123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527 |
- MODULE fldread
- !!======================================================================
- !! *** MODULE fldread ***
- !! Ocean forcing: read input field for surface boundary condition
- !!=====================================================================
- !! History : 2.0 ! 06-2006 (S. Masson, G. Madec) Original code
- !! ! 05-2008 (S. Alderson) Modified for Interpolation in memory
- !! ! from input grid to model grid
- !! ! 10-2013 (D. Delrosso, P. Oddo) implement suppression of
- !! ! land point prior to interpolation
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! fld_read : read input fields used for the computation of the
- !! surface boundary condition
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! ???
- USE in_out_manager ! I/O manager
- USE iom ! I/O manager library
- USE geo2ocean ! for vector rotation on to model grid
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE lbclnk ! ocean lateral boundary conditions (C1D case)
- USE ioipsl, ONLY : ymds2ju, ju2ymds ! for calendar
- USE sbc_oce
-
- IMPLICIT NONE
- PRIVATE
-
- PUBLIC fld_map ! routine called by tides_init
- PUBLIC fld_read, fld_fill ! called by sbc... modules
- PUBLIC fld_clopn
- TYPE, PUBLIC :: FLD_N !: Namelist field informations
- CHARACTER(len = 256) :: clname ! generic name of the NetCDF flux file
- REAL(wp) :: nfreqh ! frequency of each flux file
- CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file
- LOGICAL :: ln_tint ! time interpolation or not (T/F)
- LOGICAL :: ln_clim ! climatology or not (T/F)
- CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly'
- CHARACTER(len = 256) :: wname ! generic name of a NetCDF weights file to be used, blank if not
- CHARACTER(len = 34) :: vcomp ! symbolic component name if a vector that needs rotation
- ! ! a string starting with "U" or "V" for each component
- ! ! chars 2 onwards identify which components go together
- CHARACTER(len = 34) :: lname ! generic name of a NetCDF land/sea mask file to be used, blank if not
- ! ! 0=sea 1=land
- END TYPE FLD_N
- TYPE, PUBLIC :: FLD !: Input field related variables
- CHARACTER(len = 256) :: clrootname ! generic name of the NetCDF file
- CHARACTER(len = 256) :: clname ! current name of the NetCDF file
- REAL(wp) :: nfreqh ! frequency of each flux file
- CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file
- LOGICAL :: ln_tint ! time interpolation or not (T/F)
- LOGICAL :: ln_clim ! climatology or not (T/F)
- CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly'
- INTEGER :: num ! iom id of the jpfld files to be read
- INTEGER , DIMENSION(2) :: nrec_b ! before record (1: index, 2: second since Jan. 1st 00h of nit000 year)
- INTEGER , DIMENSION(2) :: nrec_a ! after record (1: index, 2: second since Jan. 1st 00h of nit000 year)
- REAL(wp) , ALLOCATABLE, DIMENSION(:,:,: ) :: fnow ! input fields interpolated to now time step
- REAL(wp) , ALLOCATABLE, DIMENSION(:,:,:,:) :: fdta ! 2 consecutive record of input fields
- CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file acting as a key
- ! ! into the WGTLIST structure
- CHARACTER(len = 34) :: vcomp ! symbolic name for a vector component that needs rotation
- LOGICAL, DIMENSION(2) :: rotn ! flag to indicate whether before/after field has been rotated
- INTEGER :: nreclast ! last record to be read in the current file
- CHARACTER(len = 256) :: lsmname ! current name of the NetCDF mask file acting as a key
- END TYPE FLD
- TYPE, PUBLIC :: MAP_POINTER !: Map from input data file to local domain
- INTEGER, POINTER, DIMENSION(:) :: ptr ! Array of integer pointers to 1D arrays
- LOGICAL :: ll_unstruc ! Unstructured (T) or structured (F) boundary data file
- END TYPE MAP_POINTER
- !$AGRIF_DO_NOT_TREAT
- !! keep list of all weights variables so they're only read in once
- !! need to add AGRIF directives not to process this structure
- !! also need to force wgtname to include AGRIF nest number
- TYPE :: WGT !: Input weights related variables
- CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file
- INTEGER , DIMENSION(2) :: ddims ! shape of input grid
- INTEGER , DIMENSION(2) :: botleft ! top left corner of box in input grid containing
- ! ! current processor grid
- INTEGER , DIMENSION(2) :: topright ! top right corner of box
- INTEGER :: jpiwgt ! width of box on input grid
- INTEGER :: jpjwgt ! height of box on input grid
- INTEGER :: numwgt ! number of weights (4=bilinear, 16=bicubic)
- INTEGER :: nestid ! for agrif, keep track of nest we're in
- INTEGER :: overlap ! =0 when cyclic grid has no overlapping EW columns
- ! ! =>1 when they have one or more overlapping columns
- ! ! =-1 not cyclic
- LOGICAL :: cyclic ! east-west cyclic or not
- INTEGER, DIMENSION(:,:,:), POINTER :: data_jpi ! array of source integers
- INTEGER, DIMENSION(:,:,:), POINTER :: data_jpj ! array of source integers
- REAL(wp), DIMENSION(:,:,:), POINTER :: data_wgt ! array of weights on model grid
- REAL(wp), DIMENSION(:,:,:), POINTER :: fly_dta ! array of values on input grid
- REAL(wp), DIMENSION(:,:,:), POINTER :: col ! temporary array for reading in columns
- END TYPE WGT
- INTEGER, PARAMETER :: tot_wgts = 10
- TYPE( WGT ), DIMENSION(tot_wgts) :: ref_wgts ! array of wgts
- INTEGER :: nxt_wgt = 1 ! point to next available space in ref_wgts array
- REAL(wp), PARAMETER :: undeff_lsm = -999.00_wp
- !$AGRIF_END_DO_NOT_TREAT
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: fldread.F90 4784 2014-09-24 08:44:53Z jamesharle $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE fld_read( kt, kn_fsbc, sd, map, kit, kt_offset )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_read ***
- !!
- !! ** Purpose : provide at each time step the surface ocean fluxes
- !! (momentum, heat, freshwater and runoff)
- !!
- !! ** Method : READ each input fields in NetCDF files using IOM
- !! and intepolate it to the model time-step.
- !! Several assumptions are made on the input file:
- !! blahblahblah....
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kt ! ocean time step
- INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step)
- TYPE(FLD), INTENT(inout), DIMENSION(:) :: sd ! input field related variables
- TYPE(MAP_POINTER),INTENT(in), OPTIONAL, DIMENSION(:) :: map ! global-to-local mapping indices
- INTEGER , INTENT(in ), OPTIONAL :: kit ! subcycle timestep for timesplitting option
- INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! provide fields at time other than "now"
- ! kt_offset = -1 => fields at "before" time level
- ! kt_offset = +1 => fields at "after" time level
- ! etc.
- !!
- INTEGER :: itmp ! temporary variable
- INTEGER :: imf ! size of the structure sd
- INTEGER :: jf ! dummy indices
- INTEGER :: isecend ! number of second since Jan. 1st 00h of nit000 year at nitend
- INTEGER :: isecsbc ! number of seconds between Jan. 1st 00h of nit000 year and the middle of sbc time step
- INTEGER :: it_offset ! local time offset variable
- LOGICAL :: llnxtyr ! open next year file?
- LOGICAL :: llnxtmth ! open next month file?
- LOGICAL :: llstop ! stop is the file does not exist
- LOGICAL :: ll_firstcall ! true if this is the first call to fld_read for this set of fields
- REAL(wp) :: ztinta ! ratio applied to after records when doing time interpolation
- REAL(wp) :: ztintb ! ratio applied to before records when doing time interpolation
- CHARACTER(LEN=1000) :: clfmt ! write format
- TYPE(MAP_POINTER) :: imap ! global-to-local mapping indices
- !!---------------------------------------------------------------------
- ll_firstcall = kt == nit000
- IF( PRESENT(kit) ) ll_firstcall = ll_firstcall .and. kit == 1
- IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc
- ELSE ; it_offset = 0
- ENDIF
- IF( PRESENT(kt_offset) ) it_offset = kt_offset
- imap%ptr => NULL()
- ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar
- IF( present(kit) ) THEN ! ignore kn_fsbc in this case
- isecsbc = nsec_year + nsec1jan000 + (kit+it_offset)*NINT( rdt/REAL(nn_baro,wp) )
- ELSE ! middle of sbc time step
- isecsbc = nsec_year + nsec1jan000 + NINT(0.5 * REAL(kn_fsbc - 1,wp) * rdttra(1)) + it_offset * NINT(rdttra(1))
- ENDIF
- imf = SIZE( sd )
- !
- IF( ll_firstcall ) THEN ! initialization
- DO jf = 1, imf
- IF( PRESENT(map) ) imap = map(jf)
- CALL fld_init( kn_fsbc, sd(jf), imap ) ! read each before field (put them in after as they will be swapped)
- END DO
- IF( lwp ) CALL wgt_print() ! control print
- ENDIF
- ! ! ====================================== !
- IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! update field at each kn_fsbc time-step !
- ! ! ====================================== !
- !
- DO jf = 1, imf ! --- loop over field --- !
-
- IF( isecsbc > sd(jf)%nrec_a(2) .OR. ll_firstcall ) THEN ! read/update the after data?
