123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622 |
- MODULE traqsr
- !!======================================================================
- !! *** MODULE traqsr ***
- !! Ocean physics: solar radiation penetration in the top ocean levels
- !!======================================================================
- !! History : OPA ! 1990-10 (B. Blanke) Original code
- !! 7.0 ! 1991-11 (G. Madec)
- !! ! 1996-01 (G. Madec) s-coordinates
- !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module
- !! - ! 2005-11 (G. Madec) zco, zps, sco coordinate
- !! 3.2 ! 2009-04 (G. Madec & NEMO team)
- !! 3.4 ! 2012-05 (C. Rousset) store attenuation coef for use in ice model
- !! 3.6 ! 2015-12 (O. Aumont, J. Jouanno, C. Ethe) use vertical profile of chlorophyll
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! tra_qsr : trend due to the solar radiation penetration
- !! tra_qsr_init : solar radiation penetration initialization
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and active tracers
- USE dom_oce ! ocean space and time domain
- USE sbc_oce ! surface boundary condition: ocean
- USE trc_oce ! share SMS/Ocean variables
- USE trd_oce ! trends: ocean variables
- USE trdtra ! trends manager: tracers
- USE in_out_manager ! I/O manager
- USE phycst ! physical constants
- USE prtctl ! Print control
- USE iom ! I/O manager
- USE fldread ! read input fields
- USE restart ! ocean restart
- USE lib_mpp ! MPP library
- USE wrk_nemo ! Memory Allocation
- USE timing ! Timing
- IMPLICIT NONE
- PRIVATE
- PUBLIC tra_qsr ! routine called by step.F90 (ln_traqsr=T)
- PUBLIC tra_qsr_init ! routine called by nemogcm.F90
- ! !!* Namelist namtra_qsr: penetrative solar radiation
- LOGICAL , PUBLIC :: ln_traqsr !: light absorption (qsr) flag
- LOGICAL , PUBLIC :: ln_qsr_rgb !: Red-Green-Blue light absorption flag
- LOGICAL , PUBLIC :: ln_qsr_2bd !: 2 band light absorption flag
- LOGICAL , PUBLIC :: ln_qsr_bio !: bio-model light absorption flag
- LOGICAL , PUBLIC :: ln_qsr_ice !: light penetration for ice-model LIM3 (clem)
- INTEGER , PUBLIC :: nn_chldta !: use Chlorophyll data (=1) or not (=0)
- REAL(wp), PUBLIC :: rn_abs !: fraction absorbed in the very near surface (RGB & 2 bands)
- REAL(wp), PUBLIC :: rn_si0 !: very near surface depth of extinction (RGB & 2 bands)
- REAL(wp), PUBLIC :: rn_si1 !: deepest depth of extinction (water type I) (2 bands)
-
- ! Module variables
- REAL(wp) :: xsi0r !: inverse of rn_si0
- REAL(wp) :: xsi1r !: inverse of rn_si1
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_chl ! structure of input Chl (file informations, fields read)
- INTEGER, PUBLIC :: nksr ! levels below which the light cannot penetrate ( depth larger than 391 m)
- REAL(wp), DIMENSION(3,61) :: rkrgb !: tabulated attenuation coefficients for RGB absorption
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: traqsr.F90 4990 2014-12-15 16:42:49Z timgraham $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE tra_qsr( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tra_qsr ***
- !!
- !! ** Purpose : Compute the temperature trend due to the solar radiation
- !! penetration and add it to the general temperature trend.
- !!
- !! ** Method : The profile of the solar radiation within the ocean is defined
- !! through 2 wavebands (rn_si0,rn_si1) or 3 wavebands (RGB) and a ratio rn_abs
- !! Considering the 2 wavebands case:
- !! I(k) = Qsr*( rn_abs*EXP(z(k)/rn_si0) + (1.-rn_abs)*EXP(z(k)/rn_si1) )
- !! The temperature trend associated with the solar radiation penetration
- !! is given by : zta = 1/e3t dk[ I ] / (rau0*Cp)
- !! At the bottom, boudary condition for the radiation is no flux :
- !! all heat which has not been absorbed in the above levels is put
- !! in the last ocean level.
