123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447 |
- MODULE traldf_iso_grif
- !!======================================================================
- !! *** MODULE traldf_iso_grif ***
- !! Ocean tracers: horizontal component of the lateral tracer mixing trend
- !!======================================================================
- !! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec)
- !! ! Griffies operator version adapted from traldf_iso.F90
- !!----------------------------------------------------------------------
- #if defined key_ldfslp || defined key_esopa
- !!----------------------------------------------------------------------
- !! 'key_ldfslp' slope of the lateral diffusive direction
- !!----------------------------------------------------------------------
- !! tra_ldf_iso_grif : update the tracer trend with the horizontal component
- !! of the Griffies iso-neutral laplacian operator
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and active tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE trc_oce ! share passive tracers/Ocean variables
- USE zdf_oce ! ocean vertical physics
- USE ldftra_oce ! ocean active tracers: lateral physics
- USE ldfslp ! iso-neutral slopes
- USE diaptr ! poleward transport diagnostics
- USE in_out_manager ! I/O manager
- USE iom ! I/O library
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE lib_mpp ! MPP library
- USE wrk_nemo ! Memory Allocation
- USE timing ! Timing
- IMPLICIT NONE
- PRIVATE
- PUBLIC tra_ldf_iso_grif ! routine called by traldf.F90
- REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: psix_eiv, psiy_eiv !: eiv stream function (diag only)
- REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: ah_wslp2 !: aeiv*w-slope^2
- REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, SAVE :: zdkt3d !: vertical tracer gradient at 2 levels
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "ldftra_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- # include "ldfeiv_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: traldf_iso_grif.F90 4990 2014-12-15 16:42:49Z timgraham $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE tra_ldf_iso_grif( kt, kit000, cdtype, pgu, pgv, &
- & ptb, pta, kjpt, pahtb0 )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tra_ldf_iso_grif ***
- !!
- !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive
- !! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and
- !! add it to the general trend of tracer equation.
- !!
- !! ** Method : The horizontal component of the lateral diffusive trends
- !! is provided by a 2nd order operator rotated along neural or geopo-
- !! tential surfaces to which an eddy induced advection can be added
- !! It is computed using before fields (forward in time) and isopyc-
- !! nal or geopotential slopes computed in routine ldfslp.
- !!
- !! 1st part : masked horizontal derivative of T ( di[ t ] )
- !! ======== with partial cell update if ln_zps=T.
- !!
- !! 2nd part : horizontal fluxes of the lateral mixing operator
- !! ========
- !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ]
- !! - aht e2u*uslp dk[ mi(mk(tb)) ]
- !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ]
- !! - aht e2u*vslp dk[ mj(mk(tb)) ]
- !! take the horizontal divergence of the fluxes:
- !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] }
- !! Add this trend to the general trend (ta,sa):
- !! ta = ta + difft
- !!
- !! 3rd part: vertical trends of the lateral mixing operator
- !! ======== (excluding the vertical flux proportional to dk[t] )
- !! vertical fluxes associated with the rotated lateral mixing:
- !! zftw =-aht { e2t*wslpi di[ mi(mk(tb)) ]
- !! + e1t*wslpj dj[ mj(mk(tb)) ] }
- !! take the horizontal divergence of the fluxes:
- !! difft = 1/(e1t*e2t*e3t) dk[ zftw ]
- !! Add this trend to the general trend (ta,sa):
- !! pta = pta + difft
- !!
- !! ** Action : Update pta arrays with the before rotated diffusion
- !!----------------------------------------------------------------------
- USE oce , ONLY: zftu => ua , zftv => va ! (ua,va) used as 3D workspace
- !
- INTEGER , INTENT(in ) :: kt ! ocean time-step index
- INTEGER , INTENT(in ) :: kit000 ! first time step index
- CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
- INTEGER , INTENT(in ) :: kjpt ! number of tracers
- REAL(wp), DIMENSION(jpi,jpj ,kjpt), INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels
- REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb ! before and now tracer fields
- REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend
- REAL(wp) , INTENT(in ) :: pahtb0 ! background diffusion coef
- !
- INTEGER :: ji, jj, jk,jn ! dummy loop indices
- INTEGER :: ip,jp,kp ! dummy loop indices
- INTEGER :: ierr ! temporary integer
- REAL(wp) :: zmsku, zabe1, zcof1, zcoef3 ! local scalars
- REAL(wp) :: zmskv, zabe2, zcof2, zcoef4 ! - -
- REAL(wp) :: zcoef0, zbtr ! - -
- !