- IF( PRESENT(map) ) imap = map(jf) ! temporary definition of map
- sd(jf)%nrec_b(:) = sd(jf)%nrec_a(:) ! swap before record informations
- sd(jf)%rotn(1) = sd(jf)%rotn(2) ! swap before rotate informations
- IF( sd(jf)%ln_tint ) sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! swap before record field
- CALL fld_rec( kn_fsbc, sd(jf), kt_offset = it_offset, kit = kit ) ! update after record informations
- ! if kn_fsbc*rdttra is larger than nfreqh (which is kind of odd),
- ! it is possible that the before value is no more the good one... we have to re-read it
- ! if before is not the last record of the file currently opened and after is the first record to be read
- ! in a new file which means after = 1 (the file to be opened corresponds to the current time)
- ! or after = nreclast + 1 (the file to be opened corresponds to a future time step)
- IF( .NOT. ll_firstcall .AND. sd(jf)%ln_tint .AND. sd(jf)%nrec_b(1) /= sd(jf)%nreclast &
- & .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) == 1 ) THEN
- itmp = sd(jf)%nrec_a(1) ! temporary storage
- sd(jf)%nrec_a(1) = sd(jf)%nreclast ! read the last record of the file currently opened
- CALL fld_get( sd(jf), imap ) ! read after data
- sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field
- sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations
- sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%nfreqh * 3600 ) ! assume freq to be in hours in this case
- sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations
- sd(jf)%nrec_a(1) = itmp ! move back to after record
- ENDIF
- CALL fld_clopn( sd(jf) ) ! Do we need to open a new year/month/week/day file?
-
- IF( sd(jf)%ln_tint ) THEN
-
- ! if kn_fsbc*rdttra is larger than nfreqh (which is kind of odd),
- ! it is possible that the before value is no more the good one... we have to re-read it
- ! if before record is not just just before the after record...
- IF( .NOT. ll_firstcall .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) /= 1 &
- & .AND. sd(jf)%nrec_b(1) /= sd(jf)%nrec_a(1) - 1 ) THEN
- sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - 1 ! move back to before record
- CALL fld_get( sd(jf), imap ) ! read after data
- sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field
- sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations
- sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%nfreqh * 3600 ) ! assume freq to be in hours in this case
- sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations
- sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) + 1 ! move back to after record
- ENDIF
- ! do we have to change the year/month/week/day of the forcing field??
- ! if we do time interpolation we will need to open next year/month/week/day file before the end of the current
- ! one. If so, we are still before the end of the year/month/week/day when calling fld_rec so sd(jf)%nrec_a(1)
- ! will be larger than the record number that should be read for current year/month/week/day
- ! do we need next file data?
- IF( sd(jf)%nrec_a(1) > sd(jf)%nreclast ) THEN
-
- sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - sd(jf)%nreclast !
-
- IF( .NOT. ( sd(jf)%ln_clim .AND. sd(jf)%cltype == 'yearly' ) ) THEN ! close/open the current/new file
-
- llnxtmth = sd(jf)%cltype == 'monthly' .OR. nday == nmonth_len(nmonth) ! open next month file?
- llnxtyr = sd(jf)%cltype == 'yearly' .OR. (nmonth == 12 .AND. llnxtmth) ! open next year file?
- ! if the run finishes at the end of the current year/month/week/day, we will allow next
- ! year/month/week/day file to be not present. If the run continue further than the current
- ! year/month/week/day, next year/month/week/day file must exist
- isecend = nsec_year + nsec1jan000 + (nitend - kt) * NINT(rdttra(1)) ! second at the end of the run
- llstop = isecend > sd(jf)%nrec_a(2) ! read more than 1 record of next year
- ! we suppose that the date of next file is next day (should be ok even for weekly files...)
- CALL fld_clopn( sd(jf), nyear + COUNT((/llnxtyr /)) , &
- & nmonth + COUNT((/llnxtmth/)) - 12 * COUNT((/llnxtyr /)), &
- & nday + 1 - nmonth_len(nmonth) * COUNT((/llnxtmth/)), llstop )
- IF( sd(jf)%num <= 0 .AND. .NOT. llstop ) THEN ! next year file does not exist
- CALL ctl_warn('next year/month/week/day file: '//TRIM(sd(jf)%clname)// &
- & ' not present -> back to current year/month/day')
- CALL fld_clopn( sd(jf) ) ! back to the current year/month/day
- sd(jf)%nrec_a(1) = sd(jf)%nreclast ! force to read the last record in the current year file
- ENDIF
-
- ENDIF
- ENDIF ! open need next file?
-
- ENDIF ! temporal interpolation?
- ! read after data
- CALL fld_get( sd(jf), imap )
- ENDIF ! read new data?
- END DO ! --- end loop over field --- !
- CALL fld_rot( kt, sd ) ! rotate vector before/now/after fields if needed
- DO jf = 1, imf ! --- loop over field --- !
- !
- IF( sd(jf)%ln_tint ) THEN ! temporal interpolation
- IF(lwp .AND. kt - nit000 <= 100 ) THEN
- clfmt = "('fld_read: var ', a, ' kt = ', i8, ' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // &
- & "', records b/a: ', i6.4, '/', i6.4, ' (days ', f9.4,'/', f9.4, ')')"
- WRITE(numout, clfmt) TRIM( sd(jf)%clvar ), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, &
- & sd(jf)%nrec_b(1), sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday
- WRITE(numout, *) 'it_offset is : ',it_offset
- ENDIF
- ! temporal interpolation weights
- ztinta = REAL( isecsbc - sd(jf)%nrec_b(2), wp ) / REAL( sd(jf)%nrec_a(2) - sd(jf)%nrec_b(2), wp )
- ztintb = 1. - ztinta
- !CDIR COLLAPSE
- sd(jf)%fnow(:,:,:) = ztintb * sd(jf)%fdta(:,:,:,1) + ztinta * sd(jf)%fdta(:,:,:,2)
- ELSE ! nothing to do...
- IF(lwp .AND. kt - nit000 <= 100 ) THEN
- clfmt = "('fld_read: var ', a, ' kt = ', i8,' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // &
- & "', record: ', i6.4, ' (days ', f9.4, ' <-> ', f9.4, ')')"
- WRITE(numout, clfmt) TRIM(sd(jf)%clvar), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, &
- & sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday
- ENDIF
- ENDIF
- !
- IF( kt == nitend - kn_fsbc + 1 ) CALL iom_close( sd(jf)%num ) ! Close the input files
- END DO ! --- end loop over field --- !
- !
- ! ! ====================================== !
- ENDIF ! update field at each kn_fsbc time-step !
- ! ! ====================================== !
- !
- END SUBROUTINE fld_read
- SUBROUTINE fld_init( kn_fsbc, sdjf, map )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_init ***
- !!
- !! ** Purpose : - first call to fld_rec to define before values
- !! - if time interpolation, read before data
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step)
- TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables
- TYPE(MAP_POINTER),INTENT(in) :: map ! global-to-local mapping indices
- !!
- LOGICAL :: llprevyr ! are we reading previous year file?
- LOGICAL :: llprevmth ! are we reading previous month file?
- LOGICAL :: llprevweek ! are we reading previous week file?
- LOGICAL :: llprevday ! are we reading previous day file?
- LOGICAL :: llprev ! llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday
- INTEGER :: idvar ! variable id
- INTEGER :: inrec ! number of record existing for this variable
- INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd
- INTEGER :: isec_week ! number of seconds since start of the weekly file
- CHARACTER(LEN=1000) :: clfmt ! write format
- !!---------------------------------------------------------------------
- llprevyr = .FALSE.
- llprevmth = .FALSE.
- llprevweek = .FALSE.
- llprevday = .FALSE.
- isec_week = 0
-
- ! define record informations
- CALL fld_rec( kn_fsbc, sdjf, ldbefore = .TRUE. ) ! return before values in sdjf%nrec_a (as we will swap it later)
- ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar
- IF( sdjf%ln_tint ) THEN ! we need to read the previous record and we will put it in the current record structure
- IF( sdjf%nrec_a(1) == 0 ) THEN ! we redefine record sdjf%nrec_a(1) with the last record of previous year file
- IF ( sdjf%nfreqh == -12 ) THEN ! yearly mean
- IF( sdjf%cltype == 'yearly' ) THEN ! yearly file
- sdjf%nrec_a(1) = 1 ! force to read the unique record
- llprevyr = .NOT. sdjf%ln_clim ! use previous year file?
- ELSE
- CALL ctl_stop( "fld_init: yearly mean file must be in a yearly type of file: "//TRIM(sdjf%clrootname) )
- ENDIF
- ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean
- IF( sdjf%cltype == 'monthly' ) THEN ! monthly file
- sdjf%nrec_a(1) = 1 ! force to read the unique record
- llprevmth = .TRUE. ! use previous month file?
- llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file?
- ELSE ! yearly file
- sdjf%nrec_a(1) = 12 ! force to read december mean
- llprevyr = .NOT. sdjf%ln_clim ! use previous year file?
- ENDIF
- ELSE ! higher frequency mean (in hours)
- IF ( sdjf%cltype == 'monthly' ) THEN ! monthly file
- sdjf%nrec_a(1) = NINT( 24 * nmonth_len(nmonth-1) / sdjf%nfreqh ) ! last record of previous month
- llprevmth = .TRUE. ! use previous month file?
- llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file?
- ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ! weekly file
- llprevweek = .TRUE. ! use previous week file?
- sdjf%nrec_a(1) = NINT( 24 * 7 / sdjf%nfreqh ) ! last record of previous week
- isec_week = NINT(rday) * 7 ! add a shift toward previous week
- ELSEIF( sdjf%cltype == 'daily' ) THEN ! daily file
- sdjf%nrec_a(1) = NINT( 24 / sdjf%nfreqh ) ! last record of previous day
- llprevday = .TRUE. ! use previous day file?
- llprevmth = llprevday .AND. nday == 1 ! use previous month file?
- llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file?
- ELSE ! yearly file
- sdjf%nrec_a(1) = NINT( 24 * nyear_len(0) / sdjf%nfreqh ) ! last record of previous year
- llprevyr = .NOT. sdjf%ln_clim ! use previous year file?
- ENDIF
- ENDIF
- ENDIF
- !
- IF ( sdjf%cltype(1:4) == 'week' ) THEN
- isec_week = isec_week + ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week
- llprevmth = isec_week > nsec_month ! longer time since the beginning of the week than the month
- llprevyr = llprevmth .AND. nmonth == 1
- ENDIF
- llprev = llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday
- !
- iyear = nyear - COUNT((/llprevyr /))
- imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /))
- iday = nday - COUNT((/llprevday/)) + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday)
- !
- CALL fld_clopn( sdjf, iyear, imonth, iday, .NOT. llprev )
- ! if previous year/month/day file does not exist, we switch to the current year/month/day
- IF( llprev .AND. sdjf%num <= 0 ) THEN
- CALL ctl_warn( 'previous year/month/week/day file: '//TRIM(sdjf%clrootname)// &
- & ' not present -> back to current year/month/week/day' )
- ! we force to read the first record of the current year/month/day instead of last record of previous year/month/day
- llprev = .FALSE.
- sdjf%nrec_a(1) = 1
- CALL fld_clopn( sdjf )
- ENDIF
-
- IF( llprev ) THEN ! check if the record sdjf%nrec_a(1) exists in the file
- idvar = iom_varid( sdjf%num, sdjf%clvar ) ! id of the variable sdjf%clvar
- IF( idvar <= 0 ) RETURN
- inrec = iom_file( sdjf%num )%dimsz( iom_file( sdjf%num )%ndims(idvar), idvar ) ! size of the last dim of idvar
- sdjf%nrec_a(1) = MIN( sdjf%nrec_a(1), inrec ) ! make sure we select an existing record
- ENDIF
- ! read before data in after arrays(as we will swap it later)
- CALL fld_get( sdjf, map )
- clfmt = "('fld_init : time-interpolation for ', a, ' read previous record = ', i6, ' at time = ', f7.2, ' days')"
- IF(lwp) WRITE(numout, clfmt) TRIM(sdjf%clvar), sdjf%nrec_a(1), REAL(sdjf%nrec_a(2),wp)/rday
- ENDIF
- !
- END SUBROUTINE fld_init
- SUBROUTINE fld_rec( kn_fsbc, sdjf, ldbefore, kit, kt_offset )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_rec ***
- !!
- !! ** Purpose : Compute
- !! if sdjf%ln_tint = .TRUE.
- !! nrec_a: record number and its time (nrec_b is obtained from nrec_a when swapping)
- !! if sdjf%ln_tint = .FALSE.
- !! nrec_a(1): record number
- !! nrec_b(2) and nrec_a(2): time of the beginning and end of the record (for print only)
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step)
- TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables
- LOGICAL , INTENT(in ), OPTIONAL :: ldbefore ! sent back before record values (default = .FALSE.)
- INTEGER , INTENT(in ), OPTIONAL :: kit ! index of barotropic subcycle
- ! used only if sdjf%ln_tint = .TRUE.
- INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! Offset of required time level compared to "now"
- ! time level in units of time steps.
- !!
- LOGICAL :: llbefore ! local definition of ldbefore
- INTEGER :: iendrec ! end of this record (in seconds)
- INTEGER :: imth ! month number
- INTEGER :: ifreq_sec ! frequency mean (in seconds)
- INTEGER :: isec_week ! number of seconds since the start of the weekly file
- INTEGER :: it_offset ! local time offset variable
- REAL(wp) :: ztmp ! temporary variable
- !!----------------------------------------------------------------------
- !
- ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar
- !
- IF( PRESENT(ldbefore) ) THEN ; llbefore = ldbefore .AND. sdjf%ln_tint ! needed only if sdjf%ln_tint = .TRUE.
- ELSE ; llbefore = .FALSE.
- ENDIF
- !
- IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc
- ELSE ; it_offset = 0
- ENDIF
- IF( PRESENT(kt_offset) ) it_offset = kt_offset
- IF( PRESENT(kit) ) THEN ; it_offset = ( kit + it_offset ) * NINT( rdt/REAL(nn_baro,wp) )
- ELSE ; it_offset = it_offset * NINT( rdttra(1) )
- ENDIF
- !
- ! ! =========== !
- IF ( sdjf%nfreqh == -12 ) THEN ! yearly mean
- ! ! =========== !
- !
- IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record
- !
- ! INT( ztmp )
- ! /|\
- ! 1 | *----
- ! 0 |----(
- ! |----+----|--> time
- ! 0 /|\ 1 (nday/nyear_len(1))
- ! |
- ! |
- ! forcing record : 1
- !
- ztmp = REAL( nsec_year, wp ) / ( REAL( nyear_len(1), wp ) * rday ) + 0.5 &
- & + REAL( it_offset, wp ) / ( REAL( nyear_len(1), wp ) * rday )
- sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/))
- ! swap at the middle of the year
- IF( llbefore ) THEN ; sdjf%nrec_a(2) = nsec1jan000 - (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(0) + &
- & INT(ztmp) * NINT( 0.5 * rday) * nyear_len(1)
- ELSE ; sdjf%nrec_a(2) = nsec1jan000 + (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(1) + &
- & INT(ztmp) * INT(rday) * nyear_len(1) + INT(ztmp) * NINT( 0.5 * rday) * nyear_len(2)
- ENDIF
- ELSE ! no time interpolation
- sdjf%nrec_a(1) = 1
- sdjf%nrec_a(2) = NINT(rday) * nyear_len(1) + nsec1jan000 ! swap at the end of the year
- sdjf%nrec_b(2) = nsec1jan000 ! beginning of the year (only for print)
- ENDIF
- !
- ! ! ============ !
- ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean !
- ! ! ============ !
- !
- IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record
- !
- ! INT( ztmp )
- ! /|\
- ! 1 | *----
- ! 0 |----(
- ! |----+----|--> time
- ! 0 /|\ 1 (nday/nmonth_len(nmonth))
- ! |
- ! |
- ! forcing record : nmonth
- !
- ztmp = REAL( nsec_month, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday ) + 0.5 &
- & + REAL( it_offset, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday )
- imth = nmonth + INT( ztmp ) - COUNT((/llbefore/))
- IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/))
- ELSE ; sdjf%nrec_a(1) = imth
- ENDIF
- sdjf%nrec_a(2) = nmonth_half( imth ) + nsec1jan000 ! swap at the middle of the month
- ELSE ! no time interpolation
- IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1
- ELSE ; sdjf%nrec_a(1) = nmonth
- ENDIF
- sdjf%nrec_a(2) = nmonth_end(nmonth ) + nsec1jan000 ! swap at the end of the month
- sdjf%nrec_b(2) = nmonth_end(nmonth-1) + nsec1jan000 ! beginning of the month (only for print)
- ENDIF
- !
- ! ! ================================ !
- ELSE ! higher frequency mean (in hours)
- ! ! ================================ !
- !
- ifreq_sec = NINT( sdjf%nfreqh * 3600 ) ! frequency mean (in seconds)
- IF( sdjf%cltype(1:4) == 'week' ) isec_week = ksec_week( sdjf%cltype(6:8) ) ! since the first day of the current week
- ! number of second since the beginning of the file
- IF( sdjf%cltype == 'monthly' ) THEN ; ztmp = REAL(nsec_month,wp) ! since the first day of the current month
- ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; ztmp = REAL(isec_week ,wp) ! since the first day of the current week
- ELSEIF( sdjf%cltype == 'daily' ) THEN ; ztmp = REAL(nsec_day ,wp) ! since 00h of the current day
- ELSE ; ztmp = REAL(nsec_year ,wp) ! since 00h on Jan 1 of the current year
- ENDIF
- ztmp = ztmp + 0.5 * REAL(kn_fsbc - 1, wp) * rdttra(1) + REAL( it_offset, wp ) ! centrered in the middle of sbc time step
- ztmp = ztmp + 0.01 * rdttra(1) ! avoid truncation error
- IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record
- !
- ! INT( ztmp/ifreq_sec + 0.5 )
- ! /|\
- ! 2 | *-----(
- ! 1 | *-----(
- ! 0 |--(
- ! |--+--|--+--|--+--|--> time
- ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec)
- ! | | |
- ! | | |
- ! forcing record : 1 2 3
- !
- ztmp= ztmp / REAL(ifreq_sec, wp) + 0.5
- ELSE ! no time interpolation
- !
- ! INT( ztmp/ifreq_sec )
- ! /|\
- ! 2 | *-----(
- ! 1 | *-----(
- ! 0 |-----(
- ! |--+--|--+--|--+--|--> time
- ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec)
- ! | | |
- ! | | |
- ! forcing record : 1 2 3
- !
- ztmp= ztmp / REAL(ifreq_sec, wp)
- ENDIF
- sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) ! record number to be read
- iendrec = ifreq_sec * sdjf%nrec_a(1) + nsec1jan000 ! end of this record (in second)
- ! add the number of seconds between 00h Jan 1 and the end of previous month/week/day (ok if nmonth=1)
- IF( sdjf%cltype == 'monthly' ) iendrec = iendrec + NINT(rday) * SUM(nmonth_len(1:nmonth -1))
- IF( sdjf%cltype(1:4) == 'week' ) iendrec = iendrec + ( nsec_year - isec_week )
- IF( sdjf%cltype == 'daily' ) iendrec = iendrec + NINT(rday) * ( nday_year - 1 )
- IF( sdjf%ln_tint ) THEN
- sdjf%nrec_a(2) = iendrec - ifreq_sec / 2 ! swap at the middle of the record
- ELSE
- sdjf%nrec_a(2) = iendrec ! swap at the end of the record
- sdjf%nrec_b(2) = iendrec - ifreq_sec ! beginning of the record (only for print)
- ENDIF
- !