- !! In z-coordinate case, the computation is only done down to the
- !! level where I(k) < 1.e-15 W/m2. In addition, the coefficients
- !! used for the computation are calculated one for once as they
- !! depends on k only.
- !!
- !! ** Action : - update ta with the penetrative solar radiation trend
- !! - save the trend in ttrd ('key_trdtra')
- !!
- !! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp.
- !! Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516.
- !! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562
- !!----------------------------------------------------------------------
- !
- INTEGER, INTENT(in) :: kt ! ocean time-step
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: irgb ! local integers
- REAL(wp) :: zchl, zcoef, zfact ! local scalars
- REAL(wp) :: zc0, zc1, zc2, zc3 ! - -
- REAL(wp) :: zz0, zz1, z1_e3t ! - -
- REAL(wp) :: zCb, zCmax, zze, zpsi, zpsimax, zdelpsi, zCtot, zCze
- REAL(wp) :: zlogc, zlogc2, zlogc3
- REAL(wp), POINTER, DIMENSION(:,: ) :: zekb, zekg, zekr
- REAL(wp), POINTER, DIMENSION(:,:,:) :: ze0, ze1, ze2, ze3, zea, ztrdt, zchl3d
- !!--------------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('tra_qsr')
- !
- CALL wrk_alloc( jpi, jpj, zekb, zekg, zekr )
- CALL wrk_alloc( jpi, jpj, jpk, ze0, ze1, ze2, ze3, zea, zchl3d )
- !
- IF( kt == nit000 ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'tra_qsr : penetration of the surface solar radiation'
- IF(lwp) WRITE(numout,*) '~~~~~~~'
- IF( .NOT.ln_traqsr ) RETURN
- ENDIF
- IF( l_trdtra ) THEN ! Save ta and sa trends
- CALL wrk_alloc( jpi, jpj, jpk, ztrdt )
- ztrdt(:,:,:) = tsa(:,:,:,jp_tem)
- ENDIF
- ! Set before qsr tracer content field
- ! ***********************************
- IF( kt == nit000 ) THEN ! Set the forcing field at nit000 - 1
- ! ! -----------------------------------
- qsr_hc(:,:,:) = 0.e0
- !
- IF( ln_rstart .AND. & ! Restart: read in restart file
- & iom_varid( numror, 'qsr_hc_b', ldstop = .FALSE. ) > 0 ) THEN
- IF(lwp) WRITE(numout,*) ' nit000-1 qsr tracer content forcing field red in the restart file'
- zfact = 0.5e0
- CALL iom_get( numror, jpdom_autoglo, 'qsr_hc_b', qsr_hc_b ) ! before heat content trend due to Qsr flux
- ELSE ! No restart or restart not found: Euler forward time stepping
- zfact = 1.e0
- qsr_hc_b(:,:,:) = 0.e0
- ENDIF
- ELSE ! Swap of forcing field
- ! ! ---------------------
- zfact = 0.5e0
- qsr_hc_b(:,:,:) = qsr_hc(:,:,:)
- ENDIF
- ! Compute now qsr tracer content field
- ! ************************************
-
- ! ! ============================================== !
- IF( lk_qsr_bio .AND. ln_qsr_bio ) THEN ! bio-model fluxes : all vertical coordinates !
- ! ! ============================================== !
