi20 ) )
- !Energy of melting q(S,T) [J.m-3]
- e_s(ji,jj,jk,jl) = rswitch * e_s(ji,jj,jk,jl) / MAX( v_s(ji,jj,jl) , epsi20 ) * REAL( nlay_s )
- END DO
- END DO
- END DO
- END DO
- ! 2) Partial computation of forcing for the thermodynamic sea ice model. !
- !-----------------------------------------------------------------------------!
- DO jj = 1, jpj
- DO ji = 1, jpi
- rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice
- !
- ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget
- ! ! practically no "direct lateral ablation"
- !
- ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean
- ! ! temperature and turbulent mixing (McPhee, 1992)
- !
- ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- !
- zqld = tmask(ji,jj,1) * rdt_ice * &
- & ( pfrld(ji,jj) * qsr_oce(ji,jj) * frq_m(ji,jj) + pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) )
- ! --- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- !
- ! includes supercooling potential energy (>0) or "above-freezing" energy (<0)
- zqfr = tmask(ji,jj,1) * rau0 * rcp * fse3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) )
- ! --- Above-freezing sensible heat content (J/m2 grid)
- zqfr_neg = tmask(ji,jj,1) * rau0 * rcp * fse3t_m(ji,jj) * MIN( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ), 0._wp )
- ! --- Sensible ocean-to-ice heat flux (W/m2)
- zfric_u = MAX( SQRT( ust2s(ji,jj) ), zfric_umin )
- fhtur(ji,jj) = rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ! W.m-2
- fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - zqfr_neg * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) )
- ! upper bound for fhtur: the heat retrieved from the ocean must be smaller than the heat necessary to reach
- ! the freezing point, so that we do not have SST < T_freeze
- ! This implies: - ( fhtur(ji,jj) * at_i(ji,jj) * rtdice ) - zqfr >= 0
- !-- Energy Budget of the leads (J.m-2), source of lateral accretion. Must be < 0 to form ice
- qlead(ji,jj) = MIN( 0._wp , zqld - ( fhtur(ji,jj) * at_i(ji,jj) * rdt_ice ) - zqfr )
- ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting
- IF( zqld > 0._wp ) THEN
- fhld (ji,jj) = rswitch * zqld * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ! divided by at_i since this is (re)multiplied by a_i in limthd_dh.F90
- qlead(ji,jj) = 0._wp
- ELSE
- fhld (ji,jj) = 0._wp
- ENDIF
- !
- ! -----------------------------------------
- ! Net heat flux on top of ice-ocean [W.m-2]
- ! -----------------------------------------
- hfx_in(ji,jj) = qns_tot(ji,jj) + qsr_tot(ji,jj)
- ! -----------------------------------------------------------------------------
- ! Net heat flux on top of the ocean after ice thermo (1st step) [W.m-2]
- ! -----------------------------------------------------------------------------
- ! First step here : non solar + precip - qlead - qturb
- ! Second step in limthd_dh : heat remaining if total melt (zq_rema)
- ! Third step in limsbc : heat from ice-ocean mass exchange (zf_mass) + solar
- hfx_out(ji,jj) = pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) & ! Non solar heat flux received by the ocean
- & - qlead(ji,jj) * r1_rdtice & ! heat flux taken from the ocean where there is open water ice formation
- & - at_i(ji,jj) * fhtur(ji,jj) & ! heat flux taken by turbulence
- & - at_i(ji,jj) * fhld(ji,jj) ! heat flux taken during bottom growth/melt
- ! (fhld should be 0 while bott growth)
- END DO
- END DO
- !------------------------------------------------------------------------------!
- ! 3) Select icy points and fulfill arrays for the vectorial grid.
- !------------------------------------------------------------------------------!
- DO jl = 1, jpl !loop over ice categories
- IF( kt == nit000 .AND. lwp ) THEN
- WRITE(numout,*) ' lim_thd : transfer to 1D vectors. Category no : ', jl
- WRITE(numout,*) ' ~~~~~~~~'
- ENDIF
- nbpb = 0
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF ( a_i(ji,jj,jl) > epsi10 ) THEN
- nbpb = nbpb + 1
- npb(nbpb) = (jj - 1) * jpi + ji
- ENDIF
- END DO
- END DO
- ! debug point to follow
- jiindex_1d = 0
- IF( ln_icectl ) THEN
- DO ji = mi0(iiceprt), mi1(iiceprt)
- DO jj = mj0(jiceprt), mj1(jiceprt)
- jiindex_1d = (jj - 1) * jpi + ji
- WRITE(numout,*) ' lim_thd : Category no : ', jl
- END DO
- END DO
- ENDIF
- !------------------------------------------------------------------------------!
