123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970 |
- MODULE sbcisf
- !!======================================================================
- !! *** MODULE sbcisf ***
- !! Surface module : update surface ocean boundary condition under ice
- !! shelf
- !!======================================================================
- !! History : 3.2 ! 2011-02 (C.Harris ) Original code isf cav
- !! X.X ! 2006-02 (C. Wang ) Original code bg03
- !! 3.4 ! 2013-03 (P. Mathiot) Merging + parametrization
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! sbc_isf : update sbc under ice shelf
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE eosbn2 ! equation of state
- USE sbc_oce ! surface boundary condition: ocean fields
- USE lbclnk !
- USE iom ! I/O manager library
- USE in_out_manager ! I/O manager
- USE wrk_nemo ! Memory allocation
- USE timing ! Timing
- USE lib_fortran ! glob_sum
- USE zdfbfr
- USE fldread ! read input field at current time step
- IMPLICIT NONE
- PRIVATE
- PUBLIC sbc_isf, sbc_isf_init, sbc_isf_div, sbc_isf_alloc ! routine called in sbcmod and divcur
- ! public in order to be able to output then
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: risf_tsc_b, risf_tsc
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qisf !: net heat flux from ice shelf
- REAL(wp), PUBLIC :: rn_hisf_tbl !: thickness of top boundary layer [m]
- LOGICAL , PUBLIC :: ln_divisf !: flag to correct divergence
- INTEGER , PUBLIC :: nn_isfblk !:
- INTEGER , PUBLIC :: nn_gammablk !:
- LOGICAL , PUBLIC :: ln_conserve !:
- REAL(wp), PUBLIC :: rn_gammat0 !: temperature exchange coeficient
- REAL(wp), PUBLIC :: rn_gammas0 !: salinity exchange coeficient
- REAL(wp), PUBLIC :: rdivisf !: flag to test if fwf apply on divergence
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rzisf_tbl !:depth of calving front (shallowest point) nn_isf ==2/3
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rhisf_tbl, rhisf_tbl_0 !:thickness of tbl
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: r1_hisf_tbl !:1/thickness of tbl
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ralpha !:proportion of bottom cell influenced by tbl
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: risfLeff !:effective length (Leff) BG03 nn_isf==2
- REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ttbl, stbl, utbl, vtbl !:top boundary layer variable at T point
- INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: misfkt, misfkb !:Level of ice shelf base
- LOGICAL, PUBLIC :: l_isfcpl = .false. ! isf recieved from oasis
- REAL(wp), PUBLIC, SAVE :: rcpi = 2000.0_wp ! phycst ?
- REAL(wp), PUBLIC, SAVE :: kappa = 1.54e-6_wp ! phycst ?
- REAL(wp), PUBLIC, SAVE :: rhoisf = 920.0_wp ! phycst ?
- REAL(wp), PUBLIC, SAVE :: tsurf = -20.0_wp ! phycst ?
- REAL(wp), PUBLIC, SAVE :: lfusisf= 0.334e6_wp ! phycst ?
- !: Variable used in fldread to read the forcing file (nn_isf == 4 .OR. nn_isf == 3)
- CHARACTER(len=100), PUBLIC :: cn_dirisf = './' !: Root directory for location of ssr files
- TYPE(FLD_N) , PUBLIC :: sn_qisf, sn_fwfisf !: information about the runoff file to be read
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_qisf, sf_fwfisf
- TYPE(FLD_N) , PUBLIC :: sn_rnfisf !: information about the runoff file to be read
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnfisf
- TYPE(FLD_N) , PUBLIC :: sn_depmax_isf, sn_depmin_isf, sn_Leff_isf !: information about the runoff file to be read
-
- !! * Substitutions
- # include "domzgr_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.0 , LOCEAN-IPSL (2008)
- !! $Id: sbcisf.F90 5424 2018-04-27 07:03:10Z ufla $
- !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
-
- SUBROUTINE sbc_isf(kt)
- INTEGER, INTENT(in) :: kt ! ocean time step
- INTEGER :: ji, jj, jk
- INTEGER :: ikt, ikb ! top and bottom level of the isf boundary layer
- REAL(wp) :: zhk
- REAL(wp) :: zt_frz, zpress
- REAL(wp), DIMENSION(:,:,:), POINTER :: zfwfisf3d, zqhcisf3d, zqlatisf3d
- REAL(wp), DIMENSION(:,: ), POINTER :: zqhcisf2d
- REAL(wp) :: zhisf
- IF( MOD( kt-1, nn_fsbc) == 0 ) THEN
- ! compute bottom level of isf tbl and thickness of tbl below the ice shelf
- DO jj = 1,jpj
- DO ji = 1,jpi
- ikt = misfkt(ji,jj)
- ikb = misfkt(ji,jj)
- ! thickness of boundary layer at least the top level thickness
- rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), fse3t_n(ji,jj,ikt))
- ! determine the deepest level influenced by the boundary layer
- DO jk = ikt, mbkt(ji,jj)
- IF ( (SUM(fse3t_n(ji,jj,ikt:jk-1)) .LT. rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk
- END DO
- rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(fse3t_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness.