- DO jk = 1, jpkm1
- qsr_hc(:,:,jk) = r1_rau0_rcp * ( etot3(:,:,jk) - etot3(:,:,jk+1) )
- END DO
- ! Add to the general trend
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z1_e3t = zfact / fse3t(ji,jj,jk)
- tsa(ji,jj,jk,jp_tem) = tsa(ji,jj,jk,jp_tem) + ( qsr_hc_b(ji,jj,jk) + qsr_hc(ji,jj,jk) ) * z1_e3t
- END DO
- END DO
- END DO
- CALL iom_put( 'qsr3d', etot3 ) ! Shortwave Radiation 3D distribution
- ! clem: store attenuation coefficient of the first ocean level
- IF ( ln_qsr_ice ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF ( qsr(ji,jj) /= 0._wp ) THEN
- fraqsr_1lev(ji,jj) = ( qsr_hc(ji,jj,1) / ( r1_rau0_rcp * qsr(ji,jj) ) )
- ELSE
- fraqsr_1lev(ji,jj) = 1.
- ENDIF
- END DO
- END DO
- ENDIF
- ! ! ============================================== !
- ELSE ! Ocean alone :
- ! ! ============================================== !
- !
- ! ! ------------------------- !
- IF( ln_qsr_rgb) THEN ! R-G-B light penetration !
- ! ! ------------------------- !
- ! Set chlorophyl concentration
- IF( nn_chldta == 1 .OR. nn_chldta == 2 .OR. lk_vvl ) THEN !* Variable Chlorophyll or ocean volume
- !
- IF( nn_chldta == 1 ) THEN !* 2D Variable Chlorophyll
- !
- CALL fld_read( kt, 1, sf_chl ) ! Read Chl data and provides it at the current time step
- DO jk = 1, nksr + 1
- zchl3d(:,:,jk) = sf_chl(1)%fnow(:,:,1)
- ENDDO
- !
- ELSE IF( nn_chldta == 2 ) THEN !* -3-D Variable Chlorophyll
- !
- CALL fld_read( kt, 1, sf_chl ) ! Read Chl data and provides it at the current time step
- !CDIR NOVERRCHK !
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zchl = sf_chl(1)%fnow(ji,jj,1)
- zCtot = 40.6 * zchl**0.459
- zze = 568.2 * zCtot**(-0.746)
- IF( zze > 102. ) zze = 200.0 * zCtot**(-0.293)
- zlogc = LOG( zchl )
- zlogc2 = zlogc * zlogc
- zlogc3 = zlogc * zlogc * zlogc
- zCb = 0.768 + 0.087 * zlogc - 0.179 * zlogc2 - 0.025 * zlogc3
- zCmax = 0.299 - 0.289 * zlogc + 0.579 * zlogc2
- zpsimax = 0.6 - 0.640 * zlogc + 0.021 * zlogc2 + 0.115 * zlogc3
- zdelpsi = 0.710 + 0.159 * zlogc + 0.021 * zlogc2
- zCze = 1.12 * (zchl)**0.803
- DO jk = 1, nksr + 1
- zpsi = fsdept(ji,jj,jk) / zze
- zchl3d(ji,jj,jk) = zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) / zdelpsi )**2 ) )
- END DO
- !
- END DO
- END DO
- !
- ELSE !* Variable ocean volume but constant chrlorophyll
- DO jk = 1, nksr + 1
- zchl3d(:,:,jk) = 0.05
- ENDDO
- ENDIF
- !
- zcoef = ( 1. - rn_abs ) / 3.e0 ! equi-partition in R-G-B
- ze0(:,:,1) = rn_abs * qsr(:,:)
- ze1(:,:,1) = zcoef * qsr(:,:)
- ze2(:,:,1) = zcoef * qsr(:,:)
- ze3(:,:,1) = zcoef * qsr(:,:)
- zea(:,:,1) = qsr(:,:)
- !
- DO jk = 2, nksr+1
- !