- ENDIF
- !
- END SUBROUTINE fld_rec
- SUBROUTINE fld_get( sdjf, map )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_get ***
- !!
- !! ** Purpose : read the data
- !!----------------------------------------------------------------------
- TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables
- TYPE(MAP_POINTER),INTENT(in) :: map ! global-to-local mapping indices
- !!
- INTEGER :: ipk ! number of vertical levels of sdjf%fdta ( 2D: ipk=1 ; 3D: ipk=jpk )
- INTEGER :: iw ! index into wgts array
- INTEGER :: ipdom ! index of the domain
- INTEGER :: idvar ! variable ID
- INTEGER :: idmspc ! number of spatial dimensions
- LOGICAL :: lmoor ! C1D case: point data
- !!---------------------------------------------------------------------
- !
- ipk = SIZE( sdjf%fnow, 3 )
- !
- IF( ASSOCIATED(map%ptr) ) THEN
- IF( sdjf%ln_tint ) THEN ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1), map )
- ELSE ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1), map )
- ENDIF
- ELSE IF( LEN(TRIM(sdjf%wgtname)) > 0 ) THEN
- CALL wgt_list( sdjf, iw )
- IF( sdjf%ln_tint ) THEN ; CALL fld_interp( sdjf%num, sdjf%clvar, iw , ipk , sdjf%fdta(:,:,:,2), &
- & sdjf%nrec_a(1), sdjf%lsmname )
- ELSE ; CALL fld_interp( sdjf%num, sdjf%clvar, iw , ipk , sdjf%fnow(:,:,: ), &
- & sdjf%nrec_a(1), sdjf%lsmname )
- ENDIF
- ELSE
- IF( SIZE(sdjf%fnow, 1) == jpi ) THEN ; ipdom = jpdom_data
- ELSE ; ipdom = jpdom_unknown
- ENDIF
- ! C1D case: If product of spatial dimensions == ipk, then x,y are of
- ! size 1 (point/mooring data): this must be read onto the central grid point
- idvar = iom_varid( sdjf%num, sdjf%clvar )
- idmspc = iom_file( sdjf%num )%ndims( idvar )
- IF( iom_file( sdjf%num )%luld( idvar ) ) idmspc = idmspc - 1
- lmoor = (idmspc == 0 .OR. PRODUCT( iom_file( sdjf%num )%dimsz( 1:MAX(idmspc,1) ,idvar ) ) == ipk)
- !
- SELECT CASE( ipk )
- CASE(1)
- IF( lk_c1d .AND. lmoor ) THEN
- IF( sdjf%ln_tint ) THEN
- CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fdta(2,2,1,2), sdjf%nrec_a(1) )
- CALL lbc_lnk( sdjf%fdta(:,:,1,2),'Z',1. )
- ELSE
- CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fnow(2,2,1 ), sdjf%nrec_a(1) )
- CALL lbc_lnk( sdjf%fnow(:,:,1 ),'Z',1. )
- ENDIF
- ELSE
- IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,1,2), sdjf%nrec_a(1) )
- ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,1 ), sdjf%nrec_a(1) )
- ENDIF
- ENDIF
- CASE DEFAULT
- IF (lk_c1d .AND. lmoor ) THEN
- IF( sdjf%ln_tint ) THEN
- CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fdta(2,2,:,2), sdjf%nrec_a(1) )
- CALL lbc_lnk( sdjf%fdta(:,:,:,2),'Z',1. )
- ELSE
- CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fnow(2,2,: ), sdjf%nrec_a(1) )
- CALL lbc_lnk( sdjf%fnow(:,:,: ),'Z',1. )
- ENDIF
- ELSE
- IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1) )
- ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1) )
- ENDIF
- ENDIF
- END SELECT
- ENDIF
- !
- sdjf%rotn(2) = .false. ! vector not yet rotated
- END SUBROUTINE fld_get
- SUBROUTINE fld_map( num, clvar, dta, nrec, map )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_map ***
- !!
- !! ** Purpose : read global data from file and map onto local data
- !! using a general mapping (for open boundaries)
- !!----------------------------------------------------------------------
- #if defined key_bdy
- USE bdy_oce, ONLY: dta_global, dta_global2 ! workspace to read in global data arrays
- #endif
- INTEGER , INTENT(in ) :: num ! stream number
- CHARACTER(LEN=*) , INTENT(in ) :: clvar ! variable name
- REAL(wp), DIMENSION(:,:,:), INTENT(out) :: dta ! output field on model grid (2 dimensional)
- INTEGER , INTENT(in ) :: nrec ! record number to read (ie time slice)
- TYPE(MAP_POINTER) , INTENT(in ) :: map ! global-to-local mapping indices
- !!
- INTEGER :: ipi ! length of boundary data on local process
- INTEGER :: ipj ! length of dummy dimension ( = 1 )
- INTEGER :: ipk ! number of vertical levels of dta ( 2D: ipk=1 ; 3D: ipk=jpk )
- INTEGER :: ilendta ! length of data in file
- INTEGER :: idvar ! variable ID
- INTEGER :: ib, ik, ji, jj ! loop counters
- INTEGER :: ierr
- REAL(wp), POINTER, DIMENSION(:,:,:) :: dta_read ! work space for global data
- !!---------------------------------------------------------------------
-
- ipi = SIZE( dta, 1 )
- ipj = 1
- ipk = SIZE( dta, 3 )
- idvar = iom_varid( num, clvar )
- ilendta = iom_file(num)%dimsz(1,idvar)
- #if defined key_bdy
- ipj = iom_file(num)%dimsz(2,idvar)
- IF ( map%ll_unstruc) THEN ! unstructured open boundary data file
- dta_read => dta_global
- ELSE ! structured open boundary data file
- dta_read => dta_global2
- ENDIF
- #endif
- IF(lwp) WRITE(numout,*) 'Dim size for ',TRIM(clvar),' is ', ilendta
- IF(lwp) WRITE(numout,*) 'Number of levels for ',TRIM(clvar),' is ', ipk
- SELECT CASE( ipk )
- CASE(1) ; CALL iom_get ( num, jpdom_unknown, clvar, dta_read(1:ilendta,1:ipj,1 ), nrec )
- CASE DEFAULT ; CALL iom_get ( num, jpdom_unknown, clvar, dta_read(1:ilendta,1:ipj,1:ipk), nrec )
- END SELECT
- !
- IF ( map%ll_unstruc ) THEN ! unstructured open boundary data file
- DO ib = 1, ipi
- DO ik = 1, ipk
- dta(ib,1,ik) = dta_read(map%ptr(ib),1,ik)
- END DO
- END DO
- ELSE ! structured open boundary data file
- DO ib = 1, ipi
- jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta))
- ji=map%ptr(ib)-(jj-1)*ilendta
- DO ik = 1, ipk
- dta(ib,1,ik) = dta_read(ji,jj,ik)
- END DO
- END DO
- ENDIF
- END SUBROUTINE fld_map
- SUBROUTINE fld_rot( kt, sd )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_rot ***
- !!
- !! ** Purpose : Vector fields may need to be rotated onto the local grid direction
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kt ! ocean time step
- TYPE(FLD), INTENT(inout), DIMENSION(:) :: sd ! input field related variables
- !!
- INTEGER :: ju,jv,jk,jn ! loop indices
- INTEGER :: imf ! size of the structure sd
- INTEGER :: ill ! character length
- INTEGER :: iv ! indice of V component
- REAL(wp), POINTER, DIMENSION(:,:) :: utmp, vtmp ! temporary arrays for vector rotation
- CHARACTER (LEN=100) :: clcomp ! dummy weight name
- !!---------------------------------------------------------------------
- CALL wrk_alloc( jpi,jpj, utmp, vtmp )
- !! (sga: following code should be modified so that pairs arent searched for each time
- !
- imf = SIZE( sd )
- DO ju = 1, imf
- ill = LEN_TRIM( sd(ju)%vcomp )
- DO jn = 2-COUNT((/sd(ju)%ln_tint/)), 2
- IF( ill > 0 .AND. .NOT. sd(ju)%rotn(jn) ) THEN ! find vector rotations required
- IF( sd(ju)%vcomp(1:1) == 'U' ) THEN ! east-west component has symbolic name starting with 'U'
- ! look for the north-south component which has same symbolic name but with 'U' replaced with 'V'
- clcomp = 'V' // sd(ju)%vcomp(2:ill) ! works even if ill == 1
- iv = -1
- DO jv = 1, imf
- IF( TRIM(sd(jv)%vcomp) == TRIM(clcomp) ) iv = jv
- END DO
- IF( iv > 0 ) THEN ! fields ju and iv are two components which need to be rotated together
- DO jk = 1, SIZE( sd(ju)%fnow, 3 )
- IF( sd(ju)%ln_tint )THEN
- CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->i', utmp(:,:) )
- CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->j', vtmp(:,:) )
- sd(ju)%fdta(:,:,jk,jn) = utmp(:,:) ; sd(iv)%fdta(:,:,jk,jn) = vtmp(:,:)
- ELSE
- CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->i', utmp(:,:) )
- CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->j', vtmp(:,:) )
- sd(ju)%fnow(:,:,jk ) = utmp(:,:) ; sd(iv)%fnow(:,:,jk ) = vtmp(:,:)
- ENDIF
- END DO
- sd(ju)%rotn(jn) = .TRUE. ! vector was rotated
- IF( lwp .AND. kt == nit000 ) WRITE(numout,*) &
- & 'fld_read: vector pair ('//TRIM(sd(ju)%clvar)//', '//TRIM(sd(iv)%clvar)//') rotated on to model grid'
- ENDIF
- ENDIF
- ENDIF
- END DO
- END DO
- !
