| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- /* utilities related to polygons */
- #include <cassert>
- #include <iostream>
- #include "elt.hpp"
- #include "errhandle.hpp"
- #include "polyg.hpp"
- namespace sphereRemap {
- using namespace std;
- /* given `N` `vertex`es, `N` `edge`s and `N` `d`s (d for small circles)
- and `g` the barycentre,
- this function reverses the order of arrays of `vertex`es, `edge`s and `d`s
- but only if it is required!
- (because computing intersection area requires both polygons to have same orientation)
- */
- void orient(int N, Coord *vertex, Coord *edge, double *d, const Coord &g)
- {
- Coord ga = vertex[0] - g;
- Coord gb = vertex[1] - g;
- Coord vertical = crossprod(ga, gb);
- if (N > 2 && scalarprod(g, vertical) < 0) // (GAxGB).G
- {
- for (int i = 0; i < N/2; i++)
- swap(vertex[i], vertex[N-1-i]);
- for (int i = 0; i < (N-1)/2; i++)
- {
- swap(edge[N-2-i], edge[i]);
- swap(d[i], d[N-2-i]);
- }
- }
- }
- void normals(Coord *x, int n, Coord *a)
- {
- for (int i = 0; i<n; i++)
- a[i] = crossprod(x[(i+1)%n], x[i]);
- }
- Coord barycentre(const Coord *x, int n)
- {
- if (n == 0) return ORIGIN;
- Coord bc = ORIGIN;
- for (int i = 0; i < n; i++)
- bc = bc + x[i];
- /* both distances can be equal down to roundoff when norm(bc) < mashineepsilon
- which can occur when weighted with tiny area */
- assert(squaredist(bc, proj(bc)) <= squaredist(bc, proj(bc * (-1.0))));
- //if (squaredist(bc, proj(bc)) > squaredist(bc, proj(bc * (-1.0)))) return proj(bc * (-1.0));
- return proj(bc);
- }
- /** computes the barycentre of the area which is the difference
- of a side ABO of the spherical tetrahedron and of the straight tetrahedron */
- static Coord tetrah_side_diff_centre(Coord a, Coord b)
- {
- Coord n = crossprod(a,b);
- double sinc2 = n.x*n.x + n.y*n.y + n.z*n.z;
- assert(sinc2 < 1.0 + EPS);
- // exact: u = asin(sinc)/sinc - 1; asin(sinc) = geodesic length of arc ab
- // approx:
- // double u = sinc2/6. + (3./40.)*sinc2*sinc2;
- // exact
- if (sinc2 > 1.0 - EPS) /* if round-off leads to sinc > 1 asin produces NaN */
- return n * (M_PI_2 - 1);
- double sinc = sqrt(sinc2);
- double u = asin(sinc)/sinc - 1;
- return n*u;
- }
- /* compute the barycentre as the negative sum of all the barycentres of sides of the tetrahedron */
- Coord gc_normalintegral(const Coord *x, int n)
- {
- Coord m = barycentre(x, n);
- Coord bc = crossprod(x[n-1]-m, x[0]-m) + tetrah_side_diff_centre(x[n-1], x[0]);
- for (int i = 1; i < n; i++)
- bc = bc + crossprod(x[i-1]-m, x[i]-m) + tetrah_side_diff_centre(x[i-1], x[i]);
- return bc*0.5;
- }
- Coord exact_barycentre(const Coord *x, int n)
- {
- if (n >= 3)
- {
- return proj(gc_normalintegral(x, n));
- }
- else if (n == 0) return ORIGIN;
- else if (n == 2) return midpoint(x[0], x[1]);
- else if (n == 1) return x[0];
- }
- Coord sc_gc_moon_normalintegral(Coord a, Coord b, Coord pole)
- {
- double hemisphere = (a.z > 0) ? 1: -1;
- double lat = hemisphere * (M_PI_2 - acos(a.z));
- double lon1 = atan2(a.y, a.x);
- double lon2 = atan2(b.y, b.x);