- DO jj = 1, jpj ! Separation in R-G-B depending of vertical profile of Chl
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zchl = MIN( 10. , MAX( 0.03, zchl3d(ji,jj,jk) ) )
- irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 )
- zekb(ji,jj) = rkrgb(1,irgb)
- zekg(ji,jj) = rkrgb(2,irgb)
- zekr(ji,jj) = rkrgb(3,irgb)
- END DO
- END DO
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zc0 = ze0(ji,jj,jk-1) * EXP( - fse3t(ji,jj,jk-1) * xsi0r )
- zc1 = ze1(ji,jj,jk-1) * EXP( - fse3t(ji,jj,jk-1) * zekb(ji,jj) )
- zc2 = ze2(ji,jj,jk-1) * EXP( - fse3t(ji,jj,jk-1) * zekg(ji,jj) )
- zc3 = ze3(ji,jj,jk-1) * EXP( - fse3t(ji,jj,jk-1) * zekr(ji,jj) )
- ze0(ji,jj,jk) = zc0
- ze1(ji,jj,jk) = zc1
- ze2(ji,jj,jk) = zc2
- ze3(ji,jj,jk) = zc3
- zea(ji,jj,jk) = ( zc0 + zc1 + zc2 + zc3 ) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- !
- DO jk = 1, nksr ! compute and add qsr trend to ta
- qsr_hc(:,:,jk) = r1_rau0_rcp * ( zea(:,:,jk) - zea(:,:,jk+1) )
- END DO
- zea(:,:,nksr+1:jpk) = 0.e0 ! below 400m set to zero
- CALL iom_put( 'qsr3d', zea ) ! Shortwave Radiation 3D distribution
- !
- IF ( ln_qsr_ice ) THEN ! store attenuation coefficient of the first ocean level
- !CDIR NOVERRCHK
- DO jj = 1, jpj ! Separation in R-G-B depending of the surface Chl
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zchl = MIN( 10. , MAX( 0.03, zchl3d(ji,jj,1) ) )
- irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 )
- zekb(ji,jj) = rkrgb(1,irgb)
- zekg(ji,jj) = rkrgb(2,irgb)
- zekr(ji,jj) = rkrgb(3,irgb)
- END DO
- END DO
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- zc0 = rn_abs * EXP( - fse3t(ji,jj,1) * xsi0r )
- zc1 = zcoef * EXP( - fse3t(ji,jj,1) * zekb(ji,jj) )
- zc2 = zcoef * EXP( - fse3t(ji,jj,1) * zekg(ji,jj) )
- zc3 = zcoef * EXP( - fse3t(ji,jj,1) * zekr(ji,jj) )
- fraqsr_1lev(ji,jj) = 1.0 - ( zc0 + zc1 + zc2 + zc3 ) * tmask(ji,jj,2)
- END DO
- END DO
- !
- ENDIF
- !
- ELSE !* Constant Chlorophyll
- DO jk = 1, nksr
- qsr_hc(:,:,jk) = etot3(:,:,jk) * qsr(:,:)
- END DO
- ! store attenuation coefficient of the first ocean level
- IF( ln_qsr_ice ) THEN
- fraqsr_1lev(:,:) = etot3(:,:,1) / r1_rau0_rcp
- ENDIF
- ENDIF
- ENDIF
- ! ! ------------------------- !
- IF( ln_qsr_2bd ) THEN ! 2 band light penetration !
- ! ! ------------------------- !
- !