- REAL(wp) :: zslope_skew, zslope_iso, zslope2, zbu, zbv
- REAL(wp) :: ze1ur, zdxt, ze2vr, ze3wr, zdyt, zdzt
- REAL(wp) :: zah, zah_slp, zaei_slp
- REAL(wp), POINTER, DIMENSION(:,: ) :: z2d
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zdit, zdjt, ztfw
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zw3d ! 3D workspace
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('tra_ldf_iso_grif')
- !
- CALL wrk_alloc( jpi, jpj, z2d )
- CALL wrk_alloc( jpi, jpj, jpk, zdit, zdjt, ztfw )
- !
- IF( kt == kit000 .AND. .NOT.ALLOCATED(ah_wslp2) ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'tra_ldf_iso_grif : rotated laplacian diffusion operator on ', cdtype
- IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
- ALLOCATE( ah_wslp2(jpi,jpj,jpk) , zdkt3d(jpi,jpj,0:1), STAT=ierr )
- IF( lk_mpp ) CALL mpp_sum ( ierr )
- IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate arrays')
- IF( ln_traldf_gdia ) THEN
- IF (.NOT. ALLOCATED(psix_eiv))THEN
- ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr )
- IF( lk_mpp ) CALL mpp_sum ( ierr )
- IF( ierr > 0 ) CALL ctl_stop('STOP', 'tra_ldf_iso_grif: unable to allocate diagnostics')
- ENDIF
- ENDIF
- ENDIF
- !!----------------------------------------------------------------------
- !! 0 - calculate ah_wslp2, psix_eiv, psiy_eiv
- !!----------------------------------------------------------------------
- !!gm Future development: consider using Ah defined at T-points and attached to the 4 t-point triads
- ah_wslp2(:,:,:) = 0._wp
- IF( ln_traldf_gdia ) THEN
- psix_eiv(:,:,:) = 0._wp
- psiy_eiv(:,:,:) = 0._wp
- ENDIF
- DO ip = 0, 1
- DO kp = 0, 1
- DO jk = 1, jpkm1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ze1ur = 1._wp / e1u(ji,jj)
- ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp)
- zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk)
- zah = fsahtu(ji,jj,jk) ! fsaht(ji+ip,jj,jk)
- zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp)
- ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces
- ! (do this by *adding* gradient of depth)
- zslope2 = zslope_skew + ( fsdept(ji+1,jj,jk) - fsdept(ji ,jj ,jk) ) * ze1ur * umask(ji,jj,jk+kp)
- zslope2 = zslope2 *zslope2
- ah_wslp2(ji+ip,jj,jk+kp) = ah_wslp2(ji+ip,jj,jk+kp) &
- & + zah * ( zbu * ze3wr / ( e1t(ji+ip,jj) * e2t(ji+ip,jj) ) ) * zslope2
- IF( ln_traldf_gdia ) THEN
- zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew ! fsaeit(ji+ip,jj,jk)*zslope_skew
- psix_eiv(ji,jj,jk+kp) = psix_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp
- ENDIF
- END DO
- END DO
- END DO
- END DO
- END DO
- !
- DO jp = 0, 1
- DO kp = 0, 1
- DO jk = 1, jpkm1
- DO jj = 1, jpjm1
- DO ji=1,fs_jpim1
- ze2vr = 1._wp / e2v(ji,jj)
- ze3wr = 1.0_wp / fse3w(ji,jj+jp,jk+kp)
- zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk)
- zah = fsahtv(ji,jj,jk) ! fsaht(ji,jj+jp,jk)
- zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp)
- ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces
- ! (do this by *adding* gradient of depth)
- zslope2 = zslope_skew + ( fsdept(ji,jj+1,jk) - fsdept(ji,jj,jk) ) * ze2vr * vmask(ji,jj,jk+kp)
- zslope2 = zslope2 * zslope2
- ah_wslp2(ji,jj+jp,jk+kp) = ah_wslp2(ji,jj+jp,jk+kp) &
- & + zah * ( zbv * ze3wr / ( e1t(ji,jj+jp) * e2t(ji,jj+jp) ) ) * zslope2
- IF( ln_traldf_gdia ) THEN
- zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew
- psiy_eiv(ji,jj,jk+kp) = psiy_eiv(ji,jj,jk+kp) + 0.25_wp * zaei_slp
- ENDIF
- END DO
- END DO
- END DO
- END DO
- END DO
- !
- IF( iom_use("uoce_eiv") .OR. iom_use("voce_eiv") .OR. iom_use("woce_eiv") ) THEN
- !