- misfkb(ji,jj) = ikb ! last wet level of the tbl
- r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj)
- zhk = SUM( fse3t(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1
- ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / fse3t(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer
- END DO
- END DO
- ! compute salf and heat flux
- IF (nn_isf == 1) THEN
- ! realistic ice shelf formulation
- ! compute T/S/U/V for the top boundary layer
- CALL sbc_isf_tbl(tsn(:,:,:,jp_tem),ttbl(:,:),'T')
- CALL sbc_isf_tbl(tsn(:,:,:,jp_sal),stbl(:,:),'T')
- CALL sbc_isf_tbl(un(:,:,:),utbl(:,:),'U')
- CALL sbc_isf_tbl(vn(:,:,:),vtbl(:,:),'V')
- ! iom print
- CALL iom_put('ttbl',ttbl(:,:))
- CALL iom_put('stbl',stbl(:,:))
- CALL iom_put('utbl',utbl(:,:))
- CALL iom_put('vtbl',vtbl(:,:))
- ! compute fwf and heat flux
- IF( .NOT.l_isfcpl ) THEN ; CALL sbc_isf_cav (kt)
- ELSE ; qisf(:,:) = fwfisf(:,:) * lfusisf ! heat flux
- ENDIF
- ELSE IF (nn_isf == 2) THEN
- ! Beckmann and Goosse parametrisation
- stbl(:,:) = soce
- CALL sbc_isf_bg03(kt)
- ELSE IF (nn_isf == 3) THEN
- ! specified runoff in depth (Mathiot et al., XXXX in preparation)
- IF( .NOT.l_isfcpl ) THEN
- CALL fld_read ( kt, nn_fsbc, sf_rnfisf )
- fwfisf(:,:) = - sf_rnfisf(1)%fnow(:,:,1) ! fresh water flux from the isf (fwfisf <0 mean melting)
- ENDIF
- qisf(:,:) = fwfisf(:,:) * lfusisf ! heat flux
- stbl(:,:) = soce
- ELSE IF (nn_isf == 4) THEN
- ! specified fwf and heat flux forcing beneath the ice shelf
- IF( .NOT.l_isfcpl ) THEN
- CALL fld_read ( kt, nn_fsbc, sf_fwfisf )
- !CALL fld_read ( kt, nn_fsbc, sf_qisf )
- fwfisf(:,:) = sf_fwfisf(1)%fnow(:,:,1) ! fwf
- ENDIF
- qisf(:,:) = fwfisf(:,:) * lfusisf ! heat flux
- !qisf(:,:) = sf_qisf(1)%fnow(:,:,1) ! heat flux
- stbl(:,:) = soce
- END IF
- ! compute tsc due to isf
- ! WARNING water add at temp = 0C, correction term is added, maybe better here but need a 3D variable).
- ! zpress = grav*rau0*fsdept(ji,jj,jk)*1.e-04
- zt_frz = -1.9 !eos_fzp( tsn(ji,jj,jk,jp_sal), zpress )
- risf_tsc(:,:,jp_tem) = qisf(:,:) * r1_rau0_rcp - rdivisf * fwfisf(:,:) * zt_frz * r1_rau0 !
-
- ! salt effect already take into account in vertical advection
- risf_tsc(:,:,jp_sal) = (1.0_wp-rdivisf) * fwfisf(:,:) * soce * r1_rau0
- ! lbclnk
- CALL lbc_lnk(risf_tsc(:,:,jp_tem),'T',1.)
- CALL lbc_lnk(risf_tsc(:,:,jp_sal),'T',1.)
- CALL lbc_lnk(fwfisf(:,:) ,'T',1.)
- CALL lbc_lnk(qisf(:,:) ,'T',1.)
- ! output
- IF( iom_use('iceshelf_cea') ) CALL iom_put( 'iceshelf_cea', -fwfisf(:,:) ) ! isf mass flux
- IF( iom_use('hflx_isf_cea') ) CALL iom_put( 'hflx_isf_cea', risf_tsc(:,:,jp_tem) * rau0 * rcp ) ! isf sensible+latent heat (W/m2)
- IF( iom_use('qlatisf' ) ) CALL iom_put( 'qlatisf' , qisf(:,:) ) ! isf latent heat
- IF( iom_use('fwfisf' ) ) CALL iom_put( 'fwfisf' , fwfisf(:,:) ) ! isf mass flux (opposite sign)
- ! Diagnostics
- IF( iom_use('fwfisf3d') .OR. iom_use('qlatisf3d') .OR. iom_use('qhcisf3d') .OR. iom_use('qhcisf')) THEN
- !
- CALL wrk_alloc( jpi,jpj,jpk, zfwfisf3d, zqhcisf3d, zqlatisf3d )
- CALL wrk_alloc( jpi,jpj, zqhcisf2d )
- !
- zfwfisf3d(:,:,:) = 0.0_wp ! 3d ice shelf melting (kg/m2/s)
- zqhcisf3d(:,:,:) = 0.0_wp ! 3d heat content flux (W/m2)
- zqlatisf3d(:,:,:)= 0.0_wp ! 3d ice shelf melting latent heat flux (W/m2)
- zqhcisf2d(:,:) = rdivisf * fwfisf(:,:) * zt_frz * rcp ! 2d heat content flux (W/m2)
- !
- DO jj = 1,jpj
- DO ji = 1,jpi
- ikt = misfkt(ji,jj)
- ikb = misfkb(ji,jj)
- DO jk = ikt, ikb - 1
- zhisf = r1_hisf_tbl(ji,jj) * fse3t(ji,jj,jk)
- zfwfisf3d (ji,jj,jk) = zfwfisf3d (ji,jj,jk) + fwfisf(ji,jj) * zhisf
- zqhcisf3d (ji,jj,jk) = zqhcisf3d (ji,jj,jk) + zqhcisf2d(ji,jj) * zhisf
- zqlatisf3d(ji,jj,jk) = zqlatisf3d(ji,jj,jk) + qisf(ji,jj) * zhisf
- END DO
- jk = ikb
- zhisf = r1_hisf_tbl(ji,jj) * fse3t(ji,jj,jk)
- zfwfisf3d (ji,jj,jk) = zfwfisf3d (ji,jj,jk) + fwfisf (ji,jj) * zhisf * ralpha(ji,jj)
- zqhcisf3d (ji,jj,jk) = zqhcisf3d (ji,jj,jk) + zqhcisf2d(ji,jj) * zhisf * ralpha(ji,jj)
- zqlatisf3d(ji,jj,jk) = zqlatisf3d(ji,jj,jk) + qisf (ji,jj) * zhisf * ralpha(ji,jj)
- END DO
- END DO
- !
- CALL iom_put( 'fwfisf3d' , zfwfisf3d (:,:,:) )
- CALL iom_put( 'qlatisf3d', zqlatisf3d(:,:,:) )
- CALL iom_put( 'qhcisf3d' , zqhcisf3d (:,:,:) )
- CALL iom_put( 'qhcisf' , zqhcisf2d (:,: ) )
- !
- CALL wrk_dealloc( jpi,jpj,jpk, zfwfisf3d, zqhcisf3d, zqlatisf3d )
- CALL wrk_dealloc( jpi,jpj, zqhcisf2d )
- !