- ! 4) Thermodynamic computation
- !------------------------------------------------------------------------------!
- IF( lk_mpp ) CALL mpp_ini_ice( nbpb , numout )
- IF( nbpb > 0 ) THEN ! If there is no ice, do nothing.
- !-------------------------!
- ! --- Move to 1D arrays ---
- !-------------------------!
- CALL lim_thd_1d2d( nbpb, jl, 1 )
- !--------------------------------------!
- ! --- Ice/Snow Temperature profile --- !
- !--------------------------------------!
- CALL lim_thd_dif( 1, nbpb )
- !---------------------------------!
- ! --- Ice/Snow thickness --- !
- !---------------------------------!
- CALL lim_thd_dh( 1, nbpb )
- ! --- Ice enthalpy remapping --- !
- CALL lim_thd_ent( 1, nbpb, q_i_1d(1:nbpb,:) )
-
- !---------------------------------!
- ! --- Ice salinity --- !
- !---------------------------------!
- CALL lim_thd_sal( 1, nbpb )
- !---------------------------------!
- ! --- temperature update --- !
- !---------------------------------!
- CALL lim_thd_temp( 1, nbpb )
- !------------------------------------!
- ! --- lateral melting if monocat --- !
- !------------------------------------!
- IF ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) THEN
- CALL lim_thd_lam( 1, nbpb )
- END IF
- !-------------------------!
- ! --- Move to 2D arrays ---
- !-------------------------!
- CALL lim_thd_1d2d( nbpb, jl, 2 )
- !
- IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ??
- ENDIF
- !
- END DO !jl
- !------------------------------------------------------------------------------!
- ! 5) Global variables, diagnostics
- !------------------------------------------------------------------------------!
- !------------------------
- ! Ice heat content
- !------------------------
- ! Enthalpies are global variables we have to readjust the units (heat content in J/m2)
- DO jl = 1, jpl
- DO jk = 1, nlay_i
- e_i(:,:,jk,jl) = e_i(:,:,jk,jl) * a_i(:,:,jl) * ht_i(:,:,jl) * r1_nlay_i
- END DO
- END DO
- !------------------------
- ! Snow heat content
- !------------------------
- ! Enthalpies are global variables we have to readjust the units (heat content in J/m2)
- DO jl = 1, jpl
- DO jk = 1, nlay_s
- e_s(:,:,jk,jl) = e_s(:,:,jk,jl) * a_i(:,:,jl) * ht_s(:,:,jl) * r1_nlay_s
- END DO
- END DO
-
- !----------------------------------
- ! Change thickness to volume
- !----------------------------------
- v_i(:,:,:) = ht_i(:,:,:) * a_i(:,:,:)
- v_s(:,:,:) = ht_s(:,:,:) * a_i(:,:,:)
- smv_i(:,:,:) = sm_i(:,:,:) * v_i(:,:,:)
- ! update ice age (in case a_i changed, i.e. becomes 0 or lateral melting in monocat)
- DO jl = 1, jpl
- DO jj = 1, jpj
- DO ji = 1, jpi
- rswitch = MAX( 0._wp , SIGN( 1._wp, a_i_b(ji,jj,jl) - epsi10 ) )
- oa_i(ji,jj,jl) = rswitch * oa_i(ji,jj,jl) * a_i(ji,jj,jl) / MAX( a_i_b(ji,jj,jl), epsi10 )
- END DO
- END DO
- END DO
- CALL lim_var_zapsmall
- !--------------------------------------------
- ! Diagnostic thermodynamic growth rates
- !--------------------------------------------
- IF( ln_icectl ) CALL lim_prt( kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ' ) ! control print
- IF(ln_ctl) THEN ! Control print
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Cell values : ')
- CALL prt_ctl_info(' ~~~~~~~~~~~~~ ')
- CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_thd : cell area :')
- CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_thd : at_i :')
- CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_thd : vt_i :')
- CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_thd : vt_s :')
- DO jl = 1, jpl
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Category : ', ivar1=jl)
- CALL prt_ctl_info(' ~~~~~~~~~~')
- CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_thd : a_i : ')
- CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_thd : ht_i : ')
- CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_thd : ht_s : ')
- CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_thd : v_i : ')
- CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_thd : v_s : ')
- CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_thd : e_s : ')
- CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_thd : t_su : ')
- CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_thd : t_snow : ')
- CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_thd : sm_i : ')
- CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_thd : smv_i : ')
- DO jk = 1, nlay_i
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Layer : ', ivar1=jk)
- CALL prt_ctl_info(' ~~~~~~~')
- CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_thd : t_i : ')
- CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_thd : e_i : ')
- END DO
- END DO
- ENDIF
- !