- IF( lk_vvl ) THEN !* variable volume
- zz0 = rn_abs * r1_rau0_rcp
- zz1 = ( 1. - rn_abs ) * r1_rau0_rcp
- DO jk = 1, nksr ! solar heat absorbed at T-point in the top 400m
- DO jj = 1, jpj
- DO ji = 1, jpi
- zc0 = zz0 * EXP( -fsdepw(ji,jj,jk )*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,jk )*xsi1r )
- zc1 = zz0 * EXP( -fsdepw(ji,jj,jk+1)*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,jk+1)*xsi1r )
- qsr_hc(ji,jj,jk) = qsr(ji,jj) * ( zc0*tmask(ji,jj,jk) - zc1*tmask(ji,jj,jk+1) )
- END DO
- END DO
- END DO
- ! clem: store attenuation coefficient of the first ocean level
- IF ( ln_qsr_ice ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- zc0 = zz0 * EXP( -fsdepw(ji,jj,1)*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,1)*xsi1r )
- zc1 = zz0 * EXP( -fsdepw(ji,jj,2)*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,2)*xsi1r )
- fraqsr_1lev(ji,jj) = ( zc0*tmask(ji,jj,1) - zc1*tmask(ji,jj,2) ) / r1_rau0_rcp
- END DO
- END DO
- ENDIF
- ELSE !* constant volume: coef. computed one for all
- DO jk = 1, nksr
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ! (ISF) no light penetration below the ice shelves
- qsr_hc(ji,jj,jk) = etot3(ji,jj,jk) * qsr(ji,jj) * tmask(ji,jj,1)
- END DO
- END DO
- END DO
- ! clem: store attenuation coefficient of the first ocean level
- IF ( ln_qsr_ice ) THEN
- fraqsr_1lev(:,:) = etot3(:,:,1) / r1_rau0_rcp
- ENDIF
- !
- ENDIF
- !
- ENDIF
- !
- ! Add to the general trend
- DO jk = 1, nksr
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z1_e3t = zfact / fse3t(ji,jj,jk)
- tsa(ji,jj,jk,jp_tem) = tsa(ji,jj,jk,jp_tem) + ( qsr_hc_b(ji,jj,jk) + qsr_hc(ji,jj,jk) ) * z1_e3t
- END DO
- END DO
- END DO
- !
- ENDIF
- !
- IF( lrst_oce ) THEN ! Write in the ocean restart file
- ! *******************************
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'qsr tracer content forcing field written in ocean restart file ', &
- & 'at it= ', kt,' date= ', ndastp
- IF(lwp) WRITE(numout,*) '~~~~'
- CALL iom_rstput( kt, nitrst, numrow, 'qsr_hc_b' , qsr_hc )
- CALL iom_rstput( kt, nitrst, numrow, 'fraqsr_1lev', fraqsr_1lev ) ! default definition in sbcssm
- !
- ENDIF
- IF( l_trdtra ) THEN ! qsr tracers trends saved for diagnostics
- ztrdt(:,:,:) = tsa(:,:,:,jp_tem) - ztrdt(:,:,:)
- CALL trd_tra( kt, 'TRA', jp_tem, jptra_qsr, ztrdt )
- CALL wrk_dealloc( jpi, jpj, jpk, ztrdt )
- ENDIF
- ! ! print mean trends (used for debugging)
- IF(ln_ctl) CALL prt_ctl( tab3d_1=tsa(:,:,:,jp_tem), clinfo1=' qsr - Ta: ', mask1=tmask, clinfo3='tra-ta' )
- !
- CALL wrk_dealloc( jpi, jpj, zekb, zekg, zekr )
- CALL wrk_dealloc( jpi, jpj, jpk, ze0, ze1, ze2, ze3, zea, zchl3d )
- !
- IF( nn_timing == 1 ) CALL timing_stop('tra_qsr')
- !
- END SUBROUTINE tra_qsr
- SUBROUTINE tra_qsr_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE tra_qsr_init ***
- !!
- !! ** Purpose : Initialization for the penetrative solar radiation
- !!
- !! ** Method : The profile of solar radiation within the ocean is set
- !! from two length scale of penetration (rn_si0,rn_si1) and a ratio
- !! (rn_abs). These parameters are read in the namtra_qsr namelist. The
- !! default values correspond to clear water (type I in Jerlov'
- !! (1968) classification.
- !! called by tra_qsr at the first timestep (nit000)
- !!
- !! ** Action : - initialize rn_si0, rn_si1 and rn_abs
- !!
- !! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp.