- END IF
- ! if apply only on the trend and not as a volume flux (rdivisf = 0), fwfisf have to be set to 0 now
- fwfisf(:,:) = rdivisf * fwfisf(:,:)
-
- !
- END IF
- !
- !
- IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
- IF( ln_rstart .AND. & ! Restart: read in restart file
- & iom_varid( numror, 'fwf_isf_b', ldstop = .FALSE. ) > 0 ) THEN
- IF(lwp) WRITE(numout,*) ' nit000-1 isf tracer content forcing fields read in the restart file'
- CALL iom_get( numror, jpdom_autoglo, 'fwf_isf_b', fwfisf_b(:,:) ) ! before salt content isf_tsc trend
- CALL iom_get( numror, jpdom_autoglo, 'isf_sc_b', risf_tsc_b(:,:,jp_sal) ) ! before salt content isf_tsc trend
- CALL iom_get( numror, jpdom_autoglo, 'isf_hc_b', risf_tsc_b(:,:,jp_tem) ) ! before salt content isf_tsc trend
- ELSE
- fwfisf_b(:,:) = fwfisf(:,:)
- risf_tsc_b(:,:,:)= risf_tsc(:,:,:)
- END IF
- ENDIF
- !
- IF( lrst_oce ) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'sbc : isf surface tracer content forcing fields written in ocean restart file ', &
- & 'at it= ', kt,' date= ', ndastp
- IF(lwp) WRITE(numout,*) '~~~~'
- CALL iom_rstput( kt, nitrst, numrow, 'fwf_isf_b', fwfisf(:,:) )
- CALL iom_rstput( kt, nitrst, numrow, 'isf_hc_b' , risf_tsc(:,:,jp_tem) )
- CALL iom_rstput( kt, nitrst, numrow, 'isf_sc_b' , risf_tsc(:,:,jp_sal) )
- ENDIF
- !
- END SUBROUTINE sbc_isf
- SUBROUTINE sbc_isf_init
- INTEGER :: ji, jj, jk, ijkmin, inum, ierror
- INTEGER :: ikt, ikb ! top and bottom level of the isf boundary layer
- REAL(wp) :: zhk
- CHARACTER(len=256) :: cfisf , cvarzisf, cvarhisf ! name for isf file
- CHARACTER(LEN=256) :: cnameis ! name of iceshelf file
- CHARACTER (LEN=32) :: cvarLeff ! variable name for efficient Length scale
- INTEGER :: ios ! Local integer output status for namelist read
- !
- !!---------------------------------------------------------------------
- NAMELIST/namsbc_isf/ nn_isfblk, rn_hisf_tbl, ln_divisf, ln_conserve, rn_gammat0, rn_gammas0, nn_gammablk, &
- & sn_fwfisf, sn_qisf, sn_rnfisf, sn_depmax_isf, sn_depmin_isf, sn_Leff_isf
- !
- !
- REWIND( numnam_ref ) ! Namelist namsbc_rnf in reference namelist : Runoffs
- READ ( numnam_ref, namsbc_isf, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namsbc_rnf in configuration namelist : Runoffs
- READ ( numnam_cfg, namsbc_isf, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namsbc_isf )
- IF ( lwp ) WRITE(numout,*)
- IF ( lwp ) WRITE(numout,*) 'sbc_isf: heat flux of the ice shelf'
- IF ( lwp ) WRITE(numout,*) '~~~~~~~~~'
- IF ( lwp ) WRITE(numout,*) 'sbcisf :'
- IF ( lwp ) WRITE(numout,*) '~~~~~~~~'
- IF ( lwp ) WRITE(numout,*) ' nn_isf = ', nn_isf
- IF ( lwp ) WRITE(numout,*) ' nn_isfblk = ', nn_isfblk
- IF ( lwp ) WRITE(numout,*) ' rn_hisf_tbl = ', rn_hisf_tbl
- IF ( lwp ) WRITE(numout,*) ' ln_divisf = ', ln_divisf
- IF ( lwp ) WRITE(numout,*) ' nn_gammablk = ', nn_gammablk
- IF ( lwp ) WRITE(numout,*) ' rn_tfri2 = ', rn_tfri2
- IF (ln_divisf) THEN ! keep it in the namelist ??? used true anyway as for runoff ? (PM)
- rdivisf = 1._wp
- ELSE
- rdivisf = 0._wp
- END IF
- !
- ! Allocate public variable
- IF ( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_isf : unable to allocate arrays' )
- !
- ! initialisation
- qisf(:,:) = 0._wp ; fwfisf(:,:) = 0._wp
- risf_tsc(:,:,:) = 0._wp
- !
- ! define isf tbl tickness, top and bottom indice
- IF (nn_isf == 1) THEN
- rhisf_tbl(:,:) = rn_hisf_tbl
- misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv
- ELSE IF ((nn_isf == 3) .OR. (nn_isf == 2)) THEN
- IF( .NOT.l_isfcpl ) THEN
- ALLOCATE( sf_rnfisf(1), STAT=ierror )
- ALLOCATE( sf_rnfisf(1)%fnow(jpi,jpj,1), sf_rnfisf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill(sf_rnfisf, (/ sn_rnfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf')
- ENDIF
- !: read effective lenght (BG03)
- IF (nn_isf == 2) THEN
- ! Read Data and save some integral values
- CALL iom_open( sn_Leff_isf%clname, inum )
- cvarLeff = 'soLeff' !: variable name for Efficient Length scale
- CALL iom_get( inum, jpdom_data, cvarLeff, risfLeff , 1)
- CALL iom_close(inum)
- !
- risfLeff = risfLeff*1000 !: convertion in m
- END IF
- ! read depth of the top and bottom of the isf top boundary layer (in this case, isf front depth and grounding line depth)
- CALL iom_open( sn_depmax_isf%clname, inum )
- cvarhisf = TRIM(sn_depmax_isf%clvar)
- CALL iom_get( inum, jpdom_data, cvarhisf, rhisf_tbl, 1) !: depth of deepest point of the ice shelf base
- CALL iom_close(inum)
- !
