123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- MODULE traadv_muscl
- !!======================================================================
- !! *** MODULE traadv_muscl ***
- !! Ocean tracers: horizontal & vertical advective trend
- !!======================================================================
- !! History : ! 2000-06 (A.Estublier) for passive tracers
- !! ! 2001-08 (E.Durand, G.Madec) adapted for T & S
- !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module
- !! 3.2 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport
- !! 3.4 ! 2012-06 (P. Oddo, M. Vichi) include the upstream where needed
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! tra_adv_muscl : update the tracer trend with the horizontal
- !! and vertical advection trends using MUSCL scheme
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and active tracers
- USE trc_oce ! share passive tracers/Ocean variables
- USE dom_oce ! ocean space and time domain
- USE trd_oce ! trends: ocean variables
- USE trdtra ! tracers trends manager
- USE dynspg_oce ! choice/control of key cpp for surface pressure gradient
- USE sbcrnf ! river runoffs
- USE diaptr ! poleward transport diagnostics
- !
- USE wrk_nemo ! Memory Allocation
- USE timing ! Timing
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- USE in_out_manager ! I/O manager
- USE lib_mpp ! distribued memory computing
- USE lbclnk ! ocean lateral boundary condition (or mpp link)
- IMPLICIT NONE
- PRIVATE
- PUBLIC tra_adv_muscl ! routine called by traadv.F90
-
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: upsmsk !: mixed upstream/centered scheme near some straits
- ! ! and in closed seas (orca 2 and 4 configurations)
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xind !: mixed upstream/centered index
-
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id$
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE tra_adv_muscl( kt, kit000, cdtype, p2dt, pun, pvn, pwn, &
- & ptb, pta, kjpt, ld_msc_ups )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tra_adv_muscl ***
- !!
- !! ** Purpose : Compute the now trend due to total advection of T and
- !! S using a MUSCL scheme (Monotone Upstream-centered Scheme for
- !! Conservation Laws) and add it to the general tracer trend.
- !!
- !! ** Method : MUSCL scheme plus centered scheme at ocean boundaries
- !!
- !! ** Action : - update (ta,sa) with the now advective tracer trends
- !! - save trends
- !!
- !! References : Estubier, A., and M. Levy, Notes Techn. Pole de Modelisation
- !! IPSL, Sept. 2000 (http://www.lodyc.jussieu.fr/opa)
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kt ! ocean time-step index
- INTEGER , INTENT(in ) :: kit000 ! first time step index
- CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
- INTEGER , INTENT(in ) :: kjpt ! number of tracers
- LOGICAL , INTENT(in ) :: ld_msc_ups ! use upstream scheme within muscl
- REAL(wp), DIMENSION( jpk ), INTENT(in ) :: p2dt ! vertical profile of tracer time-step
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pun, pvn, pwn ! 3 ocean velocity components
- REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb ! before tracer field
- REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend
- !
- INTEGER :: ji, jj, jk, jn ! dummy loop indices
- INTEGER :: ierr ! local integer
- REAL(wp) :: zu, z0u, zzwx, zw ! local scalars
- REAL(wp) :: zv, z0v, zzwy, z0w ! - -
- REAL(wp) :: ztra, zbtr, zdt, zalpha ! - -
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zslpx, zslpy ! 3D workspace
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zwx , zwy ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('tra_adv_muscl')
- !
- CALL wrk_alloc( jpi, jpj, jpk, zslpx, zslpy, zwx, zwy )
- !
- IF( kt == kit000 ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'tra_adv : MUSCL advection scheme on ', cdtype
- IF(lwp) WRITE(numout,*) ' : mixed up-stream ', ld_msc_ups
- IF(lwp) WRITE(numout,*) '~~~~~~~'
- IF(lwp) WRITE(numout,*)
- !
- !
- IF( ld_msc_ups ) THEN
- IF( .NOT. ALLOCATED( upsmsk ) ) THEN
- ALLOCATE( upsmsk(jpi,jpj), STAT=ierr )
- IF( ierr /= 0 ) CALL ctl_stop('STOP', 'tra_adv_muscl: unable to allocate upsmsk array')
- ENDIF
- upsmsk(:,:) = 0._wp ! not upstream by default
- ENDIF
- IF( .NOT. ALLOCATED( xind ) ) THEN
- ALLOCATE( xind(jpi,jpj,jpk), STAT=ierr )
- IF( ierr /= 0 ) CALL ctl_stop('STOP', 'tra_adv_muscl: unable to allocate zind array')
- ENDIF
- !
- !
- ! Upstream / MUSCL scheme indicator
- ! ------------------------------------
- !!gm useless
- xind(:,:,:) = 1._wp ! set equal to 1 where up-stream is not needed
- !!gm
- !
