123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119 |
- MODULE diawri
- !!======================================================================
- !! *** MODULE diawri ***
- !! Ocean diagnostics : write ocean output files
- !!=====================================================================
- !! History : OPA ! 1991-03 (M.-A. Foujols) Original code
- !! 4.0 ! 1991-11 (G. Madec)
- !! ! 1992-06 (M. Imbard) correction restart file
- !! ! 1992-07 (M. Imbard) split into diawri and rstwri
- !! ! 1993-03 (M. Imbard) suppress writibm
- !! ! 1998-01 (C. Levy) NETCDF format using ioipsl INTERFACE
- !! ! 1999-02 (E. Guilyardi) name of netCDF files + variables
- !! 8.2 ! 2000-06 (M. Imbard) Original code (diabort.F)
- !! NEMO 1.0 ! 2002-06 (A.Bozec, E. Durand) Original code (diainit.F)
- !! - ! 2002-09 (G. Madec) F90: Free form and module
- !! - ! 2002-12 (G. Madec) merge of diabort and diainit, F90
- !! ! 2005-11 (V. Garnier) Surface pressure gradient organization
- !! 3.2 ! 2008-11 (B. Lemaire) creation from old diawri
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! dia_wri : create the standart output files
- !! dia_wri_state : create an output NetCDF file for a single instantaeous ocean state and forcing fields
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE dynadv, ONLY: ln_dynadv_vec
- USE zdf_oce ! ocean vertical physics
- USE ldftra_oce ! ocean active tracers: lateral physics
- USE ldfdyn_oce ! ocean dynamics: lateral physics
- USE traldf_iso_grif, ONLY : psix_eiv, psiy_eiv
- USE sol_oce ! solver variables
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE sbc_ice ! Surface boundary condition: ice fields
- USE icb_oce ! Icebergs
- USE icbdia ! Iceberg budgets
- USE sbcssr ! restoring term toward SST/SSS climatology
- USE phycst ! physical constants
- USE zdfmxl ! mixed layer
- USE dianam ! build name of file (routine)
- USE zdfddm ! vertical physics: double diffusion
- USE diahth ! thermocline diagnostics
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE in_out_manager ! I/O manager
- USE diadimg ! dimg direct access file format output
- USE iom
- USE ioipsl
- USE dynspg_oce, ONLY: un_adv, vn_adv ! barotropic velocities
- #if defined key_lim2
- USE limwri_2
- #elif defined key_lim3
- USE limwri
- #endif
- USE lib_mpp ! MPP library
- USE timing ! preformance summary
- USE wrk_nemo ! working array
- IMPLICIT NONE
- PRIVATE
- PUBLIC dia_wri ! routines called by step.F90
- PUBLIC dia_wri_state
- PUBLIC dia_wri_alloc ! Called by nemogcm module
- INTEGER :: nid_T, nz_T, nh_T, ndim_T, ndim_hT ! grid_T file
- INTEGER :: nb_T , ndim_bT ! grid_T file
- INTEGER :: nid_U, nz_U, nh_U, ndim_U, ndim_hU ! grid_U file
- INTEGER :: nid_V, nz_V, nh_V, ndim_V, ndim_hV ! grid_V file
- INTEGER :: nid_W, nz_W, nh_W ! grid_W file
- INTEGER :: ndex(1) ! ???
- INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hT, ndex_hU, ndex_hV
- INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_T, ndex_U, ndex_V
- INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_bT
- !! * Substitutions
- # include "zdfddm_substitute.h90"
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: diawri.F90 5565 2015-07-08 13:15:04Z clem $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- INTEGER FUNCTION dia_wri_alloc()
- !!----------------------------------------------------------------------
- INTEGER, DIMENSION(2) :: ierr
- !!----------------------------------------------------------------------
- ierr = 0
- ALLOCATE( ndex_hT(jpi*jpj) , ndex_T(jpi*jpj*jpk) , &
- & ndex_hU(jpi*jpj) , ndex_U(jpi*jpj*jpk) , &
- & ndex_hV(jpi*jpj) , ndex_V(jpi*jpj*jpk) , STAT=ierr(1) )
- !
- dia_wri_alloc = MAXVAL(ierr)
- IF( lk_mpp ) CALL mpp_sum( dia_wri_alloc )
- !
- END FUNCTION dia_wri_alloc
- #if defined key_dimgout
- !!----------------------------------------------------------------------
- !! 'key_dimgout' DIMG output file
- !!----------------------------------------------------------------------
- # include "diawri_dimg.h90"
- #else
- !!----------------------------------------------------------------------
- !! Default option NetCDF output file
- !!----------------------------------------------------------------------
- # if defined key_iomput
- !!----------------------------------------------------------------------
- !! 'key_iomput' use IOM library
- !!----------------------------------------------------------------------
- SUBROUTINE dia_wri( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE dia_wri ***
- !!
- !! ** Purpose : Standard output of opa: dynamics and tracer fields
- !! NETCDF format is used by default
- !!
- !! ** Method : use iom_put
- !!----------------------------------------------------------------------
- !!
- INTEGER, INTENT( in ) :: kt ! ocean time-step index
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: jkbot !