- CALL iom_open( sn_depmin_isf%clname, inum )
- cvarzisf = TRIM(sn_depmin_isf%clvar)
- CALL iom_get( inum, jpdom_data, cvarzisf, rzisf_tbl, 1) !: depth of shallowest point of the ice shelves base
- CALL iom_close(inum)
- !
- rhisf_tbl(:,:) = rhisf_tbl(:,:) - rzisf_tbl(:,:) !: tickness isf boundary layer
- !! compute first level of the top boundary layer
- DO ji = 1, jpi
- DO jj = 1, jpj
- jk = 2
- DO WHILE ( jk .LE. mbkt(ji,jj) .AND. gdepw_0(ji,jj,jk) < rzisf_tbl(ji,jj) ) ; jk = jk + 1 ; END DO
- misfkt(ji,jj) = jk-1
- END DO
- END DO
- ELSE IF ( nn_isf == 4 ) THEN
- ! as in nn_isf == 1
- rhisf_tbl(:,:) = rn_hisf_tbl
- misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv
-
- ! load variable used in fldread (use for temporal interpolation of isf fwf forcing)
- IF( .NOT.l_isfcpl ) THEN
- ALLOCATE( sf_fwfisf(1), sf_qisf(1), STAT=ierror )
- ALLOCATE( sf_fwfisf(1)%fnow(jpi,jpj,1), sf_fwfisf(1)%fdta(jpi,jpj,1,2) )
- ALLOCATE( sf_qisf(1)%fnow(jpi,jpj,1), sf_qisf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill(sf_fwfisf, (/ sn_fwfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf')
- !CALL fld_fill( sf_qisf , (/ sn_qisf /), cn_dirisf, 'sbc_isf_init', 'read heat flux isf data' , 'namsbc_isf' )
- ENDIF
- END IF
- ! save initial top boundary layer thickness
- rhisf_tbl_0(:,:) = rhisf_tbl(:,:)
- !
- END SUBROUTINE sbc_isf_init
-
- INTEGER FUNCTION sbc_isf_alloc()
- !!----------------------------------------------------------------------
- !! *** FUNCTION sbc_isf_rnf_alloc ***
- !!----------------------------------------------------------------------
- sbc_isf_alloc = 0 ! set to zero if no array to be allocated
- IF( .NOT. ALLOCATED( qisf ) ) THEN
- ALLOCATE( risf_tsc(jpi,jpj,jpts), risf_tsc_b(jpi,jpj,jpts), qisf(jpi,jpj) , &
- & rhisf_tbl(jpi,jpj) , r1_hisf_tbl(jpi,jpj), rzisf_tbl(jpi,jpj) , &
- & ttbl(jpi,jpj) , stbl(jpi,jpj) , utbl(jpi,jpj) , &
- & vtbl(jpi, jpj) , risfLeff(jpi,jpj) , rhisf_tbl_0(jpi,jpj), &
- & ralpha(jpi,jpj) , misfkt(jpi,jpj) , misfkb(jpi,jpj) , &
- & STAT= sbc_isf_alloc )
- !
- IF( lk_mpp ) CALL mpp_sum ( sbc_isf_alloc )
- IF( sbc_isf_alloc /= 0 ) CALL ctl_warn('sbc_isf_alloc: failed to allocate arrays.')
- !
- ENDIF
- END FUNCTION
- SUBROUTINE sbc_isf_bg03(kt)
- !!==========================================================================
- !! *** SUBROUTINE sbcisf_bg03 ***
- !! add net heat and fresh water flux from ice shelf melting
- !! into the adjacent ocean using the parameterisation by
- !! Beckmann and Goosse (2003), "A parameterization of ice shelf-ocean
- !! interaction for climate models", Ocean Modelling 5(2003) 157-170.
- !! (hereafter BG)
- !!==========================================================================
- !!----------------------------------------------------------------------
- !! sbc_isf_bg03 : routine called from sbcmod
- !!----------------------------------------------------------------------
- !!
- !! ** Purpose : Add heat and fresh water fluxes due to ice shelf melting
- !! ** Reference : Beckmann et Goosse, 2003, Ocean Modelling
- !!
- !! History :
- !! ! 06-02 (C. Wang) Original code
- !!----------------------------------------------------------------------
- INTEGER, INTENT ( in ) :: kt
- INTEGER :: ji, jj, jk, jish !temporary integer
- INTEGER :: ijkmin
- INTEGER :: ii, ij, ik
- INTEGER :: inum
- REAL(wp) :: zt_sum ! sum of the temperature between 200m and 600m
- REAL(wp) :: zt_ave ! averaged temperature between 200m and 600m
- REAL(wp) :: zt_frz ! freezing point temperature at depth z
- REAL(wp) :: zpress ! pressure to compute the freezing point in depth
-
- !!----------------------------------------------------------------------
- IF ( nn_timing == 1 ) CALL timing_start('sbc_isf_bg03')
- !
- ! This test is false only in the very first time step of a run (JMM ???- Initialy build to skip 1rst year of run )
- DO ji = 1, jpi
- DO jj = 1, jpj
- ik = misfkt(ji,jj)
- !! Initialize arrays to 0 (each step)
- zt_sum = 0.e0_wp
- IF ( ik .GT. 1 ) THEN
- ! 3. -----------the average temperature between 200m and 600m ---------------------
- DO jk = misfkt(ji,jj),misfkb(ji,jj)
- ! freezing point temperature at ice shelf base BG eq. 2 (JMM sign pb ??? +7.64e-4 !!!)
- ! after verif with UNESCO, wrong sign in BG eq. 2
- ! Calculate freezing temperature
- zpress = grav*rau0*fsdept(ji,jj,ik)*1.e-04
- CALL eos_fzp(tsb(ji,jj,ik,jp_sal), zt_frz, zpress)
- zt_sum = zt_sum + (tsn(ji,jj,ik,jp_tem)-zt_frz) * fse3t(ji,jj,ik) * tmask(ji,jj,ik) ! sum temp
- ENDDO
- zt_ave = zt_sum/rhisf_tbl(ji,jj) ! calcul mean value
-
- ! 4. ------------Net heat flux and fresh water flux due to the ice shelf
- ! For those corresponding to zonal boundary
- qisf(ji,jj) = - rau0 * rcp * rn_gammat0 * risfLeff(ji,jj) * e1t(ji,jj) * zt_ave &
- & / (e1t(ji,jj) * e2t(ji,jj)) * tmask(ji,jj,ik)
-
- fwfisf(ji,jj) = qisf(ji,jj) / lfusisf !fresh water flux kg/(m2s)
- ELSE
- qisf(ji,jj) = 0._wp ; fwfisf(ji,jj) = 0._wp
- END IF
- ENDDO
- ENDDO
- !
- IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_bg03')
- END SUBROUTINE sbc_isf_bg03
- SUBROUTINE sbc_isf_cav( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE sbc_isf_cav ***
- !!
- !! ** Purpose : handle surface boundary condition under ice shelf
- !!
- !! ** Method : -
- !!
- !! ** Action : utau, vtau : remain unchanged
- !! taum, wndm : remain unchanged
- !! qns : update heat flux below ice shelf
- !! emp, emps : update freshwater flux below ice shelf
- !!---------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time step
- !
- LOGICAL :: ln_isomip = .true.
- REAL(wp), DIMENSION(:,:), POINTER :: zfrz,zpress,zti
- REAL(wp), DIMENSION(:,:), POINTER :: zgammat2d, zgammas2d
- !REAL(wp), DIMENSION(:,:), POINTER :: zqisf, zfwfisf
- REAL(wp) :: zlamb1, zlamb2, zlamb3
- REAL(wp) :: zeps1,zeps2,zeps3,zeps4,zeps6,zeps7
- REAL(wp) :: zaqe,zbqe,zcqe,zaqer,zdis,zsfrz,zcfac
- REAL(wp) :: zfwflx, zhtflx, zhtflx_b
- REAL(wp) :: zgammat, zgammas
- REAL(wp) :: zeps = -1.e-20_wp !== Local constant initialization ==!
- INTEGER :: ji, jj ! dummy loop indices
- INTEGER :: ii0, ii1, ij0, ij1 ! temporary integers
- INTEGER :: ierror ! return error code
- LOGICAL :: lit=.TRUE.
- INTEGER :: nit
- !!---------------------------------------------------------------------
- !
- ! coeficient for linearisation of tfreez
- zlamb1=-0.0575
- zlamb2=0.0901
- zlamb3=-7.61e-04
- IF( nn_timing == 1 ) CALL timing_start('sbc_isf_cav')
- !
- CALL wrk_alloc( jpi,jpj, zfrz,zpress,zti, zgammat2d, zgammas2d )
- zcfac=0.0_wp
- IF (ln_conserve) zcfac=1.0_wp
- zpress(:,:)=0.0_wp
- zgammat2d(:,:)=0.0_wp
- zgammas2d(:,:)=0.0_wp
- !
- !
- !CDIR COLLAPSE
- DO jj = 1, jpj
- DO ji = 1, jpi
- ! Crude approximation for pressure (but commonly used)
- ! 1e-04 to convert from Pa to dBar
- zpress(ji,jj)=grav*rau0*fsdepw(ji,jj,mikt(ji,jj))*1.e-04
- !
- END DO
- END DO
- ! convert CT to Tpot
- IF (ln_useCT) ttbl=eos_pt_from_ct(ttbl,stbl)
- ! Calculate in-situ temperature (ref to surface)
- zti(:,:)=tinsitu( ttbl, stbl, zpress )
- ! Calculate freezing temperature
- CALL eos_fzp( sss_m(:,:), zfrz(:,:), zpress )
-
- zhtflx=0._wp ; zfwflx=0._wp
- IF (nn_isfblk == 1) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF (mikt(ji,jj) > 1 ) THEN
- nit = 1; lit = .TRUE.; zgammat=rn_gammat0; zgammas=rn_gammas0; zhtflx_b=0._wp
- DO WHILE ( lit )
- ! compute gamma
- CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx, ji, jj, lit)
- ! zhtflx is upward heat flux (out of ocean)
- zhtflx = zgammat*rcp*rau0*(zti(ji,jj)-zfrz(ji,jj))
- ! zwflx is upward water flux
- zfwflx = - zhtflx/lfusisf
- ! test convergence and compute gammat
- IF ( (zhtflx - zhtflx_b) .LE. 0.01 ) lit = .FALSE.
- nit = nit + 1
- IF (nit .GE. 100) CALL ctl_stop( 'STOP', 'sbc_isf_hol99 : too many iteration ...' )
- ! save gammat and compute zhtflx_b
- zgammat2d(ji,jj)=zgammat
- zhtflx_b = zhtflx
- END DO
- qisf(ji,jj) = - zhtflx
- ! For genuine ISOMIP protocol this should probably be something like
- fwfisf(ji,jj) = zfwflx
- ELSE
- fwfisf(ji,jj) = 0._wp
- qisf(ji,jj) = 0._wp
- END IF
- !