- CALL wrk_dealloc( jpi,jpj, utmp, vtmp )
- !
- END SUBROUTINE fld_rot
- SUBROUTINE fld_clopn( sdjf, kyear, kmonth, kday, ldstop )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_clopn ***
- !!
- !! ** Purpose : update the file name and open the file
- !!----------------------------------------------------------------------
- TYPE(FLD) , INTENT(inout) :: sdjf ! input field related variables
- INTEGER, OPTIONAL, INTENT(in ) :: kyear ! year value
- INTEGER, OPTIONAL, INTENT(in ) :: kmonth ! month value
- INTEGER, OPTIONAL, INTENT(in ) :: kday ! day value
- LOGICAL, OPTIONAL, INTENT(in ) :: ldstop ! stop if open to read a non-existing file (default = .TRUE.)
- !!
- LOGICAL :: llprevyr ! are we reading previous year file?
- LOGICAL :: llprevmth ! are we reading previous month file?
- INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd
- INTEGER :: isec_week ! number of seconds since start of the weekly file
- INTEGER :: indexyr ! year undex (O/1/2: previous/current/next)
- INTEGER :: iyear_len, imonth_len ! length (days) of iyear and imonth !
- CHARACTER(len = 256):: clname ! temporary file name
- !!----------------------------------------------------------------------
- IF( PRESENT(kyear) ) THEN ! use given values
- iyear = kyear
- imonth = kmonth
- iday = kday
- IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week
- isec_week = ksec_week( sdjf%cltype(6:8) )- (86400 * 8 )
- llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month
- llprevyr = llprevmth .AND. nmonth == 1
- iyear = nyear - COUNT((/llprevyr /))
- imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /))
- iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday)
- ENDIF
- ELSE ! use current day values
- IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week
- isec_week = ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week
- llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month
- llprevyr = llprevmth .AND. nmonth == 1
- ELSE
- isec_week = 0
- llprevmth = .FALSE.
- llprevyr = .FALSE.
- ENDIF
- iyear = nyear - COUNT((/llprevyr /))
- imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /))
- iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday)
- ENDIF
- ! build the new filename if not climatological data
- clname=TRIM(sdjf%clrootname)
- !
- ! note that sdjf%ln_clim is is only acting on the presence of the year in the file name
- IF( .NOT. sdjf%ln_clim ) THEN
- WRITE(clname, '(a,"_y",i4.4)' ) TRIM( sdjf%clrootname ), iyear ! add year
- IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"m" ,i2.2)' ) TRIM( clname ), imonth ! add month
- ELSE
- ! build the new filename if climatological data
- IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"_m",i2.2)' ) TRIM( sdjf%clrootname ), imonth ! add month
- ENDIF
- IF( sdjf%cltype == 'daily' .OR. sdjf%cltype(1:4) == 'week' ) &
- & WRITE(clname, '(a,"d" ,i2.2)' ) TRIM( clname ), iday ! add day
- !
- IF( TRIM(clname) /= TRIM(sdjf%clname) .OR. sdjf%num == 0 ) THEN ! new file to be open
- sdjf%clname = TRIM(clname)
- IF( sdjf%num /= 0 ) CALL iom_close( sdjf%num ) ! close file if already open
- CALL iom_open( sdjf%clname, sdjf%num, ldstop = ldstop, ldiof = LEN(TRIM(sdjf%wgtname)) > 0 )
- ! find the last record to be read -> update sdjf%nreclast
- indexyr = iyear - nyear + 1
- iyear_len = nyear_len( indexyr )
- SELECT CASE ( indexyr )
- CASE ( 0 ) ; imonth_len = 31 ! previous year -> imonth = 12
- CASE ( 1 ) ; imonth_len = nmonth_len(imonth)
- CASE ( 2 ) ; imonth_len = 31 ! next year -> imonth = 1
- END SELECT
-
- ! last record to be read in the current file
- IF ( sdjf%nfreqh == -12 ) THEN ; sdjf%nreclast = 1 ! yearly mean
- ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean
- IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = 1
- ELSE ; sdjf%nreclast = 12
- ENDIF
- ELSE ! higher frequency mean (in hours)
- IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = NINT( 24 * imonth_len / sdjf%nfreqh )
- ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; sdjf%nreclast = NINT( 24 * 7 / sdjf%nfreqh )
- ELSEIF( sdjf%cltype == 'daily' ) THEN ; sdjf%nreclast = NINT( 24 / sdjf%nfreqh )
- ELSE ; sdjf%nreclast = NINT( 24 * iyear_len / sdjf%nfreqh )
- ENDIF
- ENDIF
-
- ENDIF
- !
- END SUBROUTINE fld_clopn
- SUBROUTINE fld_fill( sdf, sdf_n, cdir, cdcaller, cdtitle, cdnam )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_fill ***
- !!
- !! ** Purpose : fill sdf with sdf_n and control print
- !!----------------------------------------------------------------------
- TYPE(FLD) , DIMENSION(:), INTENT(inout) :: sdf ! structure of input fields (file informations, fields read)
- TYPE(FLD_N), DIMENSION(:), INTENT(in ) :: sdf_n ! array of namelist information structures
- CHARACTER(len=*) , INTENT(in ) :: cdir ! Root directory for location of flx files
- CHARACTER(len=*) , INTENT(in ) :: cdcaller !
- CHARACTER(len=*) , INTENT(in ) :: cdtitle !
- CHARACTER(len=*) , INTENT(in ) :: cdnam !
- !
- INTEGER :: jf ! dummy indices
- !!---------------------------------------------------------------------
- DO jf = 1, SIZE(sdf)
- sdf(jf)%clrootname = TRIM( cdir )//TRIM( sdf_n(jf)%clname )
- sdf(jf)%clname = "not yet defined"
- sdf(jf)%nfreqh = sdf_n(jf)%nfreqh
- sdf(jf)%clvar = sdf_n(jf)%clvar
- sdf(jf)%ln_tint = sdf_n(jf)%ln_tint
- sdf(jf)%ln_clim = sdf_n(jf)%ln_clim
- sdf(jf)%cltype = sdf_n(jf)%cltype
- sdf(jf)%num = -1
- sdf(jf)%wgtname = " "
- IF( LEN( TRIM(sdf_n(jf)%wname) ) > 0 ) sdf(jf)%wgtname = TRIM( cdir )//TRIM( sdf_n(jf)%wname )
- sdf(jf)%lsmname = " "
- IF( LEN( TRIM(sdf_n(jf)%lname) ) > 0 ) sdf(jf)%lsmname = TRIM( cdir )//TRIM( sdf_n(jf)%lname )
- sdf(jf)%vcomp = sdf_n(jf)%vcomp
- sdf(jf)%rotn(:) = .TRUE. ! pretend to be rotated -> won't try to rotate data before the first call to fld_get
- IF( sdf(jf)%cltype(1:4) == 'week' .AND. nn_leapy == 0 ) &
- & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs nn_leapy = 1')
- IF( sdf(jf)%cltype(1:4) == 'week' .AND. sdf(jf)%ln_clim ) &
- & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs ln_clim = .FALSE.')
- sdf(jf)%nreclast = -1 ! Set to non zero default value to avoid errors, is updated to meaningful value during fld_clopn
- END DO
- IF(lwp) THEN ! control print
- WRITE(numout,*)
- WRITE(numout,*) TRIM( cdcaller )//' : '//TRIM( cdtitle )
- WRITE(numout,*) (/ ('~', jf = 1, LEN_TRIM( cdcaller ) ) /)
- WRITE(numout,*) ' '//TRIM( cdnam )//' Namelist'
- WRITE(numout,*) ' list of files and frequency (>0: in hours ; <0 in months)'
- DO jf = 1, SIZE(sdf)
- WRITE(numout,*) ' root filename: ' , TRIM( sdf(jf)%clrootname ), &
- & ' variable name: ' , TRIM( sdf(jf)%clvar )
- WRITE(numout,*) ' frequency: ' , sdf(jf)%nfreqh , &
- & ' time interp: ' , sdf(jf)%ln_tint , &
- & ' climatology: ' , sdf(jf)%ln_clim , &
- & ' weights : ' , TRIM( sdf(jf)%wgtname ), &
- & ' pairing : ' , TRIM( sdf(jf)%vcomp ), &
- & ' data type: ' , sdf(jf)%cltype , &
- & ' land/sea mask:' , TRIM( sdf(jf)%lsmname )
- call flush(numout)
- END DO
- ENDIF
-
- END SUBROUTINE fld_fill
- SUBROUTINE wgt_list( sd, kwgt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE wgt_list ***
- !!
- !! ** Purpose : search array of WGTs and find a weights file
- !! entry, or return a new one adding it to the end
- !! if it is a new entry, the weights data is read in and
- !! restructured (fld_weight)
- !!----------------------------------------------------------------------
- TYPE( FLD ), INTENT(in ) :: sd ! field with name of weights file
- INTEGER , INTENT(inout) :: kwgt ! index of weights
- !!
- INTEGER :: kw, nestid ! local integer
- LOGICAL :: found ! local logical
- !!----------------------------------------------------------------------
- !
- !! search down linked list
- !! weights filename is either present or we hit the end of the list
- found = .FALSE.
- !! because agrif nest part of filenames are now added in iom_open
- !! to distinguish between weights files on the different grids, need to track
- !! nest number explicitly
- nestid = 0
- #if defined key_agrif
- nestid = Agrif_Fixed()
- #endif
- DO kw = 1, nxt_wgt-1
- IF( TRIM(ref_wgts(kw)%wgtname) == TRIM(sd%wgtname) .AND. &
- ref_wgts(kw)%nestid == nestid) THEN
- kwgt = kw
- found = .TRUE.
- EXIT
- ENDIF
- END DO
- IF( .NOT.found ) THEN
- kwgt = nxt_wgt
- CALL fld_weight( sd )
- ENDIF
- !
- END SUBROUTINE wgt_list
- SUBROUTINE wgt_print( )
- !!---------------------------------------------------------------------
- !! *** ROUTINE wgt_print ***
- !!
- !! ** Purpose : print the list of known weights
- !!----------------------------------------------------------------------
- INTEGER :: kw !
- !!----------------------------------------------------------------------
- !
- DO kw = 1, nxt_wgt-1
- WRITE(numout,*) 'weight file: ',TRIM(ref_wgts(kw)%wgtname)
- WRITE(numout,*) ' ddims: ',ref_wgts(kw)%ddims(1),ref_wgts(kw)%ddims(2)
- WRITE(numout,*) ' numwgt: ',ref_wgts(kw)%numwgt
- WRITE(numout,*) ' jpiwgt: ',ref_wgts(kw)%jpiwgt
- WRITE(numout,*) ' jpjwgt: ',ref_wgts(kw)%jpjwgt
- WRITE(numout,*) ' botleft: ',ref_wgts(kw)%botleft
- WRITE(numout,*) ' topright: ',ref_wgts(kw)%topright
- IF( ref_wgts(kw)%cyclic ) THEN
- WRITE(numout,*) ' cyclical'
- IF( ref_wgts(kw)%overlap > 0 ) WRITE(numout,*) ' with overlap of ', ref_wgts(kw)%overlap
- ELSE
- WRITE(numout,*) ' not cyclical'
- ENDIF
- IF( ASSOCIATED(ref_wgts(kw)%data_wgt) ) WRITE(numout,*) ' allocated'
- END DO
- !
- END SUBROUTINE wgt_print
- SUBROUTINE fld_weight( sd )
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_weight ***
- !!
- !! ** Purpose : create a new WGT structure and fill in data from
- !! file, restructuring as required
- !!----------------------------------------------------------------------
- TYPE( FLD ), INTENT(in) :: sd ! field with name of weights file
- !!
- INTEGER :: jn ! dummy loop indices
- INTEGER :: inum ! temporary logical unit
- INTEGER :: id ! temporary variable id
- INTEGER :: ipk ! temporary vertical dimension
- CHARACTER (len=5) :: aname
- INTEGER , DIMENSION(:), ALLOCATABLE :: ddims
- INTEGER , POINTER, DIMENSION(:,:) :: data_src
- REAL(wp), POINTER, DIMENSION(:,:) :: data_tmp
- LOGICAL :: cyclical
- INTEGER :: zwrap ! local integer
- !!----------------------------------------------------------------------
- !
- CALL wrk_alloc( jpi,jpj, data_src ) ! integer
- CALL wrk_alloc( jpi,jpj, data_tmp )
- !
- IF( nxt_wgt > tot_wgts ) THEN
- CALL ctl_stop("fld_weight: weights array size exceeded, increase tot_wgts")
- ENDIF
- !
- !! new weights file entry, add in extra information
- !! a weights file represents a 2D grid of a certain shape, so we assume that the current
- !! input data file is representative of all other files to be opened and processed with the
- !! current weights file
- !! open input data file (non-model grid)
- CALL iom_open( sd%clname, inum, ldiof = LEN(TRIM(sd%wgtname)) > 0 )
- !! get dimensions
- IF ( SIZE(sd%fnow, 3) > 1 ) THEN
- ALLOCATE( ddims(4) )
- ELSE
- ALLOCATE( ddims(3) )
- ENDIF
- id = iom_varid( inum, sd%clvar, ddims )
- !! close it
- CALL iom_close( inum )
- !! now open the weights file
- CALL iom_open ( sd%wgtname, inum ) ! interpolation weights
- IF ( inum > 0 ) THEN
- !! determine whether we have an east-west cyclic grid
- !! from global attribute called "ew_wrap" in the weights file
- !! note that if not found, iom_getatt returns -999 and cyclic with no overlap is assumed
- !! since this is the most common forcing configuration
- CALL iom_getatt(inum, 'ew_wrap', zwrap)
- IF( zwrap >= 0 ) THEN
- cyclical = .TRUE.
- ELSE IF( zwrap == -999 ) THEN
- cyclical = .TRUE.
- zwrap = 0
- ELSE
- cyclical = .FALSE.
- ENDIF
- ref_wgts(nxt_wgt)%ddims(1) = ddims(1)
- ref_wgts(nxt_wgt)%ddims(2) = ddims(2)
- ref_wgts(nxt_wgt)%wgtname = sd%wgtname
- ref_wgts(nxt_wgt)%overlap = zwrap
- ref_wgts(nxt_wgt)%cyclic = cyclical
- ref_wgts(nxt_wgt)%nestid = 0
- #if defined key_agrif
- ref_wgts(nxt_wgt)%nestid = Agrif_Fixed()
- #endif
- !! weights file is stored as a set of weights (wgt01->wgt04 or wgt01->wgt16)
- !! for each weight wgtNN there is an integer array srcNN which gives the point in
- !! the input data grid which is to be multiplied by the weight
- !! they are both arrays on the model grid so the result of the multiplication is
- !! added into an output array on the model grid as a running sum
- !! two possible cases: bilinear (4 weights) or bicubic (16 weights)
- id = iom_varid(inum, 'src05', ldstop=.FALSE.)
- IF( id <= 0) THEN
- ref_wgts(nxt_wgt)%numwgt = 4
- ELSE
- ref_wgts(nxt_wgt)%numwgt = 16
- ENDIF
- ALLOCATE( ref_wgts(nxt_wgt)%data_jpi(jpi,jpj,4) )
- ALLOCATE( ref_wgts(nxt_wgt)%data_jpj(jpi,jpj,4) )
- ALLOCATE( ref_wgts(nxt_wgt)%data_wgt(jpi,jpj,ref_wgts(nxt_wgt)%numwgt) )
- DO jn = 1,4
- aname = ' '
- WRITE(aname,'(a3,i2.2)') 'src',jn
- data_tmp(:,:) = 0
- CALL iom_get ( inum, jpdom_data, aname, data_tmp(:,:) )
- data_src(:,:) = INT(data_tmp(:,:))
- ref_wgts(nxt_wgt)%data_jpj(:,:,jn) = 1 + (data_src(:,:)-1) / ref_wgts(nxt_wgt)%ddims(1)
- ref_wgts(nxt_wgt)%data_jpi(:,:,jn) = data_src(:,:) - ref_wgts(nxt_wgt)%ddims(1)*(ref_wgts(nxt_wgt)%data_jpj(:,:,jn)-1)
- END DO
- DO jn = 1, ref_wgts(nxt_wgt)%numwgt
- aname = ' '
- WRITE(aname,'(a3,i2.2)') 'wgt',jn
- ref_wgts(nxt_wgt)%data_wgt(:,:,jn) = 0.0
- CALL iom_get ( inum, jpdom_data, aname, ref_wgts(nxt_wgt)%data_wgt(:,:,jn) )
- END DO
- CALL iom_close (inum)
-
- ! find min and max indices in grid
- ref_wgts(nxt_wgt)%botleft(1) = MINVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:))
- ref_wgts(nxt_wgt)%botleft(2) = MINVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:))
- ref_wgts(nxt_wgt)%topright(1) = MAXVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:))
- ref_wgts(nxt_wgt)%topright(2) = MAXVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:))
- ! and therefore dimensions of the input box
- ref_wgts(nxt_wgt)%jpiwgt = ref_wgts(nxt_wgt)%topright(1) - ref_wgts(nxt_wgt)%botleft(1) + 1
- ref_wgts(nxt_wgt)%jpjwgt = ref_wgts(nxt_wgt)%topright(2) - ref_wgts(nxt_wgt)%botleft(2) + 1
- ! shift indexing of source grid
- ref_wgts(nxt_wgt)%data_jpi(:,:,:) = ref_wgts(nxt_wgt)%data_jpi(:,:,:) - ref_wgts(nxt_wgt)%botleft(1) + 1
- ref_wgts(nxt_wgt)%data_jpj(:,:,:) = ref_wgts(nxt_wgt)%data_jpj(:,:,:) - ref_wgts(nxt_wgt)%botleft(2) + 1
- ! create input grid, give it a halo to allow gradient calculations
- ! SA: +3 stencil is a patch to avoid out-of-bound computation in some configuration.
- ! a more robust solution will be given in next release
- ipk = SIZE(sd%fnow, 3)
- ALLOCATE( ref_wgts(nxt_wgt)%fly_dta(ref_wgts(nxt_wgt)%jpiwgt+3, ref_wgts(nxt_wgt)%jpjwgt+3 ,ipk) )
- IF( ref_wgts(nxt_wgt)%cyclic ) ALLOCATE( ref_wgts(nxt_wgt)%col(1,ref_wgts(nxt_wgt)%jpjwgt+3,ipk) )
- nxt_wgt = nxt_wgt + 1
- ELSE
- CALL ctl_stop( ' fld_weight : unable to read the file ' )
- ENDIF
- DEALLOCATE (ddims )
- CALL wrk_dealloc( jpi,jpj, data_src ) ! integer
- CALL wrk_dealloc( jpi,jpj, data_tmp )
- !
- END SUBROUTINE fld_weight
- SUBROUTINE apply_seaoverland(clmaskfile,zfieldo,jpi1_lsm,jpi2_lsm,jpj1_lsm, &
- & jpj2_lsm,itmpi,itmpj,itmpz,rec1_lsm,recn_lsm)
- !!---------------------------------------------------------------------
- !! *** ROUTINE apply_seaoverland ***
- !!
- !! ** Purpose : avoid spurious fluxes in coastal or near-coastal areas
- !! due to the wrong usage of "land" values from the coarse
- !! atmospheric model when spatial interpolation is required
- !! D. Delrosso INGV
- !!----------------------------------------------------------------------
- INTEGER :: inum,jni,jnj,jnz,jc ! temporary indices
- INTEGER, INTENT(in) :: itmpi,itmpj,itmpz ! lengths
- INTEGER, INTENT(in) :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices
- INTEGER, DIMENSION(3), INTENT(in) :: rec1_lsm,recn_lsm ! temporary arrays for start and length
- REAL(wp),DIMENSION (:,:,:),INTENT(inout) :: zfieldo ! input/output array for seaoverland application
- REAL(wp),DIMENSION (:,:,:),ALLOCATABLE :: zslmec1 ! temporary array for land point detection
- REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfieldn ! array of forcing field with undeff for land points
- REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfield ! array of forcing field
- CHARACTER (len=100), INTENT(in) :: clmaskfile ! land/sea mask file name
- !!---------------------------------------------------------------------
- ALLOCATE ( zslmec1(itmpi,itmpj,itmpz) )
- ALLOCATE ( zfieldn(itmpi,itmpj) )
- ALLOCATE ( zfield(itmpi,itmpj) )
- ! Retrieve the land sea mask data
- CALL iom_open( clmaskfile, inum )
- SELECT CASE( SIZE(zfieldo(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) )
- CASE(1)
- CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), 1, rec1_lsm, recn_lsm)
- CASE DEFAULT
- CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), 1, rec1_lsm, recn_lsm)
- END SELECT
- CALL iom_close( inum )
- DO jnz=1,rec1_lsm(3) !! Loop over k dimension
- DO jni=1,itmpi !! copy the original field into a tmp array
- DO jnj=1,itmpj !! substituting undeff over land points
- zfieldn(jni,jnj) = zfieldo(jni,jnj,jnz)
- IF ( zslmec1(jni,jnj,jnz) == 1. ) THEN
- zfieldn(jni,jnj) = undeff_lsm
- ENDIF
- END DO
- END DO
-
- CALL seaoverland(zfieldn,itmpi,itmpj,zfield)
- DO jc=1,nn_lsm
- CALL seaoverland(zfield,itmpi,itmpj,zfield)
- END DO
- ! Check for Undeff and substitute original values
- IF(ANY(zfield==undeff_lsm)) THEN
- DO jni=1,itmpi
- DO jnj=1,itmpj
- IF (zfield(jni,jnj)==undeff_lsm) THEN
- zfield(jni,jnj) = zfieldo(jni,jnj,jnz)
- ENDIF
- ENDDO
- ENDDO
- ENDIF
- zfieldo(:,:,jnz)=zfield(:,:)
- END DO !! End Loop over k dimension
- DEALLOCATE ( zslmec1 )
- DEALLOCATE ( zfieldn )
- DEALLOCATE ( zfield )
- END SUBROUTINE apply_seaoverland
- SUBROUTINE seaoverland(zfieldn,ileni,ilenj,zfield)
- !!---------------------------------------------------------------------
- !! *** ROUTINE seaoverland ***
- !!
- !! ** Purpose : create shifted matrices for seaoverland application
- !! D. Delrosso INGV
- !!----------------------------------------------------------------------
- INTEGER,INTENT(in) :: ileni,ilenj ! lengths
- REAL,DIMENSION (ileni,ilenj),INTENT(in) :: zfieldn ! array of forcing field with undeff for land points
- REAL,DIMENSION (ileni,ilenj),INTENT(out) :: zfield ! array of forcing field
- REAL,DIMENSION (ileni,ilenj) :: zmat1,zmat2,zmat3,zmat4 ! temporary arrays for seaoverland application
- REAL,DIMENSION (ileni,ilenj) :: zmat5,zmat6,zmat7,zmat8 ! temporary arrays for seaoverland application
- REAL,DIMENSION (ileni,ilenj) :: zlsm2d ! temporary arrays for seaoverland application
- REAL,DIMENSION (ileni,ilenj,8) :: zlsm3d ! temporary arrays for seaoverland application
- LOGICAL,DIMENSION (ileni,ilenj,8) :: ll_msknan3d ! logical mask for undeff detection
- LOGICAL,DIMENSION (ileni,ilenj) :: ll_msknan2d ! logical mask for undeff detection
- !!----------------------------------------------------------------------
- zmat8 = eoshift(zfieldn , SHIFT=-1, BOUNDARY = (/zfieldn(:,1)/) ,DIM=2)
- zmat1 = eoshift(zmat8 , SHIFT=-1, BOUNDARY = (/zmat8(1,:)/) ,DIM=1)
- zmat2 = eoshift(zfieldn , SHIFT=-1, BOUNDARY = (/zfieldn(1,:)/) ,DIM=1)
- zmat4 = eoshift(zfieldn , SHIFT= 1, BOUNDARY = (/zfieldn(:,ilenj)/),DIM=2)
- zmat3 = eoshift(zmat4 , SHIFT=-1, BOUNDARY = (/zmat4(1,:)/) ,DIM=1)
- zmat5 = eoshift(zmat4 , SHIFT= 1, BOUNDARY = (/zmat4(ileni,:)/) ,DIM=1)
- zmat6 = eoshift(zfieldn , SHIFT= 1, BOUNDARY = (/zfieldn(ileni,:)/),DIM=1)
- zmat7 = eoshift(zmat8 , SHIFT= 1, BOUNDARY = (/zmat8(ileni,:)/) ,DIM=1)
- zlsm3d = RESHAPE( (/ zmat1, zmat2, zmat3, zmat4, zmat5, zmat6, zmat7, zmat8 /), (/ ileni, ilenj, 8 /))
- ll_msknan3d = .not.(zlsm3d==undeff_lsm)
- ll_msknan2d = .not.(zfieldn==undeff_lsm) ! FALSE where is Undeff (land)
- zlsm2d = (SUM ( zlsm3d, 3 , ll_msknan3d ) )/(MAX(1,(COUNT( ll_msknan3d , 3 )) ))
- WHERE ((COUNT( ll_msknan3d , 3 )) == 0.0_wp) zlsm2d = undeff_lsm
- zfield = MERGE (zfieldn,zlsm2d,ll_msknan2d)
- END SUBROUTINE seaoverland
- SUBROUTINE fld_interp( num, clvar, kw, kk, dta, &
- & nrec, lsmfile)
- !!---------------------------------------------------------------------
- !! *** ROUTINE fld_interp ***
- !!
- !! ** Purpose : apply weights to input gridded data to create data
- !! on model grid
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: num ! stream number
- CHARACTER(LEN=*) , INTENT(in ) :: clvar ! variable name
- INTEGER , INTENT(in ) :: kw ! weights number
- INTEGER , INTENT(in ) :: kk ! vertical dimension of kk
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: dta ! output field on model grid
- INTEGER , INTENT(in ) :: nrec ! record number to read (ie time slice)
- CHARACTER(LEN=*) , INTENT(in ) :: lsmfile ! land sea mask file name
- !!
- REAL(wp),DIMENSION(:,:,:),ALLOCATABLE :: ztmp_fly_dta ! temporary array of values on input grid
- INTEGER, DIMENSION(3) :: rec1,recn ! temporary arrays for start and length
- INTEGER, DIMENSION(3) :: rec1_lsm,recn_lsm ! temporary arrays for start and length in case of seaoverland
- INTEGER :: ii_lsm1,ii_lsm2,ij_lsm1,ij_lsm2 ! temporary indices
- INTEGER :: jk, jn, jm, jir, jjr ! loop counters
- INTEGER :: ni, nj ! lengths
- INTEGER :: jpimin,jpiwid ! temporary indices
- INTEGER :: jpimin_lsm,jpiwid_lsm ! temporary indices
- INTEGER :: jpjmin,jpjwid ! temporary indices
- INTEGER :: jpjmin_lsm,jpjwid_lsm ! temporary indices
- INTEGER :: jpi1,jpi2,jpj1,jpj2 ! temporary indices
- INTEGER :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices
- INTEGER :: itmpi,itmpj,itmpz ! lengths
-
- !!----------------------------------------------------------------------
- !
- !! for weighted interpolation we have weights at four corners of a box surrounding
- !! a model grid point, each weight is multiplied by a grid value (bilinear case)
- !! or by a grid value and gradients at the corner point (bicubic case)
- !! so we need to have a 4 by 4 subgrid surrounding each model point to cover both cases
- !! sub grid from non-model input grid which encloses all grid points in this nemo process
- jpimin = ref_wgts(kw)%botleft(1)
- jpjmin = ref_wgts(kw)%botleft(2)
- jpiwid = ref_wgts(kw)%jpiwgt
- jpjwid = ref_wgts(kw)%jpjwgt
- !! when reading in, expand this sub-grid by one halo point all the way round for calculating gradients
- rec1(1) = MAX( jpimin-1, 1 )
- rec1(2) = MAX( jpjmin-1, 1 )
- rec1(3) = 1
- recn(1) = MIN( jpiwid+2, ref_wgts(kw)%ddims(1)-rec1(1)+1 )
- recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 )
- recn(3) = kk
- !! where we need to put it in the non-nemo grid fly_dta
- !! note that jpi1 and jpj1 only differ from 1 when jpimin and jpjmin are 1
- !! (ie at the extreme west or south of the whole input grid) and similarly for jpi2 and jpj2
- jpi1 = 2 + rec1(1) - jpimin
- jpj1 = 2 + rec1(2) - jpjmin
- jpi2 = jpi1 + recn(1) - 1
- jpj2 = jpj1 + recn(2) - 1
- IF( LEN( TRIM(lsmfile) ) > 0 ) THEN
- !! indeces for ztmp_fly_dta
- ! --------------------------
- rec1_lsm(1)=MAX(rec1(1)-nn_lsm,1) ! starting index for enlarged external data, x direction
- rec1_lsm(2)=MAX(rec1(2)-nn_lsm,1) ! starting index for enlarged external data, y direction
- rec1_lsm(3) = 1 ! vertical dimension
- recn_lsm(1)=MIN(rec1(1)-rec1_lsm(1)+recn(1)+nn_lsm,ref_wgts(kw)%ddims(1)-rec1_lsm(1)) ! n points in x direction
- recn_lsm(2)=MIN(rec1(2)-rec1_lsm(2)+recn(2)+nn_lsm,ref_wgts(kw)%ddims(2)-rec1_lsm(2)) ! n points in y direction
- recn_lsm(3) = kk ! number of vertical levels in the input file
- ! Avoid out of bound
- jpimin_lsm = MAX( rec1_lsm(1)+1, 1 )
- jpjmin_lsm = MAX( rec1_lsm(2)+1, 1 )
- jpiwid_lsm = MIN( recn_lsm(1)-2,ref_wgts(kw)%ddims(1)-rec1(1)+1)
- jpjwid_lsm = MIN( recn_lsm(2)-2,ref_wgts(kw)%ddims(2)-rec1(2)+1)
- jpi1_lsm = 2+rec1_lsm(1)-jpimin_lsm
- jpj1_lsm = 2+rec1_lsm(2)-jpjmin_lsm
- jpi2_lsm = jpi1_lsm + recn_lsm(1) - 1
- jpj2_lsm = jpj1_lsm + recn_lsm(2) - 1
- itmpi=jpi2_lsm-jpi1_lsm+1
- itmpj=jpj2_lsm-jpj1_lsm+1
- itmpz=kk
- ALLOCATE(ztmp_fly_dta(itmpi,itmpj,itmpz))
- ztmp_fly_dta(:,:,:) = 0.0
- SELECT CASE( SIZE(ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) )
- CASE(1)
- CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), &
- & nrec, rec1_lsm, recn_lsm)
- CASE DEFAULT
- CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), &
- & nrec, rec1_lsm, recn_lsm)
- END SELECT
- CALL apply_seaoverland(lsmfile,ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), &
- & jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm, &
- & itmpi,itmpj,itmpz,rec1_lsm,recn_lsm)
- ! Relative indeces for remapping
- ii_lsm1 = (rec1(1)-rec1_lsm(1))+1
- ii_lsm2 = (ii_lsm1+recn(1))-1
- ij_lsm1 = (rec1(2)-rec1_lsm(2))+1
- ij_lsm2 = (ij_lsm1+recn(2))-1
- ref_wgts(kw)%fly_dta(:,:,:) = 0.0
- ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:) = ztmp_fly_dta(ii_lsm1:ii_lsm2,ij_lsm1:ij_lsm2,:)
- DEALLOCATE(ztmp_fly_dta)
- ELSE
-
- ref_wgts(kw)%fly_dta(:,:,:) = 0.0
- SELECT CASE( SIZE(ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:),3) )
- CASE(1)
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,1), nrec, rec1, recn)
- CASE DEFAULT
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:), nrec, rec1, recn)
- END SELECT
- ENDIF
-
- !! first four weights common to both bilinear and bicubic
- !! data_jpi, data_jpj have already been shifted to (1,1) corresponding to botleft
- !! note that we have to offset by 1 into fly_dta array because of halo
- dta(:,:,:) = 0.0
- DO jk = 1,4
- DO jn = 1, jpj
- DO jm = 1,jpi
- ni = ref_wgts(kw)%data_jpi(jm,jn,jk)
- nj = ref_wgts(kw)%data_jpj(jm,jn,jk)
- dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk) * ref_wgts(kw)%fly_dta(ni+1,nj+1,:)
- END DO
- END DO
- END DO
- IF (ref_wgts(kw)%numwgt .EQ. 16) THEN
- !! fix up halo points that we couldnt read from file
- IF( jpi1 == 2 ) THEN
- ref_wgts(kw)%fly_dta(jpi1-1,:,:) = ref_wgts(kw)%fly_dta(jpi1,:,:)
- ENDIF
- IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN
- ref_wgts(kw)%fly_dta(jpi2+1,:,:) = ref_wgts(kw)%fly_dta(jpi2,:,:)
- ENDIF
- IF( jpj1 == 2 ) THEN
- ref_wgts(kw)%fly_dta(:,jpj1-1,:) = ref_wgts(kw)%fly_dta(:,jpj1,:)
- ENDIF
- IF( jpj2 + jpjmin - 1 == ref_wgts(kw)%ddims(2)+1 .AND. jpj2 .lt. jpjwid+2 ) THEN
- ref_wgts(kw)%fly_dta(:,jpj2+1,:) = 2.0*ref_wgts(kw)%fly_dta(:,jpj2,:) - ref_wgts(kw)%fly_dta(:,jpj2-1,:)
- ENDIF
- !! if data grid is cyclic we can do better on east-west edges
- !! but have to allow for whether first and last columns are coincident
- IF( ref_wgts(kw)%cyclic ) THEN
- rec1(2) = MAX( jpjmin-1, 1 )
- recn(1) = 1
- recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 )
- jpj1 = 2 + rec1(2) - jpjmin
- jpj2 = jpj1 + recn(2) - 1
- IF( jpi1 == 2 ) THEN
- rec1(1) = ref_wgts(kw)%ddims(1) - ref_wgts(kw)%overlap
- SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) )
- CASE(1)
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn)
- CASE DEFAULT
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn)
- END SELECT
- ref_wgts(kw)%fly_dta(jpi1-1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:)
- ENDIF
- IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN
- rec1(1) = 1 + ref_wgts(kw)%overlap
- SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) )
- CASE(1)
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn)
- CASE DEFAULT
- CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn)
- END SELECT
- ref_wgts(kw)%fly_dta(jpi2+1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:)
- ENDIF
- ENDIF
- ! gradient in the i direction
- DO jk = 1,4
- DO jn = 1, jpj
- DO jm = 1,jpi
- ni = ref_wgts(kw)%data_jpi(jm,jn,jk)
- nj = ref_wgts(kw)%data_jpj(jm,jn,jk)
- dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+4) * 0.5 * &
- (ref_wgts(kw)%fly_dta(ni+2,nj+1,:) - ref_wgts(kw)%fly_dta(ni,nj+1,:))
- END DO
- END DO
- END DO
- ! gradient in the j direction
- DO jk = 1,4
- DO jn = 1, jpj
- DO jm = 1,jpi
- ni = ref_wgts(kw)%data_jpi(jm,jn,jk)
- nj = ref_wgts(kw)%data_jpj(jm,jn,jk)
- dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+8) * 0.5 * &
- (ref_wgts(kw)%fly_dta(ni+1,nj+2,:) - ref_wgts(kw)%fly_dta(ni+1,nj,:))
- END DO
- END DO
- END DO
- ! gradient in the ij direction
- DO jk = 1,4
- DO jn = 1, jpj
- DO jm = 1,jpi
- ni = ref_wgts(kw)%data_jpi(jm,jn,jk)
- nj = ref_wgts(kw)%data_jpj(jm,jn,jk)
- dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+12) * 0.25 * ( &
- (ref_wgts(kw)%fly_dta(ni+2,nj+2,:) - ref_wgts(kw)%fly_dta(ni ,nj+2,:)) - &
- (ref_wgts(kw)%fly_dta(ni+2,nj ,:) - ref_wgts(kw)%fly_dta(ni ,nj ,:)))
- END DO
- END DO
- END DO
- !
- END IF
- !
- END SUBROUTINE fld_interp
- FUNCTION ksec_week( cdday )
- !!---------------------------------------------------------------------
- !! *** FUNCTION kshift_week ***
- !!
- !! ** Purpose :
- !!---------------------------------------------------------------------
- CHARACTER(len=*), INTENT(in) :: cdday !3 first letters of the first day of the weekly file
- !!
- INTEGER :: ksec_week ! output variable
- INTEGER :: ijul !temp variable
- INTEGER :: ishift !temp variable
- CHARACTER(len=3),DIMENSION(7) :: cl_week
- !!----------------------------------------------------------------------
- cl_week = (/"sun","sat","fri","thu","wed","tue","mon"/)
- DO ijul = 1, 7
- IF( cl_week(ijul) == TRIM(cdday) ) EXIT
- END DO
- IF( ijul .GT. 7 ) CALL ctl_stop( 'ksec_week: wrong day for sdjf%cltype(6:8): '//TRIM(cdday) )
- !
- ishift = ijul * NINT(rday)
- !
- ksec_week = nsec_week + ishift
- ksec_week = MOD( ksec_week, 7*NINT(rday) )
- !
- END FUNCTION ksec_week
- !!======================================================================
- END MODULE fldread
|