- !
- IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- !------------------------------------------------------------------------------|
- ! 6) Transport of ice between thickness categories. |
- !------------------------------------------------------------------------------|
- ! Given thermodynamic growth rates, transport ice between thickness categories.
- IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- IF( jpl > 1 ) CALL lim_itd_th_rem( 1, jpl, kt )
- IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- !------------------------------------------------------------------------------|
- ! 7) Add frazil ice growing in leads.
- !------------------------------------------------------------------------------|
- IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- CALL lim_thd_lac
-
- IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b)
- ! Control print
- IF(ln_ctl) THEN
- CALL lim_var_glo2eqv
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Cell values : ')
- CALL prt_ctl_info(' ~~~~~~~~~~~~~ ')
- CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_itd_th : cell area :')
- CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_itd_th : at_i :')
- CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_itd_th : vt_i :')
- CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_itd_th : vt_s :')
- DO jl = 1, jpl
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Category : ', ivar1=jl)
- CALL prt_ctl_info(' ~~~~~~~~~~')
- CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_itd_th : a_i : ')
- CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_itd_th : ht_i : ')
- CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_itd_th : ht_s : ')
- CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_itd_th : v_i : ')
- CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_itd_th : v_s : ')
- CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_itd_th : e_s : ')
- CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_itd_th : t_su : ')
- CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_itd_th : t_snow : ')
- CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_itd_th : sm_i : ')
- CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_itd_th : smv_i : ')
- DO jk = 1, nlay_i
- CALL prt_ctl_info(' ')
- CALL prt_ctl_info(' - Layer : ', ivar1=jk)
- CALL prt_ctl_info(' ~~~~~~~')
- CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : t_i : ')
- CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : e_i : ')
- END DO
- END DO
- ENDIF
- !
- IF( nn_timing == 1 ) CALL timing_stop('limthd')
- END SUBROUTINE lim_thd
-
- SUBROUTINE lim_thd_temp( kideb, kiut )
- !!-----------------------------------------------------------------------
- !! *** ROUTINE lim_thd_temp ***
- !!
- !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy
- !!
- !! ** Method : Formula (Bitz and Lipscomb, 1999)
- !!-------------------------------------------------------------------
- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop
- !!
- INTEGER :: ji, jk ! dummy loop indices
- REAL(wp) :: ztmelts, zaaa, zbbb, zccc, zdiscrim ! local scalar
- !!-------------------------------------------------------------------
- ! Recover ice temperature
- DO jk = 1, nlay_i
- DO ji = kideb, kiut
- ztmelts = -tmut * s_i_1d(ji,jk) + rt0
- ! Conversion q(S,T) -> T (second order equation)
- zaaa = cpic
- zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + q_i_1d(ji,jk) * r1_rhoic - lfus
- zccc = lfus * ( ztmelts - rt0 )
- zdiscrim = SQRT( MAX( zbbb * zbbb - 4._wp * zaaa * zccc, 0._wp ) )
- t_i_1d(ji,jk) = rt0 - ( zbbb + zdiscrim ) / ( 2._wp * zaaa )
-
- ! mask temperature
- rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - ht_i_1d(ji) ) )
- t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0
- END DO
- END DO
- END SUBROUTINE lim_thd_temp
- SUBROUTINE lim_thd_lam( kideb, kiut )
- !!-----------------------------------------------------------------------
- !! *** ROUTINE lim_thd_lam ***
- !!