- END DO
- END DO
- ELSE IF (nn_isfblk == 2 ) THEN
- ! More complicated 3 equation thermodynamics as in MITgcm
- !CDIR COLLAPSE
- DO jj = 2, jpj
- DO ji = 2, jpi
- IF (mikt(ji,jj) > 1 ) THEN
- nit=1; lit=.TRUE.; zgammat=rn_gammat0; zgammas=rn_gammas0; zhtflx_b=0._wp; zhtflx=0._wp
- DO WHILE ( lit )
- CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx, ji, jj, lit)
- zeps1=rcp*rau0*zgammat
- zeps2=lfusisf*rau0*zgammas
- zeps3=rhoisf*rcpi*kappa/risfdep(ji,jj)
- zeps4=zlamb2+zlamb3*risfdep(ji,jj)
- zeps6=zeps4-zti(ji,jj)
- zeps7=zeps4-tsurf
- zaqe=zlamb1 * (zeps1 + zeps3)
- zaqer=0.5/zaqe
- zbqe=zeps1*zeps6+zeps3*zeps7-zeps2
- zcqe=zeps2*stbl(ji,jj)
- zdis=zbqe*zbqe-4.0*zaqe*zcqe
- ! Presumably zdis can never be negative because gammas is very small compared to gammat
- zsfrz=(-zbqe-SQRT(zdis))*zaqer
- IF (zsfrz .lt. 0.0) zsfrz=(-zbqe+SQRT(zdis))*zaqer
- zfrz(ji,jj)=zeps4+zlamb1*zsfrz
-
- ! zfwflx is upward water flux
- zfwflx= rau0 * zgammas * ( (zsfrz-stbl(ji,jj)) / zsfrz )
- IF ( rdivisf==0 ) THEN
- ! zhtflx is upward heat flux (out of ocean)
- ! If non conservative we have zcfac=0.0 so zhtflx is as ISOMIP but with different zfrz value
- zhtflx = ( zgammat*rau0 - zcfac*zfwflx ) * rcp * (zti(ji,jj) - zfrz(ji,jj) )
- ! zwflx is upward water flux
- ! If non conservative we have zcfac=0.0 so what follows is then zfwflx*sss_m/zsfrz
- zfwflx = ( zgammas*rau0 - zcfac*zfwflx ) * (zsfrz - stbl(ji,jj)) / stbl(ji,jj)
- ELSE
- zhtflx = zgammat*rau0 * rcp * (zti(ji,jj) - zfrz(ji,jj) )
- ! nothing to do for fwf
- END IF
- ! test convergence and compute gammat
- IF (( zhtflx - zhtflx_b) .LE. 0.01 ) lit = .FALSE.
- nit = nit + 1
- IF (nit .GE. 51) THEN
- WRITE(numout,*) "sbcisf : too many iteration ... ", &
- & zhtflx, zhtflx_b, zgammat, zgammas, nn_gammablk, ji, jj, mikt(ji,jj), narea
- CALL ctl_stop( 'STOP', 'sbc_isf_hol99 : too many iteration ...' )
- END IF
- ! save gammat and compute zhtflx_b
- zgammat2d(ji,jj)=zgammat
- zgammas2d(ji,jj)=zgammas
- zhtflx_b = zhtflx
- END DO
- ! If non conservative we have zcfac=0.0 so zhtflx is as ISOMIP but with different zfrz value
- qisf(ji,jj) = - zhtflx
- ! If non conservative we have zcfac=0.0 so what follows is then zfwflx*sss_m/zsfrz
- fwfisf(ji,jj) = zfwflx
- ELSE
- fwfisf(ji,jj) = 0._wp
- qisf(ji,jj) = 0._wp
- ENDIF
- !
- END DO
- END DO
- ENDIF
- ! lbclnk
- CALL lbc_lnk(zgammas2d(:,:),'T',1.)
- CALL lbc_lnk(zgammat2d(:,:),'T',1.)
- ! output
- CALL iom_put('isfgammat', zgammat2d)
- CALL iom_put('isfgammas', zgammas2d)
- !
- CALL wrk_dealloc( jpi,jpj, zfrz,zpress,zti, zgammat2d, zgammas2d )
- !
- IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_cav')
- END SUBROUTINE sbc_isf_cav
- SUBROUTINE sbc_isf_gammats(gt, gs, zqhisf, zqwisf, ji, jj, lit )
- !!----------------------------------------------------------------------
- !! ** Purpose : compute the coefficient echange for heat flux
- !!
- !! ** Method : gamma assume constant or depends of u* and stability
- !!
- !! ** References : Holland and Jenkins, 1999, JPO, p1787-1800, eq 14
- !! Jenkins et al., 2010, JPO, p2298-2312
- !!---------------------------------------------------------------------
- REAL(wp), INTENT(inout) :: gt, gs, zqhisf, zqwisf
- INTEGER , INTENT(in) :: ji,jj
- LOGICAL , INTENT(inout) :: lit
- INTEGER :: ikt ! loop index
- REAL(wp) :: zut, zvt, zustar ! U, V at T point and friction velocity
- REAL(wp) :: zdku, zdkv ! U, V shear
- REAL(wp) :: zPr, zSc, zRc ! Prandtl, Scmidth and Richardson number
- REAL(wp) :: zmob, zmols ! Monin Obukov length, coriolis factor at T point
- REAL(wp) :: zbuofdep, zhnu ! Bouyancy length scale, sublayer tickness
- REAL(wp) :: zhmax ! limitation of mol
- REAL(wp) :: zetastar ! stability parameter
- REAL(wp) :: zgmolet, zgmoles, zgturb ! contribution of modelecular sublayer and turbulence
- REAL(wp) :: zcoef ! temporary coef
- REAL(wp) :: zdep
- REAL(wp), PARAMETER :: zxsiN = 0.052 ! dimensionless constant
- REAL(wp), PARAMETER :: epsln = 1.0e-20 ! a small positive number
- REAL(wp), PARAMETER :: znu = 1.95e-6 ! kinamatic viscosity of sea water (m2.s-1)
- REAL(wp) :: rcs = 1.0e-3_wp ! conversion: mm/s ==> m/s
- REAL(wp), DIMENSION(2) :: zts, zab
- !!---------------------------------------------------------------------
- !
- IF( nn_gammablk == 0 ) THEN
- !! gamma is constant (specified in namelist)
- gt = rn_gammat0
- gs = rn_gammas0
- lit = .FALSE.
- ELSE IF ( nn_gammablk == 1 ) THEN
- !! gamma is assume to be proportional to u*
- !! WARNING in case of Losh 2008 tbl parametrization,
- !! you have to used the mean value of u in the boundary layer)
- !! not yet coded
- !! Jenkins et al., 2010, JPO, p2298-2312
- ikt = mikt(ji,jj)
- !! Compute U and V at T points
- ! zut = 0.5 * ( utbl(ji-1,jj ) + utbl(ji,jj) )
- ! zvt = 0.5 * ( vtbl(ji ,jj-1) + vtbl(ji,jj) )
- zut = utbl(ji,jj)
- zvt = vtbl(ji,jj)
- !! compute ustar
- zustar = SQRT( rn_tfri2 * (zut * zut + zvt * zvt) )
- !! Compute mean value over the TBL
- !! Compute gammats
- gt = zustar * rn_gammat0
- gs = zustar * rn_gammas0
- lit = .FALSE.