- !!----------------------------------------------------------------------
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: irgb, ierror, ioptio, nqsr ! local integer
- INTEGER :: ios ! Local integer output status for namelist read
- REAL(wp) :: zz0, zc0 , zc1, zcoef ! local scalars
- REAL(wp) :: zz1, zc2 , zc3, zchl ! - -
- REAL(wp), POINTER, DIMENSION(:,: ) :: zekb, zekg, zekr
- REAL(wp), POINTER, DIMENSION(:,:,:) :: ze0, ze1, ze2, ze3, zea
- !
- CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
- TYPE(FLD_N) :: sn_chl ! informations about the chlorofyl field to be read
- !!
- NAMELIST/namtra_qsr/ sn_chl, cn_dir, ln_traqsr, ln_qsr_rgb, ln_qsr_2bd, ln_qsr_bio, ln_qsr_ice, &
- & nn_chldta, rn_abs, rn_si0, rn_si1
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('tra_qsr_init')
- !
- CALL wrk_alloc( jpi, jpj, zekb, zekg, zekr )
- CALL wrk_alloc( jpi, jpj, jpk, ze0, ze1, ze2, ze3, zea )
- !
- REWIND( numnam_ref ) ! Namelist namtra_qsr in reference namelist : Ratio and length of penetration
- READ ( numnam_ref, namtra_qsr, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_qsr in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namtra_qsr in configuration namelist : Ratio and length of penetration
- READ ( numnam_cfg, namtra_qsr, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_qsr in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namtra_qsr )
- !
- IF(lwp) THEN ! control print
- WRITE(numout,*)
- WRITE(numout,*) 'tra_qsr_init : penetration of the surface solar radiation'
- WRITE(numout,*) '~~~~~~~~~~~~'
- WRITE(numout,*) ' Namelist namtra_qsr : set the parameter of penetration'
- WRITE(numout,*) ' Light penetration (T) or not (F) ln_traqsr = ', ln_traqsr
- WRITE(numout,*) ' RGB (Red-Green-Blue) light penetration ln_qsr_rgb = ', ln_qsr_rgb
- WRITE(numout,*) ' 2 band light penetration ln_qsr_2bd = ', ln_qsr_2bd
- WRITE(numout,*) ' bio-model light penetration ln_qsr_bio = ', ln_qsr_bio
- WRITE(numout,*) ' light penetration for ice-model LIM3 ln_qsr_ice = ', ln_qsr_ice
- WRITE(numout,*) ' RGB : Chl data (=1/2) or cst value (=0) nn_chldta = ', nn_chldta
- WRITE(numout,*) ' RGB & 2 bands: fraction of light (rn_si1) rn_abs = ', rn_abs
- WRITE(numout,*) ' RGB & 2 bands: shortess depth of extinction rn_si0 = ', rn_si0
- WRITE(numout,*) ' 2 bands: longest depth of extinction rn_si1 = ', rn_si1
- ENDIF
- IF( ln_traqsr ) THEN ! control consistency
- !
- IF( .NOT.lk_qsr_bio .AND. ln_qsr_bio ) THEN
- CALL ctl_warn( 'No bio model : force ln_qsr_bio = FALSE ' )
- ln_qsr_bio = .FALSE.
- ENDIF
- !
- ioptio = 0 ! Parameter control
- IF( ln_qsr_rgb ) ioptio = ioptio + 1
- IF( ln_qsr_2bd ) ioptio = ioptio + 1
- IF( ln_qsr_bio ) ioptio = ioptio + 1
- !
- IF( ioptio /= 1 ) &
- CALL ctl_stop( ' Choose ONE type of light penetration in namelist namtra_qsr', &
- & ' 2 bands, 3 RGB bands or bio-model light penetration' )
- !