- !! ** Purpose : Lateral melting in case monocategory
- !! ( dA = A/2h dh )
- !!-----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop
- INTEGER :: ji ! dummy loop indices
- REAL(wp) :: zhi_bef ! ice thickness before thermo
- REAL(wp) :: zdh_mel, zda_mel ! net melting
- REAL(wp) :: zvi, zvs ! ice/snow volumes
- DO ji = kideb, kiut
- zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) + dh_i_sub(ji) )
- IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN
- zvi = a_i_1d(ji) * ht_i_1d(ji)
- zvs = a_i_1d(ji) * ht_s_1d(ji)
- ! lateral melting = concentration change
- zhi_bef = ht_i_1d(ji) - zdh_mel
- rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) )
- zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) )
- a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel )
- ! adjust thickness
- ht_i_1d(ji) = zvi / a_i_1d(ji)
- ht_s_1d(ji) = zvs / a_i_1d(ji)
- ! retrieve total concentration
- at_i_1d(ji) = a_i_1d(ji)
- END IF
- END DO
-
- END SUBROUTINE lim_thd_lam
- SUBROUTINE lim_thd_1d2d( nbpb, jl, kn )
- !!-----------------------------------------------------------------------
- !! *** ROUTINE lim_thd_1d2d ***
- !!
- !! ** Purpose : move arrays from 1d to 2d and the reverse
- !!-----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D
- ! 2= from 1D to 2D
- INTEGER, INTENT(in) :: nbpb ! size of 1D arrays
- INTEGER, INTENT(in) :: jl ! ice cat
- INTEGER :: jk ! dummy loop indices
- SELECT CASE( kn )
- CASE( 1 )
- CALL tab_2d_1d( nbpb, at_i_1d (1:nbpb), at_i , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, a_i_1d (1:nbpb), a_i(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, ht_i_1d (1:nbpb), ht_i(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, ht_s_1d (1:nbpb), ht_s(:,:,jl) , jpi, jpj, npb(1:nbpb) )
-
- CALL tab_2d_1d( nbpb, t_su_1d (1:nbpb), t_su(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sm_i_1d (1:nbpb), sm_i(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- DO jk = 1, nlay_s
- CALL tab_2d_1d( nbpb, t_s_1d(1:nbpb,jk), t_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, q_s_1d(1:nbpb,jk), e_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) )
- END DO
- DO jk = 1, nlay_i
- CALL tab_2d_1d( nbpb, t_i_1d(1:nbpb,jk), t_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, q_i_1d(1:nbpb,jk), e_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, s_i_1d(1:nbpb,jk), s_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) )
- END DO
-
- CALL tab_2d_1d( nbpb, qprec_ice_1d(1:nbpb), qprec_ice(:,:) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, qevap_ice_1d(1:nbpb), qevap_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, qsr_ice_1d (1:nbpb), qsr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, fr1_i0_1d (1:nbpb), fr1_i0 , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, fr2_i0_1d (1:nbpb), fr2_i0 , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, qns_ice_1d (1:nbpb), qns_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, ftr_ice_1d (1:nbpb), ftr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, evap_ice_1d (1:nbpb), evap_ice(:,:,jl), jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, dqns_ice_1d(1:nbpb), dqns_ice(:,:,jl), jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, t_bo_1d (1:nbpb), t_bo , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sprecip_1d (1:nbpb), sprecip , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, fhtur_1d (1:nbpb), fhtur , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, qlead_1d (1:nbpb), qlead , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, fhld_1d (1:nbpb), fhld , jpi, jpj, npb(1:nbpb) )
-
- CALL tab_2d_1d( nbpb, wfx_snw_1d (1:nbpb), wfx_snw , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_snw_sum_1d(1:nbpb), wfx_snw_sum , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_sub_1d (1:nbpb), wfx_sub , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_snw_sub_1d(1:nbpb), wfx_snw_sub , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_ice_sub_1d(1:nbpb), wfx_ice_sub , jpi, jpj, npb(1:nbpb) )
-
- CALL tab_2d_1d( nbpb, wfx_bog_1d (1:nbpb), wfx_bog , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_bom_1d (1:nbpb), wfx_bom , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_sum_1d (1:nbpb), wfx_sum , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_sni_1d (1:nbpb), wfx_sni , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_res_1d (1:nbpb), wfx_res , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, wfx_spr_1d (1:nbpb), wfx_spr , jpi, jpj, npb(1:nbpb) )
-
- CALL tab_2d_1d( nbpb, sfx_bog_1d (1:nbpb), sfx_bog , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_bom_1d (1:nbpb), sfx_bom , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_sum_1d (1:nbpb), sfx_sum , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_sni_1d (1:nbpb), sfx_sni , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_bri_1d (1:nbpb), sfx_bri , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_res_1d (1:nbpb), sfx_res , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, sfx_sub_1d (1:nbpb), sfx_sub , jpi, jpj,npb(1:nbpb) )