- double lon_diff = lon2 - lon1;
- // wraparound at lon=-pi=pi
- if (lon_diff < -M_PI) lon_diff += 2.0*M_PI;
- else if (lon_diff > M_PI) lon_diff -= 2.0*M_PI;
- // integral of the normal over the surface bound by great arcs a-pole and b-pole and small arc a-b
- Coord sc_normalintegral = Coord(0.5*(sin(lon2)-sin(lon1))*(M_PI_2 - lat - 0.5*sin(2.0*lat)),
- 0.5*(cos(lon1)-cos(lon2))*(M_PI_2 - lat - 0.5*sin(2.0*lat)),
- hemisphere * lon_diff * 0.25 * (cos(2.0*lat) + 1.0));
- Coord p = Coord(0,0,hemisphere); // TODO assumes north pole is (0,0,1)
- Coord t[] = {a, b, p};
- if (hemisphere < 0) swap(t[0], t[1]);
- return (sc_normalintegral - gc_normalintegral(t, 3)) * hemisphere;
- }
- double triarea(Coord& A, Coord& B, Coord& C)
- {
- double a = ds(B, C);
- double b = ds(C, A);
- double c = ds(A, B);
- double s = 0.5 * (a + b + c);
- double t = tan(0.5*s) * tan(0.5*(s - a)) * tan(0.5*(s - b)) * tan(0.5*(s - c));
- // assert(t >= 0);
- if (t<1e-20) return 0. ;
- return 4 * atan(sqrt(t));
- }
- /** Computes area of two two-sided polygon
- needs to have one small and one great circle, otherwise zero
- (name origin: lun is moon in french)
- */
- double alun(double b, double d)
- {
- double a = acos(d);
- assert(b <= 2 * a);
- double s = a + 0.5 * b;
- double t = tan(0.5 * s) * tan(0.5 * (s - a)) * tan(0.5 * (s - a)) * tan(0.5 * (s - b));
- double r = sqrt(1 - d*d);
- double p = 2 * asin(sin(0.5*b) / r);
- return p*(1 - d) - 4*atan(sqrt(t));
- }
- /**
- This function returns the area of a spherical element
- that can be composed of great and small circle arcs.
- The caller must ensure this function is not called when `alun` should be called instaed.
- This function also sets `gg` to the barycentre of the element.
- "air" stands for area and "bar" for barycentre.
- */
- double airbar(int N, const Coord *x, const Coord *c, double *d, const Coord& pole, Coord& gg)
- {
- if (N < 3)
- return 0; /* polygons with less then three vertices have zero area */
- Coord t[3];
- t[0] = barycentre(x, N);
- Coord *g = new Coord[N];
- double area = 0;
- Coord gg_exact = gc_normalintegral(x, N);
- for (int i = 0; i < N; i++)
- {
- /* for "spherical circle segment" sum triangular part and "small moon" and => account for small circle */
- int ii = (i + 1) % N;
- t[1] = x[i];
- t[2] = x[ii];
- double sc=scalarprod(crossprod(t[1] - t[0], t[2] - t[0]), t[0]) ;
- assert(sc >= -1e-10); // Error: tri a l'env (wrong orientation)
- double area_gc = triarea(t[0], t[1], t[2]);
- double area_sc_gc_moon = 0;
- if (d[i]) /* handle small circle case */
- {
- Coord m = midpoint(t[1], t[2]);
- double mext = scalarprod(m, c[i]) - d[i];
- char sgl = (mext > 0) ? -1 : 1;
- area_sc_gc_moon = sgl * alun(arcdist(t[1], t[2]), fabs(scalarprod(t[1], pole)));
- gg_exact = gg_exact + sc_gc_moon_normalintegral(t[1], t[2], pole);
- }
- area += area_gc + area_sc_gc_moon; /* for "spherical circle segment" sum triangular part (at) and "small moon" and => account for small circle */
- g[i] = barycentre(t, 3) * (area_gc + area_sc_gc_moon);
- }