- IF( ld_msc_ups ) THEN
- DO jk = 1, jpkm1
- xind(:,:,jk) = 1._wp & ! =>1 where up-stream is not needed
- & - MAX ( rnfmsk(:,:) * rnfmsk_z(jk), & ! =>0 near runoff mouths (& closed sea outflows)
- & upsmsk(:,:) ) * tmask(:,:,jk) ! =>0 near some straits
- END DO
- ENDIF
- !
- ENDIF
- !
- ! ! ===========
- DO jn = 1, kjpt ! tracer loop
- ! ! ===========
- ! I. Horizontal advective fluxes
- ! ------------------------------
- ! first guess of the slopes
- zwx(:,:,jpk) = 0.e0 ; zwy(:,:,jpk) = 0.e0 ! bottom values
- ! interior values
- DO jk = 1, jpkm1
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zwx(ji,jj,jk) = umask(ji,jj,jk) * ( ptb(ji+1,jj,jk,jn) - ptb(ji,jj,jk,jn) )
- zwy(ji,jj,jk) = vmask(ji,jj,jk) * ( ptb(ji,jj+1,jk,jn) - ptb(ji,jj,jk,jn) )
- END DO
- END DO
- END DO
- !
- CALL lbc_lnk( zwx, 'U', -1. ) ! lateral boundary conditions on zwx, zwy (changed sign)
- CALL lbc_lnk( zwy, 'V', -1. )
- ! !-- Slopes of tracer
- zslpx(:,:,jpk) = 0.e0 ; zslpy(:,:,jpk) = 0.e0 ! bottom values
- DO jk = 1, jpkm1 ! interior values
- DO jj = 2, jpj
- DO ji = fs_2, jpi ! vector opt.
- zslpx(ji,jj,jk) = ( zwx(ji,jj,jk) + zwx(ji-1,jj ,jk) ) &
- & * ( 0.25 + SIGN( 0.25, zwx(ji,jj,jk) * zwx(ji-1,jj ,jk) ) )
- zslpy(ji,jj,jk) = ( zwy(ji,jj,jk) + zwy(ji ,jj-1,jk) ) &
- & * ( 0.25 + SIGN( 0.25, zwy(ji,jj,jk) * zwy(ji ,jj-1,jk) ) )
- END DO
- END DO
- END DO
- !
- DO jk = 1, jpkm1 ! Slopes limitation
- DO jj = 2, jpj
- DO ji = fs_2, jpi ! vector opt.
- zslpx(ji,jj,jk) = SIGN( 1., zslpx(ji,jj,jk) ) * MIN( ABS( zslpx(ji ,jj,jk) ), &
- & 2.*ABS( zwx (ji-1,jj,jk) ), &
- & 2.*ABS( zwx (ji ,jj,jk) ) )
- zslpy(ji,jj,jk) = SIGN( 1., zslpy(ji,jj,jk) ) * MIN( ABS( zslpy(ji,jj ,jk) ), &
- & 2.*ABS( zwy (ji,jj-1,jk) ), &
- & 2.*ABS( zwy (ji,jj ,jk) ) )
- END DO
- END DO
- END DO ! interior values
- ! !-- MUSCL horizontal advective fluxes
- DO jk = 1, jpkm1 ! interior values
- zdt = p2dt(jk)
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ! MUSCL fluxes
- z0u = SIGN( 0.5, pun(ji,jj,jk) )
- zalpha = 0.5 - z0u
- zu = z0u - 0.5 * pun(ji,jj,jk) * zdt / ( e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) )
- zzwx = ptb(ji+1,jj,jk,jn) + xind(ji,jj,jk) * zu * zslpx(ji+1,jj,jk)
- zzwy = ptb(ji ,jj,jk,jn) + xind(ji,jj,jk) * zu * zslpx(ji ,jj,jk)
- zwx(ji,jj,jk) = pun(ji,jj,jk) * ( zalpha * zzwx + (1.-zalpha) * zzwy )
- !
- z0v = SIGN( 0.5, pvn(ji,jj,jk) )
- zalpha = 0.5 - z0v
- zv = z0v - 0.5 * pvn(ji,jj,jk) * zdt / ( e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) )
- zzwx = ptb(ji,jj+1,jk,jn) + xind(ji,jj,jk) * zv * zslpy(ji,jj+1,jk)
- zzwy = ptb(ji,jj ,jk,jn) + xind(ji,jj,jk) * zv * zslpy(ji,jj ,jk)
- zwy(ji,jj,jk) = pvn(ji,jj,jk) * ( zalpha * zzwx + (1.-zalpha) * zzwy )
- END DO
- END DO
- END DO
- ! ! lateral boundary conditions on zwx, zwy (changed sign)
- CALL lbc_lnk( zwx, 'U', -1. ) ; CALL lbc_lnk( zwy, 'V', -1. )
- !