-
- CALL tab_2d_1d( nbpb, hfx_thd_1d (1:nbpb), hfx_thd , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_spr_1d (1:nbpb), hfx_spr , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_sum_1d (1:nbpb), hfx_sum , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_bom_1d (1:nbpb), hfx_bom , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_bog_1d (1:nbpb), hfx_bog , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_dif_1d (1:nbpb), hfx_dif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_opw_1d (1:nbpb), hfx_opw , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_snw_1d (1:nbpb), hfx_snw , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_sub_1d (1:nbpb), hfx_sub , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_err_1d (1:nbpb), hfx_err , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_res_1d (1:nbpb), hfx_res , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_err_dif_1d (1:nbpb), hfx_err_dif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, hfx_err_rem_1d (1:nbpb), hfx_err_rem , jpi, jpj, npb(1:nbpb) )
- ! SIMIP diagnostics
- CALL tab_2d_1d( nbpb, diag_fc_bo_1d (1:nbpb), diag_fc_bo , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d( nbpb, diag_fc_su_1d (1:nbpb), diag_fc_su , jpi, jpj, npb(1:nbpb) )
- CASE( 2 )
- CALL tab_1d_2d( nbpb, at_i , npb, at_i_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, ht_i(:,:,jl) , npb, ht_i_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, ht_s(:,:,jl) , npb, ht_s_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, a_i (:,:,jl) , npb, a_i_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, t_su(:,:,jl) , npb, t_su_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sm_i(:,:,jl) , npb, sm_i_1d (1:nbpb) , jpi, jpj )
- DO jk = 1, nlay_s
- CALL tab_1d_2d( nbpb, t_s(:,:,jk,jl), npb, t_s_1d (1:nbpb,jk), jpi, jpj)
- CALL tab_1d_2d( nbpb, e_s(:,:,jk,jl), npb, q_s_1d (1:nbpb,jk), jpi, jpj)
- END DO
- DO jk = 1, nlay_i
- CALL tab_1d_2d( nbpb, t_i(:,:,jk,jl), npb, t_i_1d (1:nbpb,jk), jpi, jpj)
- CALL tab_1d_2d( nbpb, e_i(:,:,jk,jl), npb, q_i_1d (1:nbpb,jk), jpi, jpj)
- CALL tab_1d_2d( nbpb, s_i(:,:,jk,jl), npb, s_i_1d (1:nbpb,jk), jpi, jpj)
- END DO
- CALL tab_1d_2d( nbpb, qlead , npb, qlead_1d (1:nbpb) , jpi, jpj )
-
- CALL tab_1d_2d( nbpb, wfx_snw , npb, wfx_snw_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_snw_sum , npb, wfx_snw_sum_1d(1:nbpb),jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_sub , npb, wfx_sub_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_snw_sub , npb, wfx_snw_sub_1d(1:nbpb), jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_ice_sub , npb, wfx_ice_sub_1d(1:nbpb), jpi, jpj )
-
- CALL tab_1d_2d( nbpb, wfx_bog , npb, wfx_bog_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_bom , npb, wfx_bom_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_sum , npb, wfx_sum_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_sni , npb, wfx_sni_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_res , npb, wfx_res_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, wfx_spr , npb, wfx_spr_1d(1:nbpb) , jpi, jpj )
-
- CALL tab_1d_2d( nbpb, sfx_bog , npb, sfx_bog_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_bom , npb, sfx_bom_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_sum , npb, sfx_sum_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_sni , npb, sfx_sni_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_res , npb, sfx_res_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_bri , npb, sfx_bri_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, sfx_sub , npb, sfx_sub_1d(1:nbpb) , jpi, jpj )
-
- CALL tab_1d_2d( nbpb, hfx_thd , npb, hfx_thd_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_spr , npb, hfx_spr_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_sum , npb, hfx_sum_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_bom , npb, hfx_bom_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_bog , npb, hfx_bog_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_dif , npb, hfx_dif_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_opw , npb, hfx_opw_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_snw , npb, hfx_snw_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_sub , npb, hfx_sub_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_err , npb, hfx_err_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_res , npb, hfx_res_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_err_rem , npb, hfx_err_rem_1d(1:nbpb), jpi, jpj )
- CALL tab_1d_2d( nbpb, hfx_err_dif , npb, hfx_err_dif_1d(1:nbpb), jpi, jpj )
- !