- IF( ln_traldf_gdia .AND. cdtype == 'TRA' ) THEN
- CALL wrk_alloc( jpi , jpj , jpk , zw3d )
- DO jk=1,jpkm1
- zw3d(:,:,jk) = (psix_eiv(:,:,jk+1) - psix_eiv(:,:,jk))/fse3u(:,:,jk) ! u_eiv = -dpsix/dz
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL iom_put( "uoce_eiv", zw3d ) ! i-eiv current
- DO jk=1,jpk-1
- zw3d(:,:,jk) = (psiy_eiv(:,:,jk+1) - psiy_eiv(:,:,jk))/fse3v(:,:,jk) ! v_eiv = -dpsiy/dz
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL iom_put( "voce_eiv", zw3d ) ! j-eiv current
- DO jk=1,jpk-1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zw3d(ji,jj,jk) = (psiy_eiv(ji,jj,jk) - psiy_eiv(ji,jj-1,jk))/e2t(ji,jj) + &
- & (psix_eiv(ji,jj,jk) - psix_eiv(ji-1,jj,jk))/e1t(ji,jj) ! w_eiv = dpsiy/dy + dpsiy/dx
- END DO
- END DO
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL iom_put( "woce_eiv", zw3d ) ! vert. eiv current
- CALL wrk_dealloc( jpi , jpj , jpk , zw3d )
- ENDIF
- !
- ENDIF
- ! ! ===========
- DO jn = 1, kjpt ! tracer loop
- ! ! ===========
- ! Zero fluxes for each tracer
- ztfw(:,:,:) = 0._wp
- zftu(:,:,:) = 0._wp
- zftv(:,:,:) = 0._wp
- !
- DO jk = 1, jpkm1 !== before lateral T & S gradients at T-level jk ==!
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zdit(ji,jj,jk) = ( ptb(ji+1,jj ,jk,jn) - ptb(ji,jj,jk,jn) ) * umask(ji,jj,jk)
- zdjt(ji,jj,jk) = ( ptb(ji ,jj+1,jk,jn) - ptb(ji,jj,jk,jn) ) * vmask(ji,jj,jk)
- END DO
- END DO
- END DO
- IF( ln_zps.and.l_grad_zps ) THEN ! partial steps: correction at the last level
- DO jj = 1, jpjm1
- DO ji = 1, jpim1
- zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)
- zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn)
- END DO
- END DO
- ENDIF
- !!----------------------------------------------------------------------
- !! II - horizontal trend (full)
- !!----------------------------------------------------------------------
- !
- DO jk = 1, jpkm1
- !
- ! !== Vertical tracer gradient at level jk and jk+1
- zdkt3d(:,:,1) = ( ptb(:,:,jk,jn) - ptb(:,:,jk+1,jn) ) * tmask(:,:,jk+1)
- !
- ! ! surface boundary condition: zdkt3d(jk=0)=zdkt3d(jk=1)
- IF( jk == 1 ) THEN ; zdkt3d(:,:,0) = zdkt3d(:,:,1)
- ELSE ; zdkt3d(:,:,0) = ( ptb(:,:,jk-1,jn) - ptb(:,:,jk,jn) ) * tmask(:,:,jk)
- ENDIF
- IF (ln_botmix_grif) THEN
- DO ip = 0, 1 !== Horizontal & vertical fluxes
- DO kp = 0, 1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ze1ur = 1._wp / e1u(ji,jj)
- zdxt = zdit(ji,jj,jk) * ze1ur
- ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp)
- zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr
- zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp)
- zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp)
- zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk)
- ! ln_botmix_grif is .T. don't mask zah for bottom half cells
- zah = fsahtu(ji,jj,jk) !*umask(ji,jj,jk+kp) !fsaht(ji+ip,jj,jk) ===>> ????
- zah_slp = zah * zslope_iso
- zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew !fsaeit(ji+ip,jj,jk)*zslope_skew
- zftu(ji,jj,jk) = zftu(ji,jj,jk) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur
- ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr
- END DO
- END DO
- END DO
- END DO
- DO jp = 0, 1
- DO kp = 0, 1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ze2vr = 1._wp / e2v(ji,jj)
- zdyt = zdjt(ji,jj,jk) * ze2vr
- ze3wr = 1._wp / fse3w(ji,jj+jp,jk+kp)
- zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr
- zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp)
- zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp)
- zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk)
- ! ln_botmix_grif is .T. don't mask zah for bottom half cells
- zah = fsahtv(ji,jj,jk) !*vmask(ji,jj,jk+kp) ! fsaht(ji,jj+jp,jk)
- zah_slp = zah * zslope_iso
- zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew
- zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr
- ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr
- END DO
- END DO
- END DO
- END DO
- ELSE
- DO ip = 0, 1 !== Horizontal & vertical fluxes
- DO kp = 0, 1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ze1ur = 1._wp / e1u(ji,jj)
- zdxt = zdit(ji,jj,jk) * ze1ur
- ze3wr = 1._wp / fse3w(ji+ip,jj,jk+kp)
- zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr
- zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp)
- zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp)
- zbu = 0.25_wp * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk)
- ! ln_botmix_grif is .F. mask zah for bottom half cells
- zah = fsahtu(ji,jj,jk) * umask(ji,jj,jk+kp) ! fsaht(ji+ip,jj,jk) ===>> ????