- IF( ln_qsr_rgb .AND. nn_chldta == 0 ) nqsr = 1
- IF( ln_qsr_rgb .AND. nn_chldta == 1 ) nqsr = 2
- IF( ln_qsr_rgb .AND. nn_chldta == 2 ) nqsr = 3
- IF( ln_qsr_2bd ) nqsr = 4
- IF( ln_qsr_bio ) nqsr = 5
- !
- IF(lwp) THEN ! Print the choice
- WRITE(numout,*)
- IF( nqsr == 1 ) WRITE(numout,*) ' R-G-B light penetration - Constant Chlorophyll'
- IF( nqsr == 2 ) WRITE(numout,*) ' R-G-B light penetration - 2D Chl data '
- IF( nqsr == 3 ) WRITE(numout,*) ' R-G-B light penetration - 3D Chl data '
- IF( nqsr == 4 ) WRITE(numout,*) ' 2 bands light penetration'
- IF( nqsr == 5 ) WRITE(numout,*) ' bio-model light penetration'
- ENDIF
- !
- ENDIF
- ! ! ===================================== !
- IF( ln_traqsr ) THEN ! Initialisation of Light Penetration !
- ! ! ===================================== !
- !
- xsi0r = 1.e0 / rn_si0
- xsi1r = 1.e0 / rn_si1
- ! ! ---------------------------------- !
- IF( ln_qsr_rgb ) THEN ! Red-Green-Blue light penetration !
- ! ! ---------------------------------- !
- !
- CALL trc_oce_rgb( rkrgb ) !* tabulated attenuation coef.
- !
- ! !* level of light extinction
- IF( ln_sco ) THEN ; nksr = jpkm1
- ELSE ; nksr = trc_oce_ext_lev( r_si2, 0.33e2 )
- ENDIF
- IF(lwp) WRITE(numout,*) ' level of light extinction = ', nksr, ' ref depth = ', gdepw_1d(nksr+1), ' m'
- !
- IF( nn_chldta == 1 .OR. nn_chldta == 2 ) THEN !* Chl data : set sf_chl structure
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' Chlorophyll read in a file'
- ALLOCATE( sf_chl(1), STAT=ierror )
- IF( ierror > 0 ) THEN
- CALL ctl_stop( 'tra_qsr_init: unable to allocate sf_chl structure' ) ; RETURN
- ENDIF
- ALLOCATE( sf_chl(1)%fnow(jpi,jpj,1) )
- IF( sn_chl%ln_tint )ALLOCATE( sf_chl(1)%fdta(jpi,jpj,1,2) )
- ! ! fill sf_chl with sn_chl and control print
- CALL fld_fill( sf_chl, (/ sn_chl /), cn_dir, 'tra_qsr_init', &
- & 'Solar penetration function of read chlorophyll', 'namtra_qsr' )
- !
- ELSE !* constant Chl : compute once for all the distribution of light (etot3)
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' Constant Chlorophyll concentration = 0.05'
- IF( lk_vvl ) THEN ! variable volume
- IF(lwp) WRITE(numout,*) ' key_vvl: light distribution will be computed at each time step'
- ELSE ! constant volume: computes one for all
- IF(lwp) WRITE(numout,*) ' fixed volume: light distribution computed one for all'
- !
- zchl = 0.05 ! constant chlorophyll
- irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 )
- zekb(:,:) = rkrgb(1,irgb) ! Separation in R-G-B depending of the chlorophyll
- zekg(:,:) = rkrgb(2,irgb)
- zekr(:,:) = rkrgb(3,irgb)
- !