- CALL tab_1d_2d( nbpb, qns_ice(:,:,jl), npb, qns_ice_1d(1:nbpb) , jpi, jpj)
- CALL tab_1d_2d( nbpb, ftr_ice(:,:,jl), npb, ftr_ice_1d(1:nbpb) , jpi, jpj )
- ! SIMIP diagnostics
- CALL tab_1d_2d( nbpb, t_si(:,:,jl) , npb, t_si_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, diag_fc_bo , npb, diag_fc_bo_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d( nbpb, diag_fc_su , npb, diag_fc_su_1d(1:nbpb) , jpi, jpj )
- END SELECT
- END SUBROUTINE lim_thd_1d2d
- SUBROUTINE lim_thd_init
- !!-----------------------------------------------------------------------
- !! *** ROUTINE lim_thd_init ***
- !!
- !! ** Purpose : Physical constants and parameters linked to the ice
- !! thermodynamics
- !!
- !! ** Method : Read the namicethd namelist and check the ice-thermo
- !! parameter values called at the first timestep (nit000)
- !!
- !! ** input : Namelist namicether
- !!-------------------------------------------------------------------
- INTEGER :: ios ! Local integer output status for namelist read
- NAMELIST/namicethd/ rn_hnewice, ln_frazil, rn_maxfrazb, rn_vfrazb, rn_Cfrazb, &
- & rn_himin, rn_betas, rn_kappa_i, nn_conv_dif, rn_terr_dif, nn_ice_thcon, &
- & rn_cdsn, nn_monocat, ln_it_qnsice
- !!-------------------------------------------------------------------
- !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'lim_thd : Ice Thermodynamics'
- WRITE(numout,*) '~~~~~~~'
- ENDIF
- !
- REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics
- READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp )
- REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics
- READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp )
- IF(lwm) WRITE ( numoni, namicethd )
- !
- IF ( ( jpl > 1 ) .AND. ( nn_monocat == 1 ) ) THEN
- nn_monocat = 0
- IF(lwp) WRITE(numout, *) ' nn_monocat must be 0 in multi-category case '
- ENDIF
- !
- IF(lwp) THEN ! control print
- WRITE(numout,*)
- WRITE(numout,*)' Namelist of ice parameters for ice thermodynamic computation '
- WRITE(numout,*)' ice thick. for lateral accretion rn_hnewice = ', rn_hnewice
- WRITE(numout,*)' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil
- WRITE(numout,*)' Maximum proportion of frazil ice collecting at bottom rn_maxfrazb = ', rn_maxfrazb
- WRITE(numout,*)' Thresold relative drift speed for collection of frazil rn_vfrazb = ', rn_vfrazb
- WRITE(numout,*)' Squeezing coefficient for collection of frazil rn_Cfrazb = ', rn_Cfrazb
- WRITE(numout,*)' minimum ice thickness rn_himin = ', rn_himin
- WRITE(numout,*)' numerical carac. of the scheme for diffusion in ice '
- WRITE(numout,*)' coefficient for ice-lead partition of snowfall rn_betas = ', rn_betas
- WRITE(numout,*)' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i
- WRITE(numout,*)' maximal n. of iter. for heat diffusion computation nn_conv_dif = ', nn_conv_dif
- WRITE(numout,*)' maximal err. on T for heat diffusion computation rn_terr_dif = ', rn_terr_dif
- WRITE(numout,*)' switch for comp. of thermal conductivity in the ice nn_ice_thcon = ', nn_ice_thcon
- WRITE(numout,*)' thermal conductivity of the snow rn_cdsn = ', rn_cdsn
- WRITE(numout,*)' check heat conservation in the ice/snow con_i = ', con_i
- WRITE(numout,*)' virtual ITD mono-category parameterizations (1) or not nn_monocat = ', nn_monocat
- WRITE(numout,*)' iterate the surface non-solar flux (T) or not (F) ln_it_qnsice = ', ln_it_qnsice
- ENDIF
- !
- END SUBROUTINE lim_thd_init
- #else
- !!----------------------------------------------------------------------
- !! Default option Dummy module NO LIM3 sea-ice model
- !!----------------------------------------------------------------------
- #endif
- !!======================================================================
- END MODULE limthd
|