- zah_slp = zah * zslope_iso
- zaei_slp = fsaeiw(ji+ip,jj,jk) * zslope_skew ! fsaeit(ji+ip,jj,jk)*zslope_skew
- zftu(ji,jj,jk) = zftu(ji,jj,jk) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur
- ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr
- END DO
- END DO
- END DO
- END DO
- DO jp = 0, 1
- DO kp = 0, 1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ze2vr = 1._wp / e2v(ji,jj)
- zdyt = zdjt(ji,jj,jk) * ze2vr
- ze3wr = 1._wp / fse3w(ji,jj+jp,jk+kp)
- zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr
- zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp)
- zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp)
- zbv = 0.25_wp * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk)
- ! ln_botmix_grif is .F. mask zah for bottom half cells
- zah = fsahtv(ji,jj,jk) * vmask(ji,jj,jk+kp) ! fsaht(ji,jj+jp,jk)
- zah_slp = zah * zslope_iso
- zaei_slp = fsaeiw(ji,jj+jp,jk) * zslope_skew ! fsaeit(ji,jj+jp,jk)*zslope_skew
- zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr
- ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr
- END DO
- END DO
- END DO
- END DO
- END IF
- ! !== divergence and add to the general trend ==!
- DO jj = 2 , jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zbtr = 1._wp / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) )
- pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + zbtr * ( zftu(ji-1,jj,jk) - zftu(ji,jj,jk) &
- & + zftv(ji,jj-1,jk) - zftv(ji,jj,jk) )
- END DO
- END DO
- !
- END DO
- !
- DO jk = 1, jpkm1 !== Divergence of vertical fluxes added to the general tracer trend
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) &
- & / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) )
- END DO
- END DO
- END DO
- !
- ! ! "Poleward" diffusive heat or salt transports (T-S case only)
- IF( cdtype == 'TRA' .AND. ln_diaptr ) CALL dia_ptr_ohst_components( jn, 'ldf', zftv(:,:,:) )
- IF( iom_use("udiff_heattr") .OR. iom_use("vdiff_heattr") ) THEN
- !
- IF( cdtype == 'TRA' .AND. jn == jp_tem ) THEN
- z2d(:,:) = 0._wp
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + zftu(ji,jj,jk)
- END DO
- END DO
- END DO
- z2d(:,:) = rau0_rcp * z2d(:,:)
- CALL lbc_lnk( z2d, 'U', -1. )
- CALL iom_put( "udiff_heattr", z2d ) ! heat transport in i-direction
- !
- z2d(:,:) = 0._wp
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + zftv(ji,jj,jk)
- END DO
- END DO
- END DO
- z2d(:,:) = rau0_rcp * z2d(:,:)
- CALL lbc_lnk( z2d, 'V', -1. )
- CALL iom_put( "vdiff_heattr", z2d ) ! heat transport in i-direction
- END IF
- !
- ENDIF
- !
- END DO
- !
- CALL wrk_dealloc( jpi, jpj, z2d )
- CALL wrk_dealloc( jpi, jpj, jpk, zdit, zdjt, ztfw )
- !
- IF( nn_timing == 1 ) CALL timing_stop('tra_ldf_iso_grif')
- !
- END SUBROUTINE tra_ldf_iso_grif
- #else
- !!----------------------------------------------------------------------
- !! default option : Dummy code NO rotation of the diffusive tensor
- !!----------------------------------------------------------------------
- REAL, PUBLIC, DIMENSION(:,:,:), ALLOCATABLE, SAVE :: psix_eiv, psiy_eiv !: eiv stream function (diag only)
- CONTAINS
- SUBROUTINE tra_ldf_iso_grif( kt, kit000, cdtype, pgu, pgv, &
- & ptb, pta, kjpt, pahtb0 )
- CHARACTER(len=3) :: cdtype
- INTEGER :: kit000 ! first time step index
- REAL, DIMENSION(:,:,:) :: pgu, pgv ! tracer gradient at pstep levels
- REAL, DIMENSION(:,:,:,:) :: ptb, pta
- WRITE(*,*) 'tra_ldf_iso_grif: You should not have seen this print! error?', kt, cdtype, &
- & pgu(1,1,1), pgv(1,1,1), ptb(1,1,1,1), pta(1,1,1,1), kjpt, pahtb0
- END SUBROUTINE tra_ldf_iso_grif
- #endif
- !!==============================================================================
- END MODULE traldf_iso_grif
|