- ! Tracer flux divergence at t-point added to the general trend
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) )
- ! horizontal advective trends
- ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) &
- & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) )
- ! add it to the general tracer trends
- pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ztra
- END DO
- END DO
- END DO
- ! ! trend diagnostics (contribution of upstream fluxes)
- IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. &
- &( cdtype == 'TRC' .AND. l_trdtrc ) ) THEN
- CALL trd_tra( kt, cdtype, jn, jptra_xad, zwx, pun, ptb(:,:,:,jn) )
- CALL trd_tra( kt, cdtype, jn, jptra_yad, zwy, pvn, ptb(:,:,:,jn) )
- END IF
- ! ! "Poleward" heat and salt transports (contribution of upstream fluxes)
- IF( cdtype == 'TRA' .AND. ln_diaptr ) CALL dia_ptr_ohst_components( jn, 'adv', zwy(:,:,:) )
- ! II. Vertical advective fluxes
- ! -----------------------------
- ! !-- first guess of the slopes
- zwx (:,:, 1 ) = 0.e0 ; zwx (:,:,jpk) = 0.e0 ! surface & bottom boundary conditions
- DO jk = 2, jpkm1 ! interior values
- zwx(:,:,jk) = tmask(:,:,jk) * ( ptb(:,:,jk-1,jn) - ptb(:,:,jk,jn) )
- END DO
- ! !-- Slopes of tracer
- zslpx(:,:,1) = 0.e0 ! surface values
- DO jk = 2, jpkm1 ! interior value
- DO jj = 1, jpj
- DO ji = 1, jpi
- zslpx(ji,jj,jk) = ( zwx(ji,jj,jk) + zwx(ji,jj,jk+1) ) &
- & * ( 0.25 + SIGN( 0.25, zwx(ji,jj,jk) * zwx(ji,jj,jk+1) ) )
- END DO
- END DO
- END DO
- ! !-- Slopes limitation
- DO jk = 2, jpkm1 ! interior values
- DO jj = 1, jpj
- DO ji = 1, jpi
- zslpx(ji,jj,jk) = SIGN( 1., zslpx(ji,jj,jk) ) * MIN( ABS( zslpx(ji,jj,jk ) ), &
- & 2.*ABS( zwx (ji,jj,jk+1) ), &
- & 2.*ABS( zwx (ji,jj,jk ) ) )
- END DO
- END DO
- END DO
- ! !-- vertical advective flux
- ! ! surface values (bottom already set to zero)
- IF( lk_vvl ) THEN ; zwx(:,:, 1 ) = 0.e0 ! variable volume
- ELSE ; zwx(:,:, 1 ) = pwn(:,:,1) * ptb(:,:,1,jn) ! linear free surface
- ENDIF
- !
- DO jk = 1, jpkm1 ! interior values
- zdt = p2dt(jk)
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3w(ji,jj,jk+1) )
- z0w = SIGN( 0.5, pwn(ji,jj,jk+1) )
- zalpha = 0.5 + z0w
- zw = z0w - 0.5 * pwn(ji,jj,jk+1) * zdt * zbtr
- zzwx = ptb(ji,jj,jk+1,jn) + xind(ji,jj,jk) * zw * zslpx(ji,jj,jk+1)
- zzwy = ptb(ji,jj,jk ,jn) + xind(ji,jj,jk) * zw * zslpx(ji,jj,jk )
- zwx(ji,jj,jk+1) = pwn(ji,jj,jk+1) * ( zalpha * zzwx + (1.-zalpha) * zzwy )
- END DO
- END DO
- END DO
- DO jk = 1, jpkm1 ! Compute & add the vertical advective trend
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zbtr = 1. / ( e1e2t(ji,jj) * fse3t(ji,jj,jk) )
- ! vertical advective trends
- ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji,jj,jk+1) )
- ! add it to the general tracer trends
- pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ztra
- END DO
- END DO
- END DO
- ! ! Save the vertical advective trends for diagnostic
- IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. &
- &( cdtype == 'TRC' .AND. l_trdtrc ) ) &
- CALL trd_tra( kt, cdtype, jn, jptra_zad, zwx, pwn, ptb(:,:,:,jn) )
- !
- END DO
- !
- CALL wrk_dealloc( jpi, jpj, jpk, zslpx, zslpy, zwx, zwy )
- !
- IF( nn_timing == 1 ) CALL timing_stop('tra_adv_muscl')
- !
- END SUBROUTINE tra_adv_muscl
- !!======================================================================
- END MODULE traadv_muscl
|