- gg = barycentre(g, N);
- gg_exact = proj(gg_exact);
- delete[] g;
- gg = gg_exact;
- return area;
- }
- double polygonarea(Coord *vertices, int N)
- {
- assert(N >= 3);
- /* compute polygon area as sum of triangles */
- Coord centre = barycentre(vertices, N);
- double area = 0;
- for (int i = 0; i < N; i++)
- area += triarea(centre, vertices[i], vertices[(i+1)%N]);
- return area;
- }
- int packedPolygonSize(const Elt& e)
- {
- return sizeof(e.id) + sizeof(e.src_id) + sizeof(e.x) + sizeof(e.val) +
- sizeof(e.n) + e.n*(sizeof(double)+sizeof(Coord));
- }
- void packPolygon(const Elt& e, char *buffer, int& pos)
- {
- *((GloId *) &(buffer[pos])) = e.id;
- pos += sizeof(e.id);
- *((GloId *) &(buffer[pos])) = e.src_id;
- pos += sizeof(e.src_id);
- *((Coord *) &(buffer[pos])) = e.x;
- pos += sizeof(e.x);
- *((double*) &(buffer[pos])) = e.val;
- pos += sizeof(e.val);
- *((int *) & (buffer[pos])) = e.n;
- pos += sizeof(e.n);
- for (int i = 0; i < e.n; i++)
- {
- *((double *) & (buffer[pos])) = e.d[i];
- pos += sizeof(e.d[i]);
- *((Coord *) &(buffer[pos])) = e.vertex[i];
- pos += sizeof(e.vertex[i]);
- }
- }
- void unpackPolygon(Elt& e, const char *buffer, int& pos)
- {
- e.id = *((GloId *) &(buffer[pos]));
- pos += sizeof(e.id);
- e.src_id = *((GloId *) &(buffer[pos]));
- pos += sizeof(e.src_id);
- e.x = *((Coord *) & (buffer[pos]) );
- pos += sizeof(e.x);
- e.val = *((double *) & (buffer[pos]));
- pos += sizeof(double);
- e.n = *((int *) & (buffer[pos]));
- pos += sizeof(int);
- for (int i = 0; i < e.n; i++)
- {
- e.d[i] = *((double *) & (buffer[pos]));
- pos += sizeof(double);
- e.vertex[i] = *((Coord *) & (buffer[pos]));
- pos += sizeof(Coord);
- }
- }
- int packIntersectionSize(const Elt& elt)
- {
- return elt.is.size() * (2*sizeof(int)+ sizeof(GloId) + 5*sizeof(double));
- }
- void packIntersection(const Elt& e, char* buffer,int& pos)
- {
- for (list<Polyg *>::const_iterator it = e.is.begin(); it != e.is.end(); ++it)
- {
- *((int *) &(buffer[0])) += 1;
- *((int *) &(buffer[pos])) = e.id.ind;
- pos += sizeof(int);
- *((double *) &(buffer[pos])) = e.area;
- pos += sizeof(double);
- *((GloId *) &(buffer[pos])) = (*it)->id;
- pos += sizeof(GloId);
-
- *((int *) &(buffer[pos])) = (*it)->n;
- pos += sizeof(int);
- *((double *) &(buffer[pos])) = (*it)->area;
- pos += sizeof(double);
- *((Coord *) &(buffer[pos])) = (*it)->x;
- pos += sizeof(Coord);
- }
- }
- void unpackIntersection(Elt* e, const char* buffer)
- {
- int ind;
- int pos = 0;
-
- int n = *((int *) & (buffer[pos]));
- pos += sizeof(int);
- for (int i = 0; i < n; i++)
- {
- ind = *((int*) &(buffer[pos]));
- pos+=sizeof(int);
- Elt& elt= e[ind];
- elt.area=*((double *) & (buffer[pos]));
- pos += sizeof(double);
- Polyg *polygon = new Polyg;
- polygon->id = *((GloId *) & (buffer[pos]));
- pos += sizeof(GloId);
- polygon->n = *((int *) & (buffer[pos]));
- pos += sizeof(int);
- polygon->area = *((double *) & (buffer[pos]));
- pos += sizeof(double);
- polygon->x = *((Coord *) & (buffer[pos]));
- pos += sizeof(Coord);
- elt.is.push_back(polygon);
- }
- }
- }
|