- zcoef = ( 1. - rn_abs ) / 3.e0 ! equi-partition in R-G-B
- ze0(:,:,1) = rn_abs
- ze1(:,:,1) = zcoef
- ze2(:,:,1) = zcoef
- ze3(:,:,1) = zcoef
- zea(:,:,1) = tmask(:,:,1) ! = ( ze0+ze1+z2+ze3 ) * tmask
-
- DO jk = 2, nksr+1
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zc0 = ze0(ji,jj,jk-1) * EXP( - e3t_0(ji,jj,jk-1) * xsi0r )
- zc1 = ze1(ji,jj,jk-1) * EXP( - e3t_0(ji,jj,jk-1) * zekb(ji,jj) )
- zc2 = ze2(ji,jj,jk-1) * EXP( - e3t_0(ji,jj,jk-1) * zekg(ji,jj) )
- zc3 = ze3(ji,jj,jk-1) * EXP( - e3t_0(ji,jj,jk-1) * zekr(ji,jj) )
- ze0(ji,jj,jk) = zc0
- ze1(ji,jj,jk) = zc1
- ze2(ji,jj,jk) = zc2
- ze3(ji,jj,jk) = zc3
- zea(ji,jj,jk) = ( zc0 + zc1 + zc2 + zc3 ) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- !
- DO jk = 1, nksr
- ! (ISF) no light penetration below the ice shelves
- etot3(:,:,jk) = r1_rau0_rcp * ( zea(:,:,jk) - zea(:,:,jk+1) ) * tmask(:,:,1)
- END DO
- etot3(:,:,nksr+1:jpk) = 0.e0 ! below 400m set to zero
- ENDIF
- ENDIF
- !
- ENDIF
- ! ! ---------------------------------- !
- IF( ln_qsr_2bd ) THEN ! 2 bands light penetration !
- ! ! ---------------------------------- !
- !
- ! ! level of light extinction
- nksr = trc_oce_ext_lev( rn_si1, 1.e2 )
- IF(lwp) THEN
- WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' level of light extinction = ', nksr, ' ref depth = ', gdepw_1d(nksr+1), ' m'
- ENDIF
- !
- IF( lk_vvl ) THEN ! variable volume
- IF(lwp) WRITE(numout,*) ' key_vvl: light distribution will be computed at each time step'
- ELSE ! constant volume: computes one for all
- zz0 = rn_abs * r1_rau0_rcp
- zz1 = ( 1. - rn_abs ) * r1_rau0_rcp
- DO jk = 1, nksr !* solar heat absorbed at T-point computed once for all
- DO jj = 1, jpj ! top 400 meters
- DO ji = 1, jpi
- zc0 = zz0 * EXP( -fsdepw(ji,jj,jk )*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,jk )*xsi1r )
- zc1 = zz0 * EXP( -fsdepw(ji,jj,jk+1)*xsi0r ) + zz1 * EXP( -fsdepw(ji,jj,jk+1)*xsi1r )
- etot3(ji,jj,jk) = ( zc0 * tmask(ji,jj,jk) - zc1 * tmask(ji,jj,jk+1) ) * tmask(ji,jj,1)
- END DO
- END DO
- END DO
- etot3(:,:,nksr+1:jpk) = 0.e0 ! below 400m set to zero
- !
- ENDIF
- ENDIF
- ! ! ===================================== !
- ELSE ! No light penetration !
- ! ! ===================================== !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'tra_qsr_init : NO solar flux penetration'
- WRITE(numout,*) '~~~~~~~~~~~~'
- ENDIF
- ENDIF
- !
- ! initialisation of fraqsr_1lev used in sbcssm
- IF( iom_varid( numror, 'fraqsr_1lev', ldstop = .FALSE. ) > 0 ) THEN
- CALL iom_get( numror, jpdom_autoglo, 'fraqsr_1lev' , fraqsr_1lev )
- ELSE
- fraqsr_1lev(:,:) = 1._wp ! default definition
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, zekb, zekg, zekr )
- CALL wrk_dealloc( jpi, jpj, jpk, ze0, ze1, ze2, ze3, zea )
- !
- IF( nn_timing == 1 ) CALL timing_stop('tra_qsr_init')
- !
- END SUBROUTINE tra_qsr_init
- !!======================================================================
- END MODULE traqsr
|