- REAL(wp) :: zztmp, zztmpx, zztmpy !
- !!
- REAL(wp), POINTER, DIMENSION(:,:) :: z2d ! 2D workspace
- REAL(wp), POINTER, DIMENSION(:,:,:) :: z3d ! 3D workspace
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('dia_wri')
- !
- CALL wrk_alloc( jpi , jpj , z2d )
- CALL wrk_alloc( jpi , jpj, jpk , z3d )
- !
- ! Output the initial state and forcings
- IF( ninist == 1 ) THEN
- CALL dia_wri_state( 'output.init', kt )
- ninist = 0
- ENDIF
- ! Output of initial vertical scale factor
- CALL iom_put("e3t_0", e3t_0(:,:,:) )
- CALL iom_put("e3u_0", e3t_0(:,:,:) )
- CALL iom_put("e3v_0", e3t_0(:,:,:) )
- !
- CALL iom_put( "e3t" , fse3t_n(:,:,:) )
- CALL iom_put( "e3u" , fse3u_n(:,:,:) )
- CALL iom_put( "e3v" , fse3v_n(:,:,:) )
- CALL iom_put( "e3w" , fse3w_n(:,:,:) )
- IF( iom_use("e3tdef") ) &
- CALL iom_put( "e3tdef" , ( ( fse3t_n(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 )
- CALL iom_put("tpt_dep", fsdept_n(:,:,:) )
- CALL iom_put( "ssh" , sshn ) ! sea surface height
-
- CALL iom_put( "toce", tsn(:,:,:,jp_tem) ) ! 3D temperature
- CALL iom_put( "sst", tsn(:,:,1,jp_tem) ) ! surface temperature
- IF ( iom_use("sbt") ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- jkbot = mbkt(ji,jj)
- z2d(ji,jj) = tsn(ji,jj,jkbot,jp_tem)
- END DO
- END DO
- CALL iom_put( "sbt", z2d ) ! bottom temperature
- ENDIF
-
- CALL iom_put( "soce", tsn(:,:,:,jp_sal) ) ! 3D salinity
- CALL iom_put( "sss", tsn(:,:,1,jp_sal) ) ! surface salinity
- IF ( iom_use("sbs") ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- jkbot = mbkt(ji,jj)
- z2d(ji,jj) = tsn(ji,jj,jkbot,jp_sal)
- END DO
- END DO
- CALL iom_put( "sbs", z2d ) ! bottom salinity
- ENDIF
- IF ( iom_use("taubot") ) THEN ! bottom stress
- z2d(:,:) = 0._wp
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zztmpx = ( bfrua(ji ,jj) * un(ji ,jj,mbku(ji ,jj)) &
- & + bfrua(ji-1,jj) * un(ji-1,jj,mbku(ji-1,jj)) )
- zztmpy = ( bfrva(ji, jj) * vn(ji,jj ,mbkv(ji,jj )) &
- & + bfrva(ji,jj-1) * vn(ji,jj-1,mbkv(ji,jj-1)) )
- z2d(ji,jj) = rau0 * SQRT( zztmpx * zztmpx + zztmpy * zztmpy ) * tmask(ji,jj,1)
- !
- ENDDO
- ENDDO
- CALL lbc_lnk( z2d, 'T', 1. )
- CALL iom_put( "taubot", z2d )
- ENDIF
-
- CALL iom_put( "uoce", un(:,:,:) ) ! 3D i-current
- CALL iom_put( "ssu", un(:,:,1) ) ! surface i-current
- IF ( iom_use("sbu") ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- jkbot = mbku(ji,jj)
- z2d(ji,jj) = un(ji,jj,jkbot)
- END DO
- END DO
- CALL iom_put( "sbu", z2d ) ! bottom i-current
- ENDIF
- #if defined key_dynspg_ts
- CALL iom_put( "ubar", un_adv(:,:) ) ! barotropic i-current
- #else
- CALL iom_put( "ubar", un_b(:,:) ) ! barotropic i-current
- #endif
-
- CALL iom_put( "voce", vn(:,:,:) ) ! 3D j-current
- CALL iom_put( "ssv", vn(:,:,1) ) ! surface j-current
- IF ( iom_use("sbv") ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- jkbot = mbkv(ji,jj)
- z2d(ji,jj) = vn(ji,jj,jkbot)
- END DO
- END DO
- CALL iom_put( "sbv", z2d ) ! bottom j-current
- ENDIF
- #if defined key_dynspg_ts
- CALL iom_put( "vbar", vn_adv(:,:) ) ! barotropic j-current
- #else
- CALL iom_put( "vbar", vn_b(:,:) ) ! barotropic j-current
- #endif
- CALL iom_put( "woce", wn ) ! vertical velocity
- IF( iom_use('w_masstr') .OR. iom_use('w_masstr2') ) THEN ! vertical mass transport & its square value
- ! Caution: in the VVL case, it only correponds to the baroclinic mass transport.
- z2d(:,:) = rau0 * e12t(:,:)
- DO jk = 1, jpk
- z3d(:,:,jk) = wn(:,:,jk) * z2d(:,:)
- END DO
- CALL iom_put( "w_masstr" , z3d )
- IF( iom_use('w_masstr2') ) CALL iom_put( "w_masstr2", z3d(:,:,:) * z3d(:,:,:) )
- ENDIF
- CALL iom_put( "avt" , avt ) ! T vert. eddy diff. coef.
- CALL iom_put( "avm" , avmu ) ! T vert. eddy visc. coef.
- CALL iom_put( "avs" , fsavs(:,:,:) ) ! S vert. eddy diff. coef. (useful only with key_zdfddm)
- ! Log of eddy diff coef
- IF( iom_use('logavt') ) CALL iom_put( "logavt", LOG( MAX( 1.e-20_wp, avt (:,:,:) ) ) )
- IF( iom_use('logavs') ) CALL iom_put( "logavs", LOG( MAX( 1.e-20_wp, fsavs(:,:,:) ) ) )
- IF ( iom_use("sstgrad") .OR. iom_use("sstgrad2") ) THEN
- DO jj = 2, jpjm1 ! sst gradient
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zztmp = tsn(ji,jj,1,jp_tem)
- zztmpx = ( tsn(ji+1,jj ,1,jp_tem) - zztmp ) / e1u(ji,jj) + ( zztmp - tsn(ji-1,jj ,1,jp_tem) ) / e1u(ji-1,jj )
- zztmpy = ( tsn(ji ,jj+1,1,jp_tem) - zztmp ) / e2v(ji,jj) + ( zztmp - tsn(ji ,jj-1,1,jp_tem) ) / e2v(ji ,jj-1)
- z2d(ji,jj) = 0.25 * ( zztmpx * zztmpx + zztmpy * zztmpy ) &
- & * umask(ji,jj,1) * umask(ji-1,jj,1) * vmask(ji,jj,1) * umask(ji,jj-1,1)
- END DO
- END DO
- CALL lbc_lnk( z2d, 'T', 1. )
- CALL iom_put( "sstgrad2", z2d ) ! square of module of sst gradient
- z2d(:,:) = SQRT( z2d(:,:) )
- CALL iom_put( "sstgrad" , z2d ) ! module of sst gradient
- ENDIF
-
- ! clem: heat and salt content
- IF( iom_use("heatc") ) THEN
- z2d(:,:) = 0._wp
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- z2d(ji,jj) = z2d(ji,jj) + fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_tem) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- CALL iom_put( "heatc", (rau0 * rcp) * z2d ) ! vertically integrated heat content (J/m2)
- ENDIF
- IF( iom_use("saltc") ) THEN
- z2d(:,:) = 0._wp
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- z2d(ji,jj) = z2d(ji,jj) + fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_sal) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- CALL iom_put( "saltc", rau0 * z2d ) ! vertically integrated salt content (PSU*kg/m2)
- ENDIF
- !
- IF ( iom_use("eken") ) THEN
- rke(:,:,jpk) = 0._wp ! kinetic energy
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zztmp = 1 / (e1e2t(ji,jj) * fse3t(ji,jj,jk))
- zztmpx = 0.5 * ( un(ji-1,jj,jk) * un(ji-1,jj,jk) * e1u(ji-1,jj) * e2u(ji-1,jj) * fse3u(ji-1,jj,jk) &
- & + un(ji ,jj,jk) * un(ji ,jj,jk) * e1u(ji, jj) * e2u(ji ,jj) * fse3u(ji ,jj,jk) ) &
- & * zztmp
- !
- zztmpy = 0.5 * ( vn(ji,jj-1,jk) * vn(ji,jj-1,jk) * e1v(ji,jj-1) * e2v(ji,jj-1) * fse3v(ji,jj-1,jk) &
- & + vn(ji,jj ,jk) * vn(ji,jj ,jk) * e1v(ji,jj ) * e2v(ji,jj ) * fse3v(ji,jj ,jk) ) &
- & * zztmp
- !
- rke(ji,jj,jk) = 0.5_wp * ( zztmpx + zztmpy )
- !
- ENDDO
- ENDDO
- ENDDO
- CALL lbc_lnk( rke, 'T', 1. )
- CALL iom_put( "eken", rke )
- ENDIF
- !
- CALL iom_put( "hdiv", hdivn ) ! Horizontal divergence
- !
- IF( iom_use("u_masstr") .OR. iom_use("u_masstr_vint") .OR. iom_use("u_heattr") .OR. iom_use("u_salttr") ) THEN
- z3d(:,:,jpk) = 0.e0
- z2d(:,:) = 0.e0
- DO jk = 1, jpkm1
- z3d(:,:,jk) = rau0 * un(:,:,jk) * e2u(:,:) * fse3u(:,:,jk) * umask(:,:,jk)
- z2d(:,:) = z2d(:,:) + z3d(:,:,jk)
- END DO
- CALL iom_put( "u_masstr", z3d ) ! mass transport in i-direction
- CALL iom_put( "u_masstr_vint", z2d ) ! mass transport in i-direction vertical sum
- ENDIF
-
- IF( iom_use("u_heattr") ) THEN
- z2d(:,:) = 0.e0
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) )
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'U', -1. )
- CALL iom_put( "u_heattr", (0.5 * rcp) * z2d ) ! heat transport in i-direction
- ENDIF
- IF( iom_use("u_salttr") ) THEN
- z2d(:,:) = 0.e0
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) )
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'U', -1. )
- CALL iom_put( "u_salttr", 0.5 * z2d ) ! heat transport in i-direction
- ENDIF
-
- IF( iom_use("v_masstr") .OR. iom_use("v_heattr") .OR. iom_use("v_salttr") ) THEN
- z3d(:,:,jpk) = 0.e0
- DO jk = 1, jpkm1
- z3d(:,:,jk) = rau0 * vn(:,:,jk) * e1v(:,:) * fse3v(:,:,jk) * vmask(:,:,jk)
- END DO
- CALL iom_put( "v_masstr", z3d ) ! mass transport in j-direction
- ENDIF
-
- IF( iom_use("v_heattr") ) THEN
- z2d(:,:) = 0.e0
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji,jj+1,jk,jp_tem) )
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'V', -1. )
- CALL iom_put( "v_heattr", (0.5 * rcp) * z2d ) ! heat transport in j-direction
- ENDIF
- IF( iom_use("v_salttr") ) THEN
- z2d(:,:) = 0.e0
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji,jj+1,jk,jp_sal) )
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'V', -1. )
- CALL iom_put( "v_salttr", 0.5 * z2d ) ! heat transport in j-direction
- ENDIF
- ! Vertical integral of temperature
- IF( iom_use("tosmint") ) THEN
- z2d(:,:)=0._wp
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + rau0 * fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_tem)
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'T', -1. )
- CALL iom_put( "tosmint", z2d )
- ENDIF
- ! Vertical integral of salinity
- IF( iom_use("somint") ) THEN
- z2d(:,:)=0._wp
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- z2d(ji,jj) = z2d(ji,jj) + rau0 * fse3t(ji,jj,jk) * tsn(ji,jj,jk,jp_sal)
- END DO
- END DO
- END DO
- CALL lbc_lnk( z2d, 'T', -1. )
- CALL iom_put( "somint", z2d )
- ENDIF
- CALL iom_put( "bn2", rn2 ) !Brunt-Vaisala buoyancy frequency (N^2)
- !
- CALL wrk_dealloc( jpi , jpj , z2d )
- CALL wrk_dealloc( jpi , jpj, jpk , z3d )
- !
- IF( nn_timing == 1 ) CALL timing_stop('dia_wri')
- !
- END SUBROUTINE dia_wri
- #else
- !!----------------------------------------------------------------------
- !! Default option use IOIPSL library
- !!----------------------------------------------------------------------
- SUBROUTINE dia_wri( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE dia_wri ***
- !!
- !! ** Purpose : Standard output of opa: dynamics and tracer fields
- !! NETCDF format is used by default
- !!
- !! ** Method : At the beginning of the first time step (nit000),
- !! define all the NETCDF files and fields
- !! At each time step call histdef to compute the mean if ncessary
- !! Each nwrite time step, output the instantaneous or mean fields
- !!----------------------------------------------------------------------
- !!
- INTEGER, INTENT( in ) :: kt ! ocean time-step index
- !!
- LOGICAL :: ll_print = .FALSE. ! =T print and flush numout
- CHARACTER (len=40) :: clhstnam, clop, clmx ! local names
- INTEGER :: inum = 11 ! temporary logical unit
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: ierr ! error code return from allocation
- INTEGER :: iimi, iima, ipk, it, itmod, ijmi, ijma ! local integers
- INTEGER :: jn, ierror ! local integers
- REAL(wp) :: zsto, zout, zmax, zjulian, zdt ! local scalars
- !!
- REAL(wp), POINTER, DIMENSION(:,:) :: zw2d ! 2D workspace
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zw3d ! 3D workspace
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('dia_wri')
- !
- CALL wrk_alloc( jpi , jpj , zw2d )
- IF ( ln_traldf_gdia .OR. lk_vvl ) call wrk_alloc( jpi , jpj , jpk , zw3d )
- !
- ! Output the initial state and forcings
- IF( ninist == 1 ) THEN
- CALL dia_wri_state( 'output.init', kt )
- ninist = 0
- ENDIF
- !
- ! 0. Initialisation
- ! -----------------
- ! local variable for debugging
- ll_print = .FALSE.
- ll_print = ll_print .AND. lwp
- ! Define frequency of output and means
- zdt = rdt
- IF( nacc == 1 ) zdt = rdtmin
- clop = "x" ! no use of the mask value (require less cpu time, and otherwise the model crashes)
- #if defined key_diainstant
- zsto = nwrite * zdt
- clop = "inst("//TRIM(clop)//")"
- #else
- zsto=zdt
- clop = "ave("//TRIM(clop)//")"
- #endif
- zout = nwrite * zdt
- zmax = ( nitend - nit000 + 1 ) * zdt
- ! Define indices of the horizontal output zoom and vertical limit storage
- iimi = 1 ; iima = jpi
- ijmi = 1 ; ijma = jpj
- ipk = jpk
- ! define time axis
- it = kt
- itmod = kt - nit000 + 1
- ! 1. Define NETCDF files and fields at beginning of first time step
- ! -----------------------------------------------------------------
- IF( kt == nit000 ) THEN
- ! Define the NETCDF files (one per grid)
- ! Compute julian date from starting date of the run
- CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian )
- zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment
- IF(lwp)WRITE(numout,*)
- IF(lwp)WRITE(numout,*) 'Date 0 used :', nit000, ' YEAR ', nyear, &
- & ' MONTH ', nmonth, ' DAY ', nday, 'Julian day : ', zjulian
- IF(lwp)WRITE(numout,*) ' indexes of zoom = ', iimi, iima, ijmi, ijma, &
- ' limit storage in depth = ', ipk
- ! WRITE root name in date.file for use by postpro
- IF(lwp) THEN
- CALL dia_nam( clhstnam, nwrite,' ' )
- CALL ctl_opn( inum, 'date.file', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea )
- WRITE(inum,*) clhstnam
- CLOSE(inum)
- ENDIF
- ! Define the T grid FILE ( nid_T )
- CALL dia_nam( clhstnam, nwrite, 'grid_T' )
- IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename
- CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit
- & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
- & nit000-1, zjulian, zdt, nh_T, nid_T, domain_id=nidom, snc4chunks=snc4set )
- CALL histvert( nid_T, "deptht", "Vertical T levels", & ! Vertical grid: gdept
- & "m", ipk, gdept_1d, nz_T, "down" )
- ! ! Index of ocean points
- CALL wheneq( jpi*jpj*ipk, tmask, 1, 1., ndex_T , ndim_T ) ! volume
- CALL wheneq( jpi*jpj , tmask, 1, 1., ndex_hT, ndim_hT ) ! surface
- !
- IF( ln_icebergs ) THEN
- !
- !! allocation cant go in dia_wri_alloc because ln_icebergs is only set after
- !! that routine is called from nemogcm, so do it here immediately before its needed
- ALLOCATE( ndex_bT(jpi*jpj*nclasses), STAT=ierror )
- IF( lk_mpp ) CALL mpp_sum( ierror )
- IF( ierror /= 0 ) THEN
- CALL ctl_stop('dia_wri: failed to allocate iceberg diagnostic array')
- RETURN
- ENDIF
- !
- !! iceberg vertical coordinate is class number
- CALL histvert( nid_T, "class", "Iceberg class", & ! Vertical grid: class
- & "number", nclasses, class_num, nb_T )
- !
- !! each class just needs the surface index pattern
- ndim_bT = 3
- DO jn = 1,nclasses
- ndex_bT((jn-1)*jpi*jpj+1:jn*jpi*jpj) = ndex_hT(1:jpi*jpj)
- ENDDO
- !
- ENDIF
- ! Define the U grid FILE ( nid_U )
- CALL dia_nam( clhstnam, nwrite, 'grid_U' )
- IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename
- CALL histbeg( clhstnam, jpi, glamu, jpj, gphiu, & ! Horizontal grid: glamu and gphiu
- & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
- & nit000-1, zjulian, zdt, nh_U, nid_U, domain_id=nidom, snc4chunks=snc4set )
- CALL histvert( nid_U, "depthu", "Vertical U levels", & ! Vertical grid: gdept
- & "m", ipk, gdept_1d, nz_U, "down" )
- ! ! Index of ocean points
- CALL wheneq( jpi*jpj*ipk, umask, 1, 1., ndex_U , ndim_U ) ! volume
- CALL wheneq( jpi*jpj , umask, 1, 1., ndex_hU, ndim_hU ) ! surface
- ! Define the V grid FILE ( nid_V )
- CALL dia_nam( clhstnam, nwrite, 'grid_V' ) ! filename
- IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam
- CALL histbeg( clhstnam, jpi, glamv, jpj, gphiv, & ! Horizontal grid: glamv and gphiv
- & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
- & nit000-1, zjulian, zdt, nh_V, nid_V, domain_id=nidom, snc4chunks=snc4set )
- CALL histvert( nid_V, "depthv", "Vertical V levels", & ! Vertical grid : gdept
- & "m", ipk, gdept_1d, nz_V, "down" )
- ! ! Index of ocean points
- CALL wheneq( jpi*jpj*ipk, vmask, 1, 1., ndex_V , ndim_V ) ! volume
- CALL wheneq( jpi*jpj , vmask, 1, 1., ndex_hV, ndim_hV ) ! surface
- ! Define the W grid FILE ( nid_W )
- CALL dia_nam( clhstnam, nwrite, 'grid_W' ) ! filename
- IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam
- CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit
- & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
- & nit000-1, zjulian, zdt, nh_W, nid_W, domain_id=nidom, snc4chunks=snc4set )
- CALL histvert( nid_W, "depthw", "Vertical W levels", & ! Vertical grid: gdepw
- & "m", ipk, gdepw_1d, nz_W, "down" )
- ! Declare all the output fields as NETCDF variables
- ! !!! nid_T : 3D
- CALL histdef( nid_T, "votemper", "Temperature" , "C" , & ! tn
- & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout )
- CALL histdef( nid_T, "vosaline", "Salinity" , "PSU" , & ! sn
- & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout )
- IF( lk_vvl ) THEN
- CALL histdef( nid_T, "vovvle3t", "Level thickness" , "m" ,& ! e3t_n
- & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout )
- CALL histdef( nid_T, "vovvldep", "T point depth" , "m" ,& ! e3t_n
- & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout )
- CALL histdef( nid_T, "vovvldef", "Squared level deformation" , "%^2" ,& ! e3t_n
- & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout )
- ENDIF
- ! !!! nid_T : 2D
- CALL histdef( nid_T, "sosstsst", "Sea Surface temperature" , "C" , & ! sst
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sosaline", "Sea Surface Salinity" , "PSU" , & ! sss
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sossheig", "Sea Surface Height" , "m" , & ! ssh
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sowaflup", "Net Upward Water Flux" , "Kg/m2/s", & ! (emp-rnf)
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sorunoff", "River runoffs" , "Kg/m2/s", & ! runoffs
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sosfldow", "downward salt flux" , "PSU/m2/s", & ! sfx
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- IF( .NOT. lk_vvl ) THEN
- CALL histdef( nid_T, "sosst_cd", "Concentration/Dilution term on temperature" & ! emp * tsn(:,:,1,jp_tem)
- & , "KgC/m2/s", & ! sosst_cd
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sosss_cd", "Concentration/Dilution term on salinity" & ! emp * tsn(:,:,1,jp_sal)
- & , "KgPSU/m2/s",& ! sosss_cd
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- ENDIF
- CALL histdef( nid_T, "sohefldo", "Net Downward Heat Flux" , "W/m2" , & ! qns + qsr
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! qsr
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "somixhgt", "Turbocline Depth" , "m" , & ! hmld
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "somxl010", "Mixed Layer Depth 0.01" , "m" , & ! hmlp
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sowindsp", "wind speed at 10m" , "m/s" , & ! wndm
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- !
- IF( ln_icebergs ) THEN
- CALL histdef( nid_T, "calving" , "calving mass input" , "kg/s" , &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "calving_heat" , "calving heat flux" , "XXXX" , &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_floating_melt" , "Melt rate of icebergs + bits" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_stored_ice" , "Accumulated ice mass by class" , "kg" , &
- & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout )
- IF( ln_bergdia ) THEN
- CALL histdef( nid_T, "berg_melt" , "Melt rate of icebergs" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_buoy_melt" , "Buoyancy component of iceberg melt rate" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_eros_melt" , "Erosion component of iceberg melt rate" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_conv_melt" , "Convective component of iceberg melt rate", "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_virtual_area" , "Virtual coverage by icebergs" , "m2" , &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "bits_src" , "Mass source of bergy bits" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "bits_melt" , "Melt rate of bergy bits" , "kg/m2/s", &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "bits_mass" , "Bergy bit density field" , "kg/m2" , &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_mass" , "Iceberg density field" , "kg/m2" , &
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "berg_real_calving" , "Calving into iceberg class" , "kg/s" , &
- & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout )
- ENDIF
- ENDIF
- IF( .NOT. ln_cpl ) THEN
- CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sosafldp", "Surface salt flux: damping" , "Kg/m2/s", & ! erp * sn
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- ENDIF
- IF( ln_cpl .AND. nn_ice <= 1 ) THEN
- CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sosafldp", "Surface salt flux: Damping" , "Kg/m2/s", & ! erp * sn
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- ENDIF
-
- clmx ="l_max(only(x))" ! max index on a period
- CALL histdef( nid_T, "sobowlin", "Bowl Index" , "W-point", & ! bowl INDEX
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clmx, zsto, zout )
- #if defined key_diahth
- CALL histdef( nid_T, "sothedep", "Thermocline Depth" , "m" , & ! hth
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "so20chgt", "Depth of 20C isotherm" , "m" , & ! hd20
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "so28chgt", "Depth of 28C isotherm" , "m" , & ! hd28
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T, "sohtc300", "Heat content 300 m" , "W" , & ! htc3
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- #endif
- IF( ln_cpl .AND. nn_ice == 2 ) THEN
- CALL histdef( nid_T,"soicetem" , "Ice Surface Temperature" , "K" , & ! tn_ice
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( nid_T,"soicealb" , "Ice Albedo" , "[0,1]" , & ! alb_ice
- & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- ENDIF
- CALL histend( nid_T, snc4chunks=snc4set )
- ! !!! nid_U : 3D
- CALL histdef( nid_U, "vozocrtx", "Zonal Current" , "m/s" , & ! un
- & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout )
- IF( ln_traldf_gdia ) THEN
- CALL histdef( nid_U, "vozoeivu", "Zonal EIV Current" , "m/s" , & ! u_eiv
- & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout )
- ELSE
- #if defined key_diaeiv
- CALL histdef( nid_U, "vozoeivu", "Zonal EIV Current" , "m/s" , & ! u_eiv
- & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout )
- #endif
- END IF
- ! !!! nid_U : 2D
- CALL histdef( nid_U, "sozotaux", "Wind Stress along i-axis" , "N/m2" , & ! utau
- & jpi, jpj, nh_U, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
- CALL histend( nid_U, snc4chunks=snc4set )
- ! !!! nid_V : 3D
- CALL histdef( nid_V, "vomecrty", "Meridional Current" , "m/s" , & ! vn
- & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout )
- IF( ln_traldf_gdia ) THEN
- CALL histdef( nid_V, "vomeeivv", "Meridional EIV Current" , "m/s" , & ! v_eiv
- & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout )
- ELSE
- #if defined key_diaeiv
- CALL histdef( nid_V, "vomeeivv", "Meridional EIV Current" , "m/s" , & ! v_eiv
- & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout )
- #endif
- END IF
- ! !!! nid_V : 2D
- CALL histdef( nid_V, "sometauy", "Wind Stress along j-axis" , "N/m2" , & ! vtau
- & jpi, jpj, nh_V, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
- CALL histend( nid_V, snc4chunks=snc4set )
- ! !!! nid_W : 3D
- CALL histdef( nid_W, "vovecrtz", "Vertical Velocity" , "m/s" , & ! wn
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- IF( ln_traldf_gdia ) THEN
- CALL histdef( nid_W, "voveeivw", "Vertical EIV Velocity" , "m/s" , & ! w_eiv
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- ELSE
- #if defined key_diaeiv
- CALL histdef( nid_W, "voveeivw", "Vertical EIV Velocity" , "m/s" , & ! w_eiv
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- #endif
- END IF
- CALL histdef( nid_W, "votkeavt", "Vertical Eddy Diffusivity" , "m2/s" , & ! avt
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- CALL histdef( nid_W, "votkeavm", "Vertical Eddy Viscosity" , "m2/s" , & ! avmu
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- IF( lk_zdfddm ) THEN
- CALL histdef( nid_W,"voddmavs","Salt Vertical Eddy Diffusivity" , "m2/s" , & ! avs
- & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout )
- ENDIF
- ! !!! nid_W : 2D
- #if defined key_traldf_c2d
- CALL histdef( nid_W, "soleahtw", "lateral eddy diffusivity" , "m2/s" , & ! ahtw
- & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
- # if defined key_traldf_eiv
- CALL histdef( nid_W, "soleaeiw", "eddy induced vel. coeff. at w-point", "m2/s", & ! aeiw
- & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
- # endif
- #endif
- CALL histend( nid_W, snc4chunks=snc4set )
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'End of NetCDF Initialization'
- IF(ll_print) CALL FLUSH(numout )
- ENDIF
- ! 2. Start writing data
- ! ---------------------
- ! ndex(1) est utilise ssi l'avant dernier argument est different de
- ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument
- ! donne le nombre d'elements, et ndex la liste des indices a sortir
- IF( lwp .AND. MOD( itmod, nwrite ) == 0 ) THEN
- WRITE(numout,*) 'dia_wri : write model outputs in NetCDF files at ', kt, 'time-step'
- WRITE(numout,*) '~~~~~~ '
- ENDIF
- IF( lk_vvl ) THEN
- CALL histwrite( nid_T, "votemper", it, tsn(:,:,:,jp_tem) * fse3t_n(:,:,:) , ndim_T , ndex_T ) ! heat content
- CALL histwrite( nid_T, "vosaline", it, tsn(:,:,:,jp_sal) * fse3t_n(:,:,:) , ndim_T , ndex_T ) ! salt content
- CALL histwrite( nid_T, "sosstsst", it, tsn(:,:,1,jp_tem) * fse3t_n(:,:,1) , ndim_hT, ndex_hT ) ! sea surface heat content
- CALL histwrite( nid_T, "sosaline", it, tsn(:,:,1,jp_sal) * fse3t_n(:,:,1) , ndim_hT, ndex_hT ) ! sea surface salinity content
- ELSE
- CALL histwrite( nid_T, "votemper", it, tsn(:,:,:,jp_tem) , ndim_T , ndex_T ) ! temperature
- CALL histwrite( nid_T, "vosaline", it, tsn(:,:,:,jp_sal) , ndim_T , ndex_T ) ! salinity
- CALL histwrite( nid_T, "sosstsst", it, tsn(:,:,1,jp_tem) , ndim_hT, ndex_hT ) ! sea surface temperature
- CALL histwrite( nid_T, "sosaline", it, tsn(:,:,1,jp_sal) , ndim_hT, ndex_hT ) ! sea surface salinity
- ENDIF
- IF( lk_vvl ) THEN
- zw3d(:,:,:) = ( ( fse3t_n(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2
- CALL histwrite( nid_T, "vovvle3t", it, fse3t_n (:,:,:) , ndim_T , ndex_T ) ! level thickness
- CALL histwrite( nid_T, "vovvldep", it, fsdept_n(:,:,:) , ndim_T , ndex_T ) ! t-point depth
- CALL histwrite( nid_T, "vovvldef", it, zw3d , ndim_T , ndex_T ) ! level thickness deformation
- ENDIF
- CALL histwrite( nid_T, "sossheig", it, sshn , ndim_hT, ndex_hT ) ! sea surface height
- CALL histwrite( nid_T, "sowaflup", it, ( emp-rnf ) , ndim_hT, ndex_hT ) ! upward water flux
- CALL histwrite( nid_T, "sorunoff", it, rnf , ndim_hT, ndex_hT ) ! river runoffs
- CALL histwrite( nid_T, "sosfldow", it, sfx , ndim_hT, ndex_hT ) ! downward salt flux
- ! (includes virtual salt flux beneath ice
- ! in linear free surface case)
- IF( .NOT. lk_vvl ) THEN
- zw2d(:,:) = emp (:,:) * tsn(:,:,1,jp_tem)
- CALL histwrite( nid_T, "sosst_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sst
- zw2d(:,:) = emp (:,:) * tsn(:,:,1,jp_sal)
- CALL histwrite( nid_T, "sosss_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sss
- ENDIF
- CALL histwrite( nid_T, "sohefldo", it, qns + qsr , ndim_hT, ndex_hT ) ! total heat flux
- CALL histwrite( nid_T, "soshfldo", it, qsr , ndim_hT, ndex_hT ) ! solar heat flux
- CALL histwrite( nid_T, "somixhgt", it, hmld , ndim_hT, ndex_hT ) ! turbocline depth
- CALL histwrite( nid_T, "somxl010", it, hmlp , ndim_hT, ndex_hT ) ! mixed layer depth
- CALL histwrite( nid_T, "soicecov", it, fr_i , ndim_hT, ndex_hT ) ! ice fraction
- CALL histwrite( nid_T, "sowindsp", it, wndm , ndim_hT, ndex_hT ) ! wind speed
- !
- IF( ln_icebergs ) THEN
- !
- CALL histwrite( nid_T, "calving" , it, berg_grid%calving , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "calving_heat" , it, berg_grid%calving_hflx , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_floating_melt" , it, berg_grid%floating_melt, ndim_hT, ndex_hT )
- !
- CALL histwrite( nid_T, "berg_stored_ice" , it, berg_grid%stored_ice , ndim_bT, ndex_bT )
- !
- IF( ln_bergdia ) THEN
- CALL histwrite( nid_T, "berg_melt" , it, berg_melt , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_buoy_melt" , it, buoy_melt , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_eros_melt" , it, eros_melt , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_conv_melt" , it, conv_melt , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_virtual_area" , it, virtual_area , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "bits_src" , it, bits_src , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "bits_melt" , it, bits_melt , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "bits_mass" , it, bits_mass , ndim_hT, ndex_hT )
- CALL histwrite( nid_T, "berg_mass" , it, berg_mass , ndim_hT, ndex_hT )
- !
- CALL histwrite( nid_T, "berg_real_calving" , it, real_calving , ndim_bT, ndex_bT )
- ENDIF
- ENDIF
- IF( .NOT. ln_cpl ) THEN
- CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping
- CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping
- IF( ln_ssr ) zw2d(:,:) = erp(:,:) * tsn(:,:,1,jp_sal) * tmask(:,:,1)
- CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping
- ENDIF
- IF( ln_cpl .AND. nn_ice <= 1 ) THEN
- CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping
- CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping
- IF( ln_ssr ) zw2d(:,:) = erp(:,:) * tsn(:,:,1,jp_sal) * tmask(:,:,1)
- CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping
- ENDIF
- ! zw2d(:,:) = FLOAT( nmln(:,:) ) * tmask(:,:,1)
- ! CALL histwrite( nid_T, "sobowlin", it, zw2d , ndim_hT, ndex_hT ) ! ???
- #if defined key_diahth
- CALL histwrite( nid_T, "sothedep", it, hth , ndim_hT, ndex_hT ) ! depth of the thermocline
- CALL histwrite( nid_T, "so20chgt", it, hd20 , ndim_hT, ndex_hT ) ! depth of the 20 isotherm
- CALL histwrite( nid_T, "so28chgt", it, hd28 , ndim_hT, ndex_hT ) ! depth of the 28 isotherm
- CALL histwrite( nid_T, "sohtc300", it, htc3 , ndim_hT, ndex_hT ) ! first 300m heaat content
- #endif
- IF( ln_cpl .AND. nn_ice == 2 ) THEN
- CALL histwrite( nid_T, "soicetem", it, tn_ice(:,:,1) , ndim_hT, ndex_hT ) ! surf. ice temperature
- CALL histwrite( nid_T, "soicealb", it, alb_ice(:,:,1), ndim_hT, ndex_hT ) ! ice albedo
- ENDIF
- CALL histwrite( nid_U, "vozocrtx", it, un , ndim_U , ndex_U ) ! i-current
- IF( ln_traldf_gdia ) THEN
- IF (.not. ALLOCATED(psix_eiv))THEN
- ALLOCATE( psix_eiv(jpi,jpj,jpk) , psiy_eiv(jpi,jpj,jpk) , STAT=ierr )
- IF( lk_mpp ) CALL mpp_sum ( ierr )
- IF( ierr > 0 ) CALL ctl_stop('STOP', 'diawri: unable to allocate psi{x,y}_eiv')
- psix_eiv(:,:,:) = 0.0_wp
- psiy_eiv(:,:,:) = 0.0_wp
- ENDIF
- DO jk=1,jpkm1
- zw3d(:,:,jk) = (psix_eiv(:,:,jk+1) - psix_eiv(:,:,jk))/fