123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913 |
- MODULE ldfslp
- !!======================================================================
- !! *** MODULE ldfslp ***
- !! Ocean physics: slopes of neutral surfaces
- !!======================================================================
- !! History : OPA ! 1994-12 (G. Madec, M. Imbard) Original code
- !! 8.0 ! 1997-06 (G. Madec) optimization, lbc
- !! 8.1 ! 1999-10 (A. Jouzeau) NEW profile in the mixed layer
- !! NEMO 1.0 ! 2002-10 (G. Madec) Free form, F90
- !! - ! 2005-10 (A. Beckmann) correction for s-coordinates
- !! 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) add Griffies operator
- !! - ! 2010-11 (F. Dupond, G. Madec) bug correction in slopes just below the ML
- !!----------------------------------------------------------------------
- #if defined key_ldfslp || defined key_esopa
- !!----------------------------------------------------------------------
- !! 'key_ldfslp' Rotation of lateral mixing tensor
- !!----------------------------------------------------------------------
- !! ldf_slp_grif : calculates the triads of isoneutral slopes (Griffies operator)
- !! ldf_slp : calculates the slopes of neutral surface (Madec operator)
- !! ldf_slp_mxl : calculates the slopes at the base of the mixed layer (Madec operator)
- !! ldf_slp_init : initialization of the slopes computation
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE ldftra_oce ! lateral diffusion: traceur
- USE ldfdyn_oce ! lateral diffusion: dynamics
- USE phycst ! physical constants
- USE zdfmxl ! mixed layer depth
- USE eosbn2 ! equation of states
- !
- USE in_out_manager ! I/O manager
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE prtctl ! Print control
- USE wrk_nemo ! work arrays
- USE timing ! Timing
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- IMPLICIT NONE
- PRIVATE
- PUBLIC ldf_slp ! routine called by step.F90
- PUBLIC ldf_slp_grif ! routine called by step.F90
- PUBLIC ldf_slp_init ! routine called by opa.F90
- LOGICAL , PUBLIC, PARAMETER :: lk_ldfslp = .TRUE. !: slopes flag
- ! !! Madec operator
- ! Arrays allocated in ldf_slp_init() routine once we know whether we're using the Griffies or Madec operator
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: uslp, wslpi !: i_slope at U- and W-points
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: vslp, wslpj !: j-slope at V- and W-points
- ! !! Griffies operator
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: wslp2 !: wslp**2 from Griffies quarter cells
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:,:) :: triadi_g, triadj_g !: skew flux slopes relative to geopotentials
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:,:) :: triadi , triadj !: isoneutral slopes relative to model-coordinate
- ! !! Madec operator
- ! Arrays allocated in ldf_slp_init() routine once we know whether we're using the Griffies or Madec operator
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: omlmask ! mask of the surface mixed layer at T-pt
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: uslpml, wslpiml ! i_slope at U- and W-points just below the mixed layer
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: vslpml, wslpjml ! j_slope at V- and W-points just below the mixed layer
- REAL(wp) :: repsln = 1.e-25_wp ! tiny value used as minium of di(rho), dj(rho) and dk(rho)
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "ldftra_substitute.h90"
- # include "ldfeiv_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO Consortium (2011)
- !! $Id: ldfslp.F90 4990 2014-12-15 16:42:49Z timgraham $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE ldf_slp( kt, prd, pn2 )
- !!----------------------------------------------------------------------
- !! *** ROUTINE ldf_slp ***
- !!
- !! ** Purpose : Compute the slopes of neutral surface (slope of isopycnal
- !! surfaces referenced locally) (ln_traldf_iso=T).
- !!
- !! ** Method : The slope in the i-direction is computed at U- and
- !! W-points (uslp, wslpi) and the slope in the j-direction is
- !! computed at V- and W-points (vslp, wslpj).
- !! They are bounded by 1/100 over the whole ocean, and within the
- !! surface layer they are bounded by the distance to the surface
- !! ( slope<= depth/l where l is the length scale of horizontal
- !! diffusion (here, aht=2000m2/s ==> l=20km with a typical velocity
- !! of 10cm/s)
- !! A horizontal shapiro filter is applied to the slopes
- !! ln_sco=T, s-coordinate, add to the previously computed slopes
- !! the slope of the model level surface.
- !! macro-tasked on horizontal slab (jk-loop) (2, jpk-1)
- !! [slopes already set to zero at level 1, and to zero or the ocean
- !! bottom slope (ln_sco=T) at level jpk in inildf]
- !!
- !! ** Action : - uslp, wslpi, and vslp, wslpj, the i- and j-slopes
- !! of now neutral surfaces at u-, w- and v- w-points, resp.
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in) :: kt ! ocean time-step index
- REAL(wp), INTENT(in), DIMENSION(:,:,:) :: prd ! in situ density
- REAL(wp), INTENT(in), DIMENSION(:,:,:) :: pn2 ! Brunt-Vaisala frequency (locally ref.)
- !!
- INTEGER :: ji , jj , jk ! dummy loop indices
- INTEGER :: ii0, ii1, iku ! temporary integer
- INTEGER :: ij0, ij1, ikv ! temporary integer
- REAL(wp) :: zeps, zm1_g, zm1_2g, z1_16, zcofw ! local scalars
- REAL(wp) :: zci, zfi, zau, zbu, zai, zbi ! - -
- REAL(wp) :: zcj, zfj, zav, zbv, zaj, zbj ! - -
- REAL(wp) :: zck, zfk, zbw ! - -
- REAL(wp) :: zdepv, zdepu ! - -
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zwz, zww
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zdzr
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zgru, zgrv
- REAL(wp), POINTER, DIMENSION(:,: ) :: zhmlpu, zhmlpv
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('ldf_slp')
- !
- CALL wrk_alloc( jpi,jpj,jpk, zwz, zww, zdzr, zgru, zgrv )
- CALL wrk_alloc( jpi,jpj, zhmlpu, zhmlpv )
- IF ( ln_traldf_iso .OR. ln_dynldf_iso ) THEN
-
- zeps = 1.e-20_wp !== Local constant initialization ==!
- z1_16 = 1.0_wp / 16._wp
- zm1_g = -1.0_wp / grav
- zm1_2g = -0.5_wp / grav
- !
- zww(:,:,:) = 0._wp
- zwz(:,:,:) = 0._wp
- !
- DO jk = 1, jpk !== i- & j-gradient of density ==!
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zgru(ji,jj,jk) = umask(ji,jj,jk) * ( prd(ji+1,jj ,jk) - prd(ji,jj,jk) )
- zgrv(ji,jj,jk) = vmask(ji,jj,jk) * ( prd(ji ,jj+1,jk) - prd(ji,jj,jk) )
- END DO
- END DO
- END DO
- IF( ln_zps ) THEN ! partial steps correction at the bottom ocean level
- DO jj = 1, jpjm1
- DO ji = 1, jpim1
- zgru(ji,jj,mbku(ji,jj)) = gru(ji,jj)
- zgrv(ji,jj,mbkv(ji,jj)) = grv(ji,jj)
- END DO
- END DO
- ENDIF
- IF( ln_zps .AND. ln_isfcav ) THEN ! partial steps correction at the bottom ocean level
- DO jj = 1, jpjm1
- DO ji = 1, jpim1
- IF ( miku(ji,jj) > 1 ) zgru(ji,jj,miku(ji,jj)) = grui(ji,jj)
- IF ( mikv(ji,jj) > 1 ) zgrv(ji,jj,mikv(ji,jj)) = grvi(ji,jj)
- END DO
- END DO
- ENDIF
- !
- !== Local vertical density gradient at T-point == ! (evaluated from N^2)
- ! interior value
- DO jk = 2, jpkm1
- ! ! zdzr = d/dz(prd)= - ( prd ) / grav * mk(pn2) -- at t point
- ! ! trick: tmask(ik ) = 0 => all pn2 = 0 => zdzr = 0
- ! ! else tmask(ik+1) = 0 => pn2(ik+1) = 0 => zdzr divides by 1
- ! ! umask(ik+1) /= 0 => all pn2 /= 0 => zdzr divides by 2
- ! ! NB: 1/(tmask+1) = (1-.5*tmask) substitute a / by a * ==> faster
- zdzr(:,:,jk) = zm1_g * ( prd(:,:,jk) + 1._wp ) &
- & * ( pn2(:,:,jk) + pn2(:,:,jk+1) ) * ( 1._wp - 0.5_wp * tmask(:,:,jk+1) )
- END DO
- ! surface initialisation
- zdzr(:,:,1) = 0._wp
- IF ( ln_isfcav ) THEN
- ! if isf need to overwrite the interior value at at the first ocean point
- DO jj = 1, jpjm1
- DO ji = 1, jpim1
- zdzr(ji,jj,1:mikt(ji,jj)) = 0._wp
- END DO
- END DO
- END IF
- !
- ! !== Slopes just below the mixed layer ==!
- CALL ldf_slp_mxl( prd, pn2, zgru, zgrv, zdzr ) ! output: uslpml, vslpml, wslpiml, wslpjml
- ! I. slopes at u and v point | uslp = d/di( prd ) / d/dz( prd )
- ! =========================== | vslp = d/dj( prd ) / d/dz( prd )
- !
- IF ( ln_isfcav ) THEN
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zhmlpu(ji,jj) = ( MAX(hmlpt(ji,jj) , hmlpt (ji+1,jj ), 5._wp) &
- & - MAX(risfdep(ji,jj), risfdep(ji+1,jj ) ) )
- zhmlpv(ji,jj) = ( MAX(hmlpt (ji,jj), hmlpt (ji ,jj+1), 5._wp) &
- & - MAX(risfdep(ji,jj), risfdep(ji ,jj+1) ) )
- ENDDO
- ENDDO
- ELSE
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zhmlpu(ji,jj) = MAX(hmlpt(ji,jj), hmlpt(ji+1,jj ), 5._wp)
- zhmlpv(ji,jj) = MAX(hmlpt(ji,jj), hmlpt(ji ,jj+1), 5._wp)
- ENDDO
- ENDDO
- END IF
- DO jk = 2, jpkm1 !* Slopes at u and v points
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ! ! horizontal and vertical density gradient at u- and v-points
- zau = zgru(ji,jj,jk) / e1u(ji,jj)
- zav = zgrv(ji,jj,jk) / e2v(ji,jj)
- zbu = 0.5_wp * ( zdzr(ji,jj,jk) + zdzr(ji+1,jj ,jk) )
- zbv = 0.5_wp * ( zdzr(ji,jj,jk) + zdzr(ji ,jj+1,jk) )
- ! ! bound the slopes: abs(zw.)<= 1/100 and zb..<0
- ! ! + kxz max= ah slope max =< e1 e3 /(pi**2 2 dt)
- zbu = MIN( zbu, -100._wp* ABS( zau ) , -7.e+3_wp/fse3u(ji,jj,jk)* ABS( zau ) )
- zbv = MIN( zbv, -100._wp* ABS( zav ) , -7.e+3_wp/fse3v(ji,jj,jk)* ABS( zav ) )
- ! ! uslp and vslp output in zwz and zww, resp.
- zfi = MAX( omlmask(ji,jj,jk), omlmask(ji+1,jj ,jk) )
- zfj = MAX( omlmask(ji,jj,jk), omlmask(ji ,jj+1,jk) )
- ! thickness of water column between surface and level k at u/v point
- zdepu = 0.5_wp * ( ( fsdept(ji,jj,jk) + fsdept(ji+1,jj ,jk) ) &
- - 2 * MAX( risfdep(ji,jj), risfdep(ji+1,jj ) ) - fse3u(ji,jj,miku(ji,jj)) )
- zdepv = 0.5_wp * ( ( fsdept(ji,jj,jk) + fsdept(ji ,jj+1,jk) ) &
- - 2 * MAX( risfdep(ji,jj), risfdep(ji ,jj+1) ) - fse3v(ji,jj,mikv(ji,jj)) )
- !
- zwz(ji,jj,jk) = ( 1. - zfi) * zau / ( zbu - zeps ) &
- & + zfi * uslpml(ji,jj) * zdepu / zhmlpu(ji,jj)
- zwz(ji,jj,jk) = zwz(ji,jj,jk) * wumask(ji,jj,jk)
- zww(ji,jj,jk) = ( 1. - zfj) * zav / ( zbv - zeps ) &
- & + zfj * vslpml(ji,jj) * zdepv / zhmlpv(ji,jj)
- zww(ji,jj,jk) = zww(ji,jj,jk) * wvmask(ji,jj,jk)
-
-
- !!gm modif to suppress omlmask.... (as in Griffies case)
- ! ! ! jk must be >= ML level for zf=1. otherwise zf=0.
- ! zfi = REAL( 1 - 1/(1 + jk / MAX( nmln(ji+1,jj), nmln(ji,jj) ) ), wp )
- ! zfj = REAL( 1 - 1/(1 + jk / MAX( nmln(ji,jj+1), nmln(ji,jj) ) ), wp )
- ! zci = 0.5 * ( fsdept(ji+1,jj,jk)+fsdept(ji,jj,jk) ) / MAX( hmlpt(ji,jj), hmlpt(ji+1,jj), 10. ) )
- ! zcj = 0.5 * ( fsdept(ji,jj+1,jk)+fsdept(ji,jj,jk) ) / MAX( hmlpt(ji,jj), hmlpt(ji,jj+1), 10. ) )
- ! zwz(ji,jj,jk) = ( zfi * zai / ( zbi - zeps ) + ( 1._wp - zfi ) * wslpiml(ji,jj) * zci ) * tmask(ji,jj,jk)
- ! zww(ji,jj,jk) = ( zfj * zaj / ( zbj - zeps ) + ( 1._wp - zfj ) * wslpjml(ji,jj) * zcj ) * tmask(ji,jj,jk)
- !!gm end modif
- END DO
- END DO
- END DO
- CALL lbc_lnk( zwz, 'U', -1. ) ; CALL lbc_lnk( zww, 'V', -1. ) ! lateral boundary conditions
- !
- ! !* horizontal Shapiro filter
- DO jk = 2, jpkm1
- DO jj = 2, jpjm1, MAX(1, jpj-3) ! rows jj=2 and =jpjm1 only
- DO ji = 2, jpim1
- uslp(ji,jj,jk) = z1_16 * ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) &
- & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) &
- & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) &
- & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) &
- & + 4.* zwz(ji ,jj ,jk) )
- vslp(ji,jj,jk) = z1_16 * ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) &
- & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) &
- & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) &
- & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) &
- & + 4.* zww(ji,jj ,jk) )
- END DO
- END DO
- DO jj = 3, jpj-2 ! other rows
- DO ji = fs_2, fs_jpim1 ! vector opt.
- uslp(ji,jj,jk) = z1_16 * ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) &
- & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) &
- & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) &
- & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) &
- & + 4.* zwz(ji ,jj ,jk) )
- vslp(ji,jj,jk) = z1_16 * ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) &
- & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) &
- & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) &
- & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) &
- & + 4.* zww(ji,jj ,jk) )
- END DO
- END DO
- ! !* decrease along coastal boundaries
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- uslp(ji,jj,jk) = uslp(ji,jj,jk) * ( umask(ji,jj+1,jk) + umask(ji,jj-1,jk ) ) * 0.5_wp &
- & * ( umask(ji,jj ,jk) + umask(ji,jj ,jk+1) ) * 0.5_wp &
- & * umask(ji,jj,jk-1)
- vslp(ji,jj,jk) = vslp(ji,jj,jk) * ( vmask(ji+1,jj,jk) + vmask(ji-1,jj,jk ) ) * 0.5_wp &
- & * ( vmask(ji ,jj,jk) + vmask(ji ,jj,jk+1) ) * 0.5_wp &
- & * vmask(ji,jj,jk-1)
- END DO
- END DO
- END DO
- ! II. slopes at w point | wslpi = mij( d/di( prd ) / d/dz( prd )
- ! =========================== | wslpj = mij( d/dj( prd ) / d/dz( prd )
- !
- DO jk = 2, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ! !* Local vertical density gradient evaluated from N^2
- zbw = zm1_2g * pn2 (ji,jj,jk) * ( prd (ji,jj,jk) + prd (ji,jj,jk-1) + 2. ) * wmask(ji,jj,jk)
- ! !* Slopes at w point
- ! ! i- & j-gradient of density at w-points
- zci = MAX( umask(ji-1,jj,jk ) + umask(ji,jj,jk ) &
- & + umask(ji-1,jj,jk-1) + umask(ji,jj,jk-1) , zeps ) * e1t(ji,jj)
- zcj = MAX( vmask(ji,jj-1,jk ) + vmask(ji,jj,jk-1) &
- & + vmask(ji,jj-1,jk-1) + vmask(ji,jj,jk ) , zeps ) * e2t(ji,jj)
- zai = ( zgru (ji-1,jj,jk ) + zgru (ji,jj,jk-1) &
- & + zgru (ji-1,jj,jk-1) + zgru (ji,jj,jk ) ) / zci
- zaj = ( zgrv (ji,jj-1,jk ) + zgrv (ji,jj,jk-1) &
- & + zgrv (ji,jj-1,jk-1) + zgrv (ji,jj,jk ) ) / zcj
- ! ! bound the slopes: abs(zw.)<= 1/100 and zb..<0.
- ! ! + kxz max= ah slope max =< e1 e3 /(pi**2 2 dt)
- zbi = MIN( zbw ,- 100._wp* ABS( zai ) , -7.e+3_wp/fse3w(ji,jj,jk)* ABS( zai ) )
- zbj = MIN( zbw , -100._wp* ABS( zaj ) , -7.e+3_wp/fse3w(ji,jj,jk)* ABS( zaj ) )
- ! ! wslpi and wslpj with ML flattening (output in zwz and zww, resp.)
- zfk = MAX( omlmask(ji,jj,jk), omlmask(ji,jj,jk-1) ) ! zfk=1 in the ML otherwise zfk=0
- zck = ( fsdepw(ji,jj,jk) - fsdepw(ji,jj,mikt(ji,jj) ) ) / MAX( hmlp(ji,jj), 10._wp )
- zwz(ji,jj,jk) = ( zai / ( zbi - zeps ) * ( 1._wp - zfk ) &
- & + zck * wslpiml(ji,jj) * zfk ) * wmask(ji,jj,jk)
- zww(ji,jj,jk) = ( zaj / ( zbj - zeps ) * ( 1._wp - zfk ) &
- & + zck * wslpjml(ji,jj) * zfk ) * wmask(ji,jj,jk)
- !!gm modif to suppress omlmask.... (as in Griffies operator)
- ! ! ! jk must be >= ML level for zfk=1. otherwise zfk=0.
- ! zfk = REAL( 1 - 1/(1 + jk / nmln(ji+1,jj)), wp )
- ! zck = fsdepw(ji,jj,jk) / MAX( hmlp(ji,jj), 10. )
- ! zwz(ji,jj,jk) = ( zfk * zai / ( zbi - zeps ) + ( 1._wp - zfk ) * wslpiml(ji,jj) * zck ) * tmask(ji,jj,jk)
- ! zww(ji,jj,jk) = ( zfk * zaj / ( zbj - zeps ) + ( 1._wp - zfk ) * wslpjml(ji,jj) * zck ) * tmask(ji,jj,jk)
- !!gm end modif
- END DO
- END DO
- END DO
- CALL lbc_lnk( zwz, 'T', -1. ) ; CALL lbc_lnk( zww, 'T', -1. ) ! lateral boundary conditions
- !
- ! !* horizontal Shapiro filter
- DO jk = 2, jpkm1
- DO jj = 2, jpjm1, MAX(1, jpj-3) ! rows jj=2 and =jpjm1 only
- DO ji = 2, jpim1
- zcofw = tmask(ji,jj,jk) * z1_16
- wslpi(ji,jj,jk) = ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) &
- & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) &
- & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) &
- & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) &
- & + 4.* zwz(ji ,jj ,jk) ) * zcofw
- wslpj(ji,jj,jk) = ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) &
- & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) &
- & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) &
- & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) &
- & + 4.* zww(ji ,jj ,jk) ) * zcofw
- END DO
- END DO
- DO jj = 3, jpj-2 ! other rows
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zcofw = tmask(ji,jj,jk) * z1_16
- wslpi(ji,jj,jk) = ( zwz(ji-1,jj-1,jk) + zwz(ji+1,jj-1,jk) &
- & + zwz(ji-1,jj+1,jk) + zwz(ji+1,jj+1,jk) &
- & + 2.*( zwz(ji ,jj-1,jk) + zwz(ji-1,jj ,jk) &
- & + zwz(ji+1,jj ,jk) + zwz(ji ,jj+1,jk) ) &
- & + 4.* zwz(ji ,jj ,jk) ) * zcofw
- wslpj(ji,jj,jk) = ( zww(ji-1,jj-1,jk) + zww(ji+1,jj-1,jk) &
- & + zww(ji-1,jj+1,jk) + zww(ji+1,jj+1,jk) &
- & + 2.*( zww(ji ,jj-1,jk) + zww(ji-1,jj ,jk) &
- & + zww(ji+1,jj ,jk) + zww(ji ,jj+1,jk) ) &
- & + 4.* zww(ji ,jj ,jk) ) * zcofw
- END DO
- END DO
- ! !* decrease along coastal boundaries
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zck = ( umask(ji,jj,jk) + umask(ji-1,jj,jk) ) &
- & * ( vmask(ji,jj,jk) + vmask(ji,jj-1,jk) ) * 0.25
- wslpi(ji,jj,jk) = wslpi(ji,jj,jk) * zck * wmask(ji,jj,jk)
- wslpj(ji,jj,jk) = wslpj(ji,jj,jk) * zck * wmask(ji,jj,jk)
- END DO
- END DO
- END DO
- ! III. Specific grid points
- ! ===========================
- !
- IF( cp_cfg == "orca" .AND. jp_cfg == 4 ) THEN ! ORCA_R4 configuration: horizontal diffusion in specific area
- ! ! Gibraltar Strait
- ij0 = 50 ; ij1 = 53
- ii0 = 69 ; ii1 = 71 ; uslp ( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ij0 = 51 ; ij1 = 53
- ii0 = 68 ; ii1 = 71 ; vslp ( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ii0 = 69 ; ii1 = 71 ; wslpi( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ii0 = 69 ; ii1 = 71 ; wslpj( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- !
- ! ! Mediterrannean Sea
- ij0 = 49 ; ij1 = 56
- ii0 = 71 ; ii1 = 90 ; uslp ( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ij0 = 50 ; ij1 = 56
- ii0 = 70 ; ii1 = 90 ; vslp ( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ii0 = 71 ; ii1 = 90 ; wslpi( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ii0 = 71 ; ii1 = 90 ; wslpj( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) , : ) = 0._wp
- ENDIF
- ! IV. Lateral boundary conditions
- ! ===============================
- CALL lbc_lnk( uslp , 'U', -1. ) ; CALL lbc_lnk( vslp , 'V', -1. )
- CALL lbc_lnk( wslpi, 'W', -1. ) ; CALL lbc_lnk( wslpj, 'W', -1. )
- IF(ln_ctl) THEN
- CALL prt_ctl(tab3d_1=uslp , clinfo1=' slp - u : ', tab3d_2=vslp, clinfo2=' v : ', kdim=jpk)
- CALL prt_ctl(tab3d_1=wslpi, clinfo1=' slp - wi: ', tab3d_2=wslpj, clinfo2=' wj: ', kdim=jpk)
- ENDIF
- !
- ELSEIF ( lk_vvl ) THEN
-
- IF(lwp) THEN
- WRITE(numout,*) ' Horizontal mixing in s-coordinate: slope = slope of s-surfaces'
- ENDIF
- ! geopotential diffusion in s-coordinates on tracers and/or momentum
- ! The slopes of s-surfaces are computed at each time step due to vvl
- ! The slopes for momentum diffusion are i- or j- averaged of those on tracers
- ! set the slope of diffusion to the slope of s-surfaces
- ! ( c a u t i o n : minus sign as fsdep has positive value )
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- uslp(ji,jj,1) = -1./e1u(ji,jj) * ( fsdept_b(ji+1,jj,1) - fsdept_b(ji ,jj ,1) ) * umask(ji,jj,1)
- vslp(ji,jj,1) = -1./e2v(ji,jj) * ( fsdept_b(ji,jj+1,1) - fsdept_b(ji ,jj ,1) ) * vmask(ji,jj,1)
- wslpi(ji,jj,1) = -1./e1t(ji,jj) * ( fsdepw_b(ji+1,jj,1) - fsdepw_b(ji-1,jj,1) ) * tmask(ji,jj,1) * 0.5
- wslpj(ji,jj,1) = -1./e2t(ji,jj) * ( fsdepw_b(ji,jj+1,1) - fsdepw_b(ji,jj-1,1) ) * tmask(ji,jj,1) * 0.5
- END DO
- END DO
- DO jk = 2, jpk
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- uslp(ji,jj,jk) = -1./e1u(ji,jj) * ( fsdept_b(ji+1,jj,jk) - fsdept_b(ji ,jj ,jk) ) * umask(ji,jj,jk)
- vslp(ji,jj,jk) = -1./e2v(ji,jj) * ( fsdept_b(ji,jj+1,jk) - fsdept_b(ji ,jj ,jk) ) * vmask(ji,jj,jk)
- wslpi(ji,jj,jk) = -1./e1t(ji,jj) * ( fsdepw_b(ji+1,jj,jk) - fsdepw_b(ji-1,jj,jk) ) &
- & * wmask(ji,jj,jk) * 0.5
- wslpj(ji,jj,jk) = -1./e2t(ji,jj) * ( fsdepw_b(ji,jj+1,jk) - fsdepw_b(ji,jj-1,jk) ) &
- & * wmask(ji,jj,jk) * 0.5
- END DO
- END DO
- END DO
- ! Lateral boundary conditions on the slopes
- CALL lbc_lnk( uslp , 'U', -1. ) ; CALL lbc_lnk( vslp , 'V', -1. )
- CALL lbc_lnk( wslpi, 'W', -1. ) ; CALL lbc_lnk( wslpj, 'W', -1. )
-
- if( kt == nit000 ) then
- IF(lwp) WRITE(numout,*) ' max slop: u',SQRT( MAXVAL(uslp*uslp)), ' v ', SQRT(MAXVAL(vslp)), &
- & ' wi', sqrt(MAXVAL(wslpi)), ' wj', sqrt(MAXVAL(wslpj))
- endif
-
- IF(ln_ctl) THEN
- CALL prt_ctl(tab3d_1=uslp , clinfo1=' slp - u : ', tab3d_2=vslp, clinfo2=' v : ', kdim=jpk)
- CALL prt_ctl(tab3d_1=wslpi, clinfo1=' slp - wi: ', tab3d_2=wslpj, clinfo2=' wj: ', kdim=jpk)
- ENDIF
- ENDIF
-
- CALL wrk_dealloc( jpi,jpj,jpk, zwz, zww, zdzr, zgru, zgrv )
- CALL wrk_dealloc( jpi,jpj, zhmlpu, zhmlpv)
- !
- IF( nn_timing == 1 ) CALL timing_stop('ldf_slp')
- !
- END SUBROUTINE ldf_slp
- SUBROUTINE ldf_slp_grif ( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE ldf_slp_grif ***
- !!
- !! ** Purpose : Compute the squared slopes of neutral surfaces (slope
- !! of iso-pycnal surfaces referenced locally) (ln_traldf_grif=T)
- !! at W-points using the Griffies quarter-cells.
- !!
- !! ** Method : calculates alpha and beta at T-points
- !!
- !! ** Action : - triadi_g, triadj_g T-pts i- and j-slope triads relative to geopot. (used for eiv)
- !! - triadi , triadj T-pts i- and j-slope triads relative to model-coordinate
- !! - wslp2 squared slope of neutral surfaces at w-points.
- !!----------------------------------------------------------------------
- INTEGER, INTENT( in ) :: kt ! ocean time-step index
- !!
- INTEGER :: ji, jj, jk, jl, ip, jp, kp ! dummy loop indices
- INTEGER :: iku, ikv ! local integer
- REAL(wp) :: zfacti, zfactj ! local scalars
- REAL(wp) :: znot_thru_surface ! local scalars
- REAL(wp) :: zdit, zdis, zdjt, zdjs, zdkt, zdks, zbu, zbv, zbti, zbtj
- REAL(wp) :: zdxrho_raw, zti_coord, zti_raw, zti_lim, zti_g_raw, zti_g_lim
- REAL(wp) :: zdyrho_raw, ztj_coord, ztj_raw, ztj_lim, ztj_g_raw, ztj_g_lim
- REAL(wp) :: zdzrho_raw
- REAL(wp), POINTER, DIMENSION(:,:) :: z1_mlbw
- REAL(wp), POINTER, DIMENSION(:,:,:,:) :: zdxrho , zdyrho, zdzrho ! Horizontal and vertical density gradients
- REAL(wp), POINTER, DIMENSION(:,:,:,:) :: zti_mlb, ztj_mlb ! for Griffies operator only
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('ldf_slp_grif')
- !
- CALL wrk_alloc( jpi,jpj, z1_mlbw )
- CALL wrk_alloc( jpi,jpj,jpk,2, zdxrho , zdyrho, zdzrho, klstart = 0 )
- CALL wrk_alloc( jpi,jpj, 2,2, zti_mlb, ztj_mlb, kkstart = 0, klstart = 0 )
- !
- !--------------------------------!
- ! Some preliminary calculation !
- !--------------------------------!
- !
- DO jl = 0, 1 !== unmasked before density i- j-, k-gradients ==!
- !
- ip = jl ; jp = jl ! guaranteed nonzero gradients ( absolute value larger than repsln)
- DO jk = 1, jpkm1 ! done each pair of triad
- DO jj = 1, jpjm1 ! NB: not masked ==> a minimum value is set
- DO ji = 1, fs_jpim1 ! vector opt.
- zdit = ( tsb(ji+1,jj,jk,jp_tem) - tsb(ji,jj,jk,jp_tem) ) ! i-gradient of T & S at u-point
- zdis = ( tsb(ji+1,jj,jk,jp_sal) - tsb(ji,jj,jk,jp_sal) )
- zdjt = ( tsb(ji,jj+1,jk,jp_tem) - tsb(ji,jj,jk,jp_tem) ) ! j-gradient of T & S at v-point
- zdjs = ( tsb(ji,jj+1,jk,jp_sal) - tsb(ji,jj,jk,jp_sal) )
- zdxrho_raw = ( - rab_b(ji+ip,jj ,jk,jp_tem) * zdit + rab_b(ji+ip,jj ,jk,jp_sal) * zdis ) / e1u(ji,jj)
- zdyrho_raw = ( - rab_b(ji ,jj+jp,jk,jp_tem) * zdjt + rab_b(ji ,jj+jp,jk,jp_sal) * zdjs ) / e2v(ji,jj)
- zdxrho(ji+ip,jj ,jk,1-ip) = SIGN( MAX( repsln, ABS( zdxrho_raw ) ), zdxrho_raw ) ! keep the sign
- zdyrho(ji ,jj+jp,jk,1-jp) = SIGN( MAX( repsln, ABS( zdyrho_raw ) ), zdyrho_raw )
- END DO
- END DO
- END DO
- !
- IF( ln_zps .AND. l_grad_zps ) THEN ! partial steps: correction of i- & j-grad on bottom
- DO jj = 1, jpjm1
- DO ji = 1, jpim1
- iku = mbku(ji,jj) ; ikv = mbkv(ji,jj) ! last ocean level (u- & v-points)
- zdit = gtsu(ji,jj,jp_tem) ; zdjt = gtsv(ji,jj,jp_tem) ! i- & j-gradient of Temperature
- zdis = gtsu(ji,jj,jp_sal) ; zdjs = gtsv(ji,jj,jp_sal) ! i- & j-gradient of Salinity
- zdxrho_raw = ( - rab_b(ji+ip,jj ,iku,jp_tem) * zdit + rab_b(ji+ip,jj ,iku,jp_sal) * zdis ) / e1u(ji,jj)
- zdyrho_raw = ( - rab_b(ji ,jj+jp,ikv,jp_tem) * zdjt + rab_b(ji ,jj+jp,ikv,jp_sal) * zdjs ) / e2v(ji,jj)
- zdxrho(ji+ip,jj ,iku,1-ip) = SIGN( MAX( repsln, ABS( zdxrho_raw ) ), zdxrho_raw ) ! keep the sign
- zdyrho(ji ,jj+jp,ikv,1-jp) = SIGN( MAX( repsln, ABS( zdyrho_raw ) ), zdyrho_raw )
- END DO
- END DO
- ENDIF
- !
- END DO
- DO kp = 0, 1 !== unmasked before density i- j-, k-gradients ==!
- DO jk = 1, jpkm1 ! done each pair of triad
- DO jj = 1, jpj ! NB: not masked ==> a minimum value is set
- DO ji = 1, jpi ! vector opt.
- IF( jk+kp > 1 ) THEN ! k-gradient of T & S a jk+kp
- zdkt = ( tsb(ji,jj,jk+kp-1,jp_tem) - tsb(ji,jj,jk+kp,jp_tem) )
- zdks = ( tsb(ji,jj,jk+kp-1,jp_sal) - tsb(ji,jj,jk+kp,jp_sal) )
- ELSE
- zdkt = 0._wp ! 1st level gradient set to zero
- zdks = 0._wp
- ENDIF
- zdzrho_raw = ( - rab_b(ji,jj,jk,jp_tem) * zdkt + rab_b(ji,jj,jk,jp_sal) * zdks ) / fse3w(ji,jj,jk+kp)
- zdzrho(ji,jj,jk,kp) = - MIN( - repsln, zdzrho_raw ) ! force zdzrho >= repsln
- END DO
- END DO
- END DO
- END DO
- !
- DO jj = 1, jpj !== Reciprocal depth of the w-point below ML base ==!
- DO ji = 1, jpi
- jk = MIN( nmln(ji,jj), mbkt(ji,jj) ) + 1 ! MIN in case ML depth is the ocean depth
- z1_mlbw(ji,jj) = 1._wp / fsdepw(ji,jj,jk)
- END DO
- END DO
- !
- ! !== intialisations to zero ==!
- !
- wslp2 (:,:,:) = 0._wp ! wslp2 will be cumulated 3D field set to zero
- triadi_g(:,:,1,:,:) = 0._wp ; triadi_g(:,:,jpk,:,:) = 0._wp ! set surface and bottom slope to zero
- triadj_g(:,:,1,:,:) = 0._wp ; triadj_g(:,:,jpk,:,:) = 0._wp
- !!gm _iso set to zero missing
- triadi (:,:,1,:,:) = 0._wp ; triadj (:,:,jpk,:,:) = 0._wp ! set surface and bottom slope to zero
- triadj (:,:,1,:,:) = 0._wp ; triadj (:,:,jpk,:,:) = 0._wp
- !-------------------------------------!
- ! Triads just below the Mixed Layer !
- !-------------------------------------!
- !
- DO jl = 0, 1 ! calculate slope of the 4 triads immediately ONE level below mixed-layer base
- DO kp = 0, 1 ! with only the slope-max limit and MASKED
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1
- ip = jl ; jp = jl
- !
- jk = nmln(ji+ip,jj) + 1
- IF( jk .GT. mbkt(ji+ip,jj) ) THEN !ML reaches bottom
- zti_mlb(ji+ip,jj ,1-ip,kp) = 0.0_wp
- ELSE
- ! Add s-coordinate slope at t-points (do this by *subtracting* gradient of depth)
- zti_g_raw = ( zdxrho(ji+ip,jj,jk-kp,1-ip) / zdzrho(ji+ip,jj,jk-kp,kp) &
- & - ( fsdept(ji+1,jj,jk-kp) - fsdept(ji,jj,jk-kp) ) / e1u(ji,jj) ) * umask(ji,jj,jk)
- zti_mlb(ji+ip,jj ,1-ip,kp) = SIGN( MIN( rn_slpmax, ABS( zti_g_raw ) ), zti_g_raw )
- ENDIF
- !
- jk = nmln(ji,jj+jp) + 1
- IF( jk .GT. mbkt(ji,jj+jp) ) THEN !ML reaches bottom
- ztj_mlb(ji ,jj+jp,1-jp,kp) = 0.0_wp
- ELSE
- ztj_g_raw = ( zdyrho(ji,jj+jp,jk-kp,1-jp) / zdzrho(ji,jj+jp,jk-kp,kp) &
- & - ( fsdept(ji,jj+1,jk-kp) - fsdept(ji,jj,jk-kp) ) / e2v(ji,jj) ) * vmask(ji,jj,jk)
- ztj_mlb(ji ,jj+jp,1-jp,kp) = SIGN( MIN( rn_slpmax, ABS( ztj_g_raw ) ), ztj_g_raw )
- ENDIF
- END DO
- END DO
- END DO
- END DO
- !-------------------------------------!
- ! Triads with surface limits !
- !-------------------------------------!
- !
- DO kp = 0, 1 ! k-index of triads
- DO jl = 0, 1
- ip = jl ; jp = jl ! i- and j-indices of triads (i-k and j-k planes)
- DO jk = 1, jpkm1
- ! Must mask contribution to slope from dz/dx at constant s for triads jk=1,kp=0 that poke up though ocean surface
- znot_thru_surface = REAL( 1-1/(jk+kp), wp ) !jk+kp=1,=0.; otherwise=1.0
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- !
- ! Calculate slope relative to geopotentials used for GM skew fluxes
- ! Add s-coordinate slope at t-points (do this by *subtracting* gradient of depth)
- ! Limit by slope *relative to geopotentials* by rn_slpmax, and mask by psi-point
- ! masked by umask taken at the level of dz(rho)
- !
- ! raw slopes: unmasked unbounded slopes (relative to geopotential (zti_g) and model surface (zti)
- !
- zti_raw = zdxrho(ji+ip,jj ,jk,1-ip) / zdzrho(ji+ip,jj ,jk,kp) ! unmasked
- ztj_raw = zdyrho(ji ,jj+jp,jk,1-jp) / zdzrho(ji ,jj+jp,jk,kp)
- ! Must mask contribution to slope for triad jk=1,kp=0 that poke up though ocean surface
- zti_coord = znot_thru_surface * ( fsdept(ji+1,jj ,jk) - fsdept(ji,jj,jk) ) / e1u(ji,jj)
- ztj_coord = znot_thru_surface * ( fsdept(ji ,jj+1,jk) - fsdept(ji,jj,jk) ) / e2v(ji,jj) ! unmasked
- zti_g_raw = zti_raw - zti_coord ! ref to geopot surfaces
- ztj_g_raw = ztj_raw - ztj_coord
- zti_g_lim = SIGN( MIN( rn_slpmax, ABS( zti_g_raw ) ), zti_g_raw )
- ztj_g_lim = SIGN( MIN( rn_slpmax, ABS( ztj_g_raw ) ), ztj_g_raw )
- !
- ! Below ML use limited zti_g as is & mask
- ! Inside ML replace by linearly reducing sx_mlb towards surface & mask
- !
- zfacti = REAL( 1 - 1/(1 + (jk+kp-1)/nmln(ji+ip,jj)), wp ) ! k index of uppermost point(s) of triad is jk+kp-1
- zfactj = REAL( 1 - 1/(1 + (jk+kp-1)/nmln(ji,jj+jp)), wp ) ! must be .ge. nmln(ji,jj) for zfact=1
- ! ! otherwise zfact=0
- zti_g_lim = ( zfacti * zti_g_lim &
- & + ( 1._wp - zfacti ) * zti_mlb(ji+ip,jj,1-ip,kp) &
- & * fsdepw(ji+ip,jj,jk+kp) * z1_mlbw(ji+ip,jj) ) * umask(ji,jj,jk+kp)
- ztj_g_lim = ( zfactj * ztj_g_lim &
- & + ( 1._wp - zfactj ) * ztj_mlb(ji,jj+jp,1-jp,kp) &
- & * fsdepw(ji,jj+jp,jk+kp) * z1_mlbw(ji,jj+jp) ) * vmask(ji,jj,jk+kp)
- !
- triadi_g(ji+ip,jj ,jk,1-ip,kp) = zti_g_lim
- triadj_g(ji ,jj+jp,jk,1-jp,kp) = ztj_g_lim
- !
- ! Get coefficients of isoneutral diffusion tensor
- ! 1. Utilise gradients *relative* to s-coordinate, so add t-point slopes (*subtract* depth gradients)
- ! 2. We require that isoneutral diffusion gives no vertical buoyancy flux
- ! i.e. 33 term = (real slope* 31, 13 terms)
- ! To do this, retain limited sx**2 in vertical flux, but divide by real slope for 13/31 terms
- ! Equivalent to tapering A_iso = sx_limited**2/(real slope)**2
- !
- zti_lim = ( zti_g_lim + zti_coord ) * umask(ji,jj,jk+kp) ! remove coordinate slope => relative to coordinate surfaces
- ztj_lim = ( ztj_g_lim + ztj_coord ) * vmask(ji,jj,jk+kp)
- !
- IF( ln_triad_iso ) THEN
- zti_raw = zti_lim**2 / zti_raw
- ztj_raw = ztj_lim**2 / ztj_raw
- zti_raw = SIGN( MIN( ABS(zti_lim), ABS( zti_raw ) ), zti_raw )
- ztj_raw = SIGN( MIN( ABS(ztj_lim), ABS( ztj_raw ) ), ztj_raw )
- zti_lim = zfacti * zti_lim &
- & + ( 1._wp - zfacti ) * zti_raw
- ztj_lim = zfactj * ztj_lim &
- & + ( 1._wp - zfactj ) * ztj_raw
- ENDIF
- triadi(ji+ip,jj ,jk,1-ip,kp) = zti_lim
- triadj(ji ,jj+jp,jk,1-jp,kp) = ztj_lim
- !
- zbu = e1u(ji ,jj) * e2u(ji ,jj) * fse3u(ji ,jj,jk )
- zbv = e1v(ji ,jj) * e2v(ji ,jj) * fse3v(ji ,jj,jk )
- zbti = e1t(ji+ip,jj) * e2t(ji+ip,jj) * fse3w(ji+ip,jj,jk+kp)
- zbtj = e1t(ji,jj+jp) * e2t(ji,jj+jp) * fse3w(ji,jj+jp,jk+kp)
- !
- !!gm this may inhibit vectorization on Vect Computers, and even on scalar computers.... ==> to be checked
- wslp2 (ji+ip,jj,jk+kp) = wslp2(ji+ip,jj,jk+kp) + 0.25_wp * zbu / zbti * zti_g_lim**2 ! masked
- wslp2 (ji,jj+jp,jk+kp) = wslp2(ji,jj+jp,jk+kp) + 0.25_wp * zbv / zbtj * ztj_g_lim**2
- END DO
- END DO
- END DO
- END DO
- END DO
- !
- wslp2(:,:,1) = 0._wp ! force the surface wslp to zero
- CALL lbc_lnk( wslp2, 'W', 1. ) ! lateral boundary confition on wslp2 only ==>>> gm : necessary ? to be checked
- !
- CALL wrk_dealloc( jpi,jpj, z1_mlbw )
- CALL wrk_dealloc( jpi,jpj,jpk,2, zdxrho , zdyrho, zdzrho, klstart = 0 )
- CALL wrk_dealloc( jpi,jpj, 2,2, zti_mlb, ztj_mlb, kkstart = 0, klstart = 0 )
- !
- IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_grif')
- !
- END SUBROUTINE ldf_slp_grif
- SUBROUTINE ldf_slp_mxl( prd, pn2, p_gru, p_grv, p_dzr )
- !!----------------------------------------------------------------------
- !! *** ROUTINE ldf_slp_mxl ***
- !!
- !! ** Purpose : Compute the slopes of iso-neutral surface just below
- !! the mixed layer.
- !!
- !! ** Method : The slope in the i-direction is computed at u- & w-points
- !! (uslpml, wslpiml) and the slope in the j-direction is computed
- !! at v- and w-points (vslpml, wslpjml) with the same bounds as
- !! in ldf_slp.
- !!
- !! ** Action : uslpml, wslpiml : i- & j-slopes of neutral surfaces
- !! vslpml, wslpjml just below the mixed layer
- !! omlmask : mixed layer mask
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: prd ! in situ density
- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: pn2 ! Brunt-Vaisala frequency (locally ref.)
- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: p_gru, p_grv ! i- & j-gradient of density (u- & v-pts)
- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: p_dzr ! z-gradient of density (T-point)
- !!
- INTEGER :: ji , jj , jk ! dummy loop indices
- INTEGER :: iku, ikv, ik, ikm1 ! local integers
- REAL(wp) :: zeps, zm1_g, zm1_2g ! local scalars
- REAL(wp) :: zci, zfi, zau, zbu, zai, zbi ! - -
- REAL(wp) :: zcj, zfj, zav, zbv, zaj, zbj ! - -
- REAL(wp) :: zck, zfk, zbw ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('ldf_slp_mxl')
- !
- zeps = 1.e-20_wp !== Local constant initialization ==!
- zm1_g = -1.0_wp / grav
- zm1_2g = -0.5_wp / grav
- !
- uslpml (1,:) = 0._wp ; uslpml (jpi,:) = 0._wp
- vslpml (1,:) = 0._wp ; vslpml (jpi,:) = 0._wp
- wslpiml(1,:) = 0._wp ; wslpiml(jpi,:) = 0._wp
- wslpjml(1,:) = 0._wp ; wslpjml(jpi,:) = 0._wp
- !
- ! !== surface mixed layer mask !
- DO jk = 1, jpk ! =1 inside the mixed layer, =0 otherwise
- DO jj = 1, jpj
- DO ji = 1, jpi
- ik = nmln(ji,jj) - 1
- IF( jk <= ik .AND. jk >= mikt(ji,jj) ) THEN
- omlmask(ji,jj,jk) = 1._wp
- ELSE
- omlmask(ji,jj,jk) = 0._wp
- ENDIF
- END DO
- END DO
- END DO
- ! Slopes of isopycnal surfaces just before bottom of mixed layer
- ! --------------------------------------------------------------
- ! The slope are computed as in the 3D case.
- ! A key point here is the definition of the mixed layer at u- and v-points.
- ! It is assumed to be the maximum of the two neighbouring T-point mixed layer depth.
- ! Otherwise, a n2 value inside the mixed layer can be involved in the computation
- ! of the slope, resulting in a too steep diagnosed slope and thus a spurious eddy
- ! induce velocity field near the base of the mixed layer.
- !-----------------------------------------------------------------------
- !
- DO jj = 2, jpjm1
- DO ji = 2, jpim1
- ! !== Slope at u- & v-points just below the Mixed Layer ==!
- !
- ! !- vertical density gradient for u- and v-slopes (from dzr at T-point)
- iku = MIN( MAX( miku(ji,jj)+1, nmln(ji,jj) , nmln(ji+1,jj) ) , jpkm1 ) ! ML (MAX of T-pts, bound by jpkm1)
- ikv = MIN( MAX( mikv(ji,jj)+1, nmln(ji,jj) , nmln(ji,jj+1) ) , jpkm1 ) !
- zbu = 0.5_wp * ( p_dzr(ji,jj,iku) + p_dzr(ji+1,jj ,iku) )
- zbv = 0.5_wp * ( p_dzr(ji,jj,ikv) + p_dzr(ji ,jj+1,ikv) )
- ! !- horizontal density gradient at u- & v-points
- zau = p_gru(ji,jj,iku) / e1u(ji,jj)
- zav = p_grv(ji,jj,ikv) / e2v(ji,jj)
- ! !- bound the slopes: abs(zw.)<= 1/100 and zb..<0
- ! kxz max= ah slope max =< e1 e3 /(pi**2 2 dt)
- zbu = MIN( zbu , -100._wp* ABS( zau ) , -7.e+3_wp/fse3u(ji,jj,iku)* ABS( zau ) )
- zbv = MIN( zbv , -100._wp* ABS( zav ) , -7.e+3_wp/fse3v(ji,jj,ikv)* ABS( zav ) )
- ! !- Slope at u- & v-points (uslpml, vslpml)
- uslpml(ji,jj) = zau / ( zbu - zeps ) * umask(ji,jj,iku)
- vslpml(ji,jj) = zav / ( zbv - zeps ) * vmask(ji,jj,ikv)
- !
- ! !== i- & j-slopes at w-points just below the Mixed Layer ==!
- !
- ik = MIN( nmln(ji,jj) + 1, jpk )
- ikm1 = MAX( 1, ik-1 )
- ! !- vertical density gradient for w-slope (from N^2)
- zbw = zm1_2g * pn2 (ji,jj,ik) * ( prd (ji,jj,ik) + prd (ji,jj,ikm1) + 2. )
- ! !- horizontal density i- & j-gradient at w-points
- zci = MAX( umask(ji-1,jj,ik ) + umask(ji,jj,ik ) &
- & + umask(ji-1,jj,ikm1) + umask(ji,jj,ikm1) , zeps ) * e1t(ji,jj)
- zcj = MAX( vmask(ji,jj-1,ik ) + vmask(ji,jj,ik ) &
- & + vmask(ji,jj-1,ikm1) + vmask(ji,jj,ikm1) , zeps ) * e2t(ji,jj)
- zai = ( p_gru(ji-1,jj,ik ) + p_gru(ji,jj,ik) &
- & + p_gru(ji-1,jj,ikm1) + p_gru(ji,jj,ikm1 ) ) / zci * tmask(ji,jj,ik)
- zaj = ( p_grv(ji,jj-1,ik ) + p_grv(ji,jj,ik ) &
- & + p_grv(ji,jj-1,ikm1) + p_grv(ji,jj,ikm1) ) / zcj * tmask(ji,jj,ik)
- ! !- bound the slopes: abs(zw.)<= 1/100 and zb..<0.
- ! kxz max= ah slope max =< e1 e3 /(pi**2 2 dt)
- zbi = MIN( zbw , -100._wp* ABS( zai ) , -7.e+3_wp/fse3w(ji,jj,ik)* ABS( zai ) )
- zbj = MIN( zbw , -100._wp* ABS( zaj ) , -7.e+3_wp/fse3w(ji,jj,ik)* ABS( zaj ) )
- ! !- i- & j-slope at w-points (wslpiml, wslpjml)
- wslpiml(ji,jj) = zai / ( zbi - zeps ) * wmask (ji,jj,ik)
- wslpjml(ji,jj) = zaj / ( zbj - zeps ) * wmask (ji,jj,ik)
- END DO
- END DO
- !!gm this lbc_lnk should be useless....
- CALL lbc_lnk( uslpml , 'U', -1. ) ; CALL lbc_lnk( vslpml , 'V', -1. ) ! lateral boundary cond. (sign change)
- CALL lbc_lnk( wslpiml, 'W', -1. ) ; CALL lbc_lnk( wslpjml, 'W', -1. ) ! lateral boundary conditions
- !
- IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_mxl')
- !
- END SUBROUTINE ldf_slp_mxl
- SUBROUTINE ldf_slp_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE ldf_slp_init ***
- !!
- !! ** Purpose : Initialization for the isopycnal slopes computation
- !!
- !! ** Method : read the nammbf namelist and check the parameter
- !! values called by tra_dmp at the first timestep (nit000)
- !!----------------------------------------------------------------------
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: ierr ! local integer
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('ldf_slp_init')
- !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'ldf_slp_init : direction of lateral mixing'
- WRITE(numout,*) '~~~~~~~~~~~~'
- ENDIF
- IF( ln_traldf_grif ) THEN ! Griffies operator : triad of slopes
- ALLOCATE( triadi_g(jpi,jpj,jpk,0:1,0:1) , triadj_g(jpi,jpj,jpk,0:1,0:1) , wslp2(jpi,jpj,jpk) , STAT=ierr )
- ALLOCATE( triadi (jpi,jpj,jpk,0:1,0:1) , triadj (jpi,jpj,jpk,0:1,0:1) , STAT=ierr )
- IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'ldf_slp_init : unable to allocate Griffies operator slope' )
- !
- IF( ln_dynldf_iso ) CALL ctl_stop( 'ldf_slp_init: Griffies operator on momentum not supported' )
- !
- ELSE ! Madec operator : slopes at u-, v-, and w-points
- ALLOCATE( uslp(jpi,jpj,jpk) , vslp(jpi,jpj,jpk) , wslpi(jpi,jpj,jpk) , wslpj(jpi,jpj,jpk) , &
- & omlmask(jpi,jpj,jpk) , uslpml(jpi,jpj) , vslpml(jpi,jpj) , wslpiml(jpi,jpj) , wslpjml(jpi,jpj) , STAT=ierr )
- IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'ldf_slp_init : unable to allocate Madec operator slope ' )
- ! Direction of lateral diffusion (tracers and/or momentum)
- ! ------------------------------
- uslp (:,:,:) = 0._wp ; uslpml (:,:) = 0._wp ! set the slope to zero (even in s-coordinates)
- vslp (:,:,:) = 0._wp ; vslpml (:,:) = 0._wp
- wslpi(:,:,:) = 0._wp ; wslpiml(:,:) = 0._wp
- wslpj(:,:,:) = 0._wp ; wslpjml(:,:) = 0._wp
- IF(ln_sco .AND. (ln_traldf_hor .OR. ln_dynldf_hor )) THEN
- IF(lwp) WRITE(numout,*) ' Horizontal mixing in s-coordinate: slope = slope of s-surfaces'
- ! geopotential diffusion in s-coordinates on tracers and/or momentum
- ! The slopes of s-surfaces are computed once (no call to ldfslp in step)
- ! The slopes for momentum diffusion are i- or j- averaged of those on tracers
- ! set the slope of diffusion to the slope of s-surfaces
- ! ( c a u t i o n : minus sign as fsdep has positive value )
- DO jk = 1, jpk
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- uslp (ji,jj,jk) = -1./e1u(ji,jj) * ( fsdept_b(ji+1,jj,jk) - fsdept_b(ji ,jj ,jk) ) * umask(ji,jj,jk)
- vslp (ji,jj,jk) = -1./e2v(ji,jj) * ( fsdept_b(ji,jj+1,jk) - fsdept_b(ji ,jj ,jk) ) * vmask(ji,jj,jk)
- wslpi(ji,jj,jk) = -1./e1t(ji,jj) * ( fsdepw_b(ji+1,jj,jk) - fsdepw_b(ji-1,jj,jk) ) * tmask(ji,jj,jk) * 0.5
- wslpj(ji,jj,jk) = -1./e2t(ji,jj) * ( fsdepw_b(ji,jj+1,jk) - fsdepw_b(ji,jj-1,jk) ) * tmask(ji,jj,jk) * 0.5
- END DO
- END DO
- END DO
- CALL lbc_lnk( uslp , 'U', -1. ) ; CALL lbc_lnk( vslp , 'V', -1. ) ! Lateral boundary conditions
- CALL lbc_lnk( wslpi, 'W', -1. ) ; CALL lbc_lnk( wslpj, 'W', -1. )
- ENDIF
- ENDIF
- !
- IF( nn_timing == 1 ) CALL timing_stop('ldf_slp_init')
- !
- END SUBROUTINE ldf_slp_init
- #else
- !!------------------------------------------------------------------------
- !! Dummy module : NO Rotation of lateral mixing tensor
- !!------------------------------------------------------------------------
- LOGICAL, PUBLIC, PARAMETER :: lk_ldfslp = .FALSE. !: slopes flag
- CONTAINS
- SUBROUTINE ldf_slp( kt, prd, pn2 ) ! Dummy routine
- INTEGER, INTENT(in) :: kt
- REAL, DIMENSION(:,:,:), INTENT(in) :: prd, pn2
- WRITE(*,*) 'ldf_slp: You should not have seen this print! error?', kt, prd(1,1,1), pn2(1,1,1)
- END SUBROUTINE ldf_slp
- SUBROUTINE ldf_slp_grif( kt ) ! Dummy routine
- INTEGER, INTENT(in) :: kt
- WRITE(*,*) 'ldf_slp_grif: You should not have seen this print! error?', kt
- END SUBROUTINE ldf_slp_grif
- SUBROUTINE ldf_slp_init ! Dummy routine
- END SUBROUTINE ldf_slp_init
- #endif
- !!======================================================================
- END MODULE ldfslp
|