- ELSE IF ( nn_gammablk == 2 ) THEN
- !! gamma depends of stability of boundary layer
- !! WARNING in case of Losh 2008 tbl parametrization,
- !! you have to used the mean value of u in the boundary layer)
- !! not yet coded
- !! Holland and Jenkins, 1999, JPO, p1787-1800, eq 14
- !! as MOL depends of flux and flux depends of MOL, best will be iteration (TO DO)
- ikt = mikt(ji,jj)
- !! Compute U and V at T points
- zut = 0.5 * ( utbl(ji-1,jj ) + utbl(ji,jj) )
- zvt = 0.5 * ( vtbl(ji ,jj-1) + vtbl(ji,jj) )
- !! compute ustar
- zustar = SQRT( rn_tfri2 * (zut * zut + zvt * zvt) )
- IF (zustar == 0._wp) THEN ! only for kt = 1 I think
- gt = rn_gammat0
- gs = rn_gammas0
- ELSE
- !! compute Rc number (as done in zdfric.F90)
- zcoef = 0.5 / fse3w(ji,jj,ikt)
- ! ! shear of horizontal velocity
- zdku = zcoef * ( un(ji-1,jj ,ikt ) + un(ji,jj,ikt ) &
- & -un(ji-1,jj ,ikt+1) - un(ji,jj,ikt+1) )
- zdkv = zcoef * ( vn(ji ,jj-1,ikt ) + vn(ji,jj,ikt ) &
- & -vn(ji ,jj-1,ikt+1) - vn(ji,jj,ikt+1) )
- ! ! richardson number (minimum value set to zero)
- zRc = rn2(ji,jj,ikt+1) / ( zdku*zdku + zdkv*zdkv + 1.e-20 )
- !! compute Pr and Sc number (can be improved)
- zPr = 13.8
- zSc = 2432.0
- !! compute gamma mole
- zgmolet = 12.5 * zPr ** (2.0/3.0) - 6.0
- zgmoles = 12.5 * zSc ** (2.0/3.0) -6.0
- !! compute bouyancy
- zts(jp_tem) = ttbl(ji,jj)
- zts(jp_sal) = stbl(ji,jj)
- zdep = fsdepw(ji,jj,ikt)
- !
- CALL eos_rab( zts, zdep, zab )
- !
- !! compute length scale
- zbuofdep = grav * ( zab(jp_tem) * zqhisf - zab(jp_sal) * zqwisf ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!
- !! compute Monin Obukov Length
- ! Maximum boundary layer depth
- zhmax = fsdept(ji,jj,mbkt(ji,jj)) - fsdepw(ji,jj,mikt(ji,jj)) -0.001
- ! Compute Monin obukhov length scale at the surface and Ekman depth:
- zmob = zustar ** 3 / (vkarmn * (zbuofdep + epsln))
- zmols = SIGN(1._wp, zmob) * MIN(ABS(zmob), zhmax) * tmask(ji,jj,ikt)
- !! compute eta* (stability parameter)
- zetastar = 1 / ( SQRT(1 + MAX(zxsiN * zustar / ( ABS(ff(ji,jj)) * zmols * zRc ), 0.0)))
- !! compute the sublayer thickness
- zhnu = 5 * znu / zustar
- !! compute gamma turb
- zgturb = 1/vkarmn * LOG(zustar * zxsiN * zetastar * zetastar / ( ABS(ff(ji,jj)) * zhnu )) &
- & + 1 / ( 2 * zxsiN * zetastar ) - 1/vkarmn
- !! compute gammats
- gt = zustar / (zgturb + zgmolet)
- gs = zustar / (zgturb + zgmoles)
- END IF
- END IF
- END SUBROUTINE
- SUBROUTINE sbc_isf_tbl( varin, varout, cptin )
- !!----------------------------------------------------------------------
- !! *** SUBROUTINE sbc_isf_tbl ***
- !!
- !! ** Purpose : compute mean T/S/U/V in the boundary layer
- !!
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: varin
- REAL(wp), DIMENSION(:,:) , INTENT(out):: varout
-
- CHARACTER(len=1), INTENT(in) :: cptin ! point of variable in/out
- REAL(wp) :: ze3, zhk
- REAL(wp), DIMENSION(:,:), POINTER :: zikt
- INTEGER :: ji,jj,jk
- INTEGER :: ikt,ikb
- INTEGER, DIMENSION(:,:), POINTER :: mkt, mkb
- CALL wrk_alloc( jpi,jpj, mkt, mkb )
- CALL wrk_alloc( jpi,jpj, zikt )
- ! get first and last level of tbl
- mkt(:,:) = misfkt(:,:)
- mkb(:,:) = misfkb(:,:)
- varout(:,:)=0._wp
- DO jj = 2,jpj
- DO ji = 2,jpi
- IF (ssmask(ji,jj) == 1) THEN
- ikt = mkt(ji,jj)
- ikb = mkb(ji,jj)
- ! level fully include in the ice shelf boundary layer
- DO jk = ikt, ikb - 1
- ze3 = fse3t_n(ji,jj,jk)
- IF (cptin == 'T' ) varout(ji,jj) = varout(ji,jj) + varin(ji,jj,jk) * r1_hisf_tbl(ji,jj) * ze3
- IF (cptin == 'U' ) varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,jk) + varin(ji-1,jj,jk)) &
- & * r1_hisf_tbl(ji,jj) * ze3
- IF (cptin == 'V' ) varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,jk) + varin(ji,jj-1,jk)) &
- & * r1_hisf_tbl(ji,jj) * ze3
- END DO
- ! level partially include in ice shelf boundary layer
- zhk = SUM( fse3t_n(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj)
- IF (cptin == 'T') &
- & varout(ji,jj) = varout(ji,jj) + varin(ji,jj,ikb) * (1._wp - zhk)
- IF (cptin == 'U') &
- & varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,ikb) + varin(ji-1,jj,ikb)) * (1._wp - zhk)
- IF (cptin == 'V') &
- & varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,ikb) + varin(ji,jj-1,ikb)) * (1._wp - zhk)
- END IF
- END DO
- END DO
- CALL wrk_dealloc( jpi,jpj, mkt, mkb )
- CALL wrk_dealloc( jpi,jpj, zikt )
- IF (cptin == 'T') CALL lbc_lnk(varout,'T',1.)
- IF (cptin == 'U' .OR. cptin == 'V') CALL lbc_lnk(varout,'T',-1.)
- END SUBROUTINE sbc_isf_tbl
-
- SUBROUTINE sbc_isf_div( phdivn )
- !!----------------------------------------------------------------------
- !! *** SUBROUTINE sbc_isf_div ***
- !!
- !! ** Purpose : update the horizontal divergence with the runoff inflow
- !!
- !! ** Method :
- !! CAUTION : risf_tsc(:,:,jp_sal) is negative (outflow) increase the
- !! divergence and expressed in m/s
- !!
- !! ** Action : phdivn decreased by the runoff inflow
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: ikt, ikb
- INTEGER :: nk_isf
- REAL(wp) :: zhk, z1_hisf_tbl, zhisf_tbl
- REAL(wp) :: zfact ! local scalar
- !!----------------------------------------------------------------------
- !
- zfact = 0.5_wp
- !
- IF (lk_vvl) THEN ! need to re compute level distribution of isf fresh water
- DO jj = 1,jpj
- DO ji = 1,jpi
- ikt = misfkt(ji,jj)
- ikb = misfkt(ji,jj)
- ! thickness of boundary layer at least the top level thickness
- rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), fse3t(ji,jj,ikt))
- ! determine the deepest level influenced by the boundary layer
- ! test on tmask useless ?????
- DO jk = ikt, mbkt(ji,jj)
- IF ( (SUM(fse3t(ji,jj,ikt:jk-1)) .LT. rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk
- END DO
- rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(fse3t(ji,jj,ikt:ikb))) ! limit the tbl to water thickness.
- misfkb(ji,jj) = ikb ! last wet level of the tbl
- r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj)
- zhk = SUM( fse3t(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1
- ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / fse3t(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer
- END DO
- END DO
- END IF ! vvl case
- !
- DO jj = 1,jpj
- DO ji = 1,jpi
- ikt = misfkt(ji,jj)
- ikb = misfkb(ji,jj)
- ! level fully include in the ice shelf boundary layer
- DO jk = ikt, ikb - 1
- phdivn(ji,jj,jk) = phdivn(ji,jj,jk) + ( fwfisf(ji,jj) + fwfisf_b(ji,jj) ) &
- & * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact
- END DO
- ! level partially include in ice shelf boundary layer
- phdivn(ji,jj,ikb) = phdivn(ji,jj,ikb) + ( fwfisf(ji,jj) &
- & + fwfisf_b(ji,jj) ) * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact * ralpha(ji,jj)
- !== ice shelf melting mass distributed over several levels ==!
- END DO
- END DO
- !
- END SUBROUTINE sbc_isf_div
-
- FUNCTION tinsitu( ptem, psal, ppress ) RESULT( pti )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_init ***
- !!
- !! ** Purpose : Compute the in-situ temperature [Celcius]
- !!
- !! ** Method :
- !!
- !! Reference : Bryden,h.,1973,deep-sea res.,20,401-408
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ptem ! potential temperature [Celcius]
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu]
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ppress ! pressure [dBar]
- REAL(wp), DIMENSION(:,:), POINTER :: pti ! in-situ temperature [Celcius]
- ! REAL(wp) :: fsatg
- ! REAL(wp) :: pfps, pfpt, pfphp
- REAL(wp) :: zt, zs, zp, zh, zq, zxk
- INTEGER :: ji, jj ! dummy loop indices
- !
- CALL wrk_alloc( jpi,jpj, pti )
- !
- DO jj=1,jpj
- DO ji=1,jpi
- zh = ppress(ji,jj)
- ! Theta1
- zt = ptem(ji,jj)
- zs = psal(ji,jj)
- zp = 0.0
- zxk= zh * fsatg( zs, zt, zp )
- zt = zt + 0.5 * zxk
- zq = zxk
- ! Theta2
- zp = zp + 0.5 * zh
- zxk= zh*fsatg( zs, zt, zp )
- zt = zt + 0.29289322 * ( zxk - zq )
- zq = 0.58578644 * zxk + 0.121320344 * zq
- ! Theta3
- zxk= zh * fsatg( zs, zt, zp )
- zt = zt + 1.707106781 * ( zxk - zq )
- zq = 3.414213562 * zxk - 4.121320344 * zq
- ! Theta4
- zp = zp + 0.5 * zh
- zxk= zh * fsatg( zs, zt, zp )
- pti(ji,jj) = zt + ( zxk - 2.0 * zq ) / 6.0
- END DO
- END DO
- !
- CALL wrk_dealloc( jpi,jpj, pti )
- !
- END FUNCTION tinsitu
- !
- FUNCTION fsatg( pfps, pfpt, pfphp )
- !!----------------------------------------------------------------------
- !! *** FUNCTION fsatg ***
- !!
- !! ** Purpose : Compute the Adiabatic laspse rate [Celcius].[decibar]^-1
- !!
- !! ** Reference : Bryden,h.,1973,deep-sea res.,20,401-408
- !!
- !! ** units : pressure pfphp decibars
- !! temperature pfpt deg celsius (ipts-68)
- !! salinity pfps (ipss-78)
- !! adiabatic fsatg deg. c/decibar
- !!----------------------------------------------------------------------
- REAL(wp) :: pfps, pfpt, pfphp
- REAL(wp) :: fsatg
- !
- fsatg = (((-2.1687e-16*pfpt+1.8676e-14)*pfpt-4.6206e-13)*pfphp &
- & +((2.7759e-12*pfpt-1.1351e-10)*(pfps-35.)+((-5.4481e-14*pfpt &
- & +8.733e-12)*pfpt-6.7795e-10)*pfpt+1.8741e-8))*pfphp &
- & +(-4.2393e-8*pfpt+1.8932e-6)*(pfps-35.) &
- & +((6.6228e-10*pfpt-6.836e-8)*pfpt+8.5258e-6)*pfpt+3.5803e-5
- !
- END FUNCTION fsatg
- !!======================================================================
- END MODULE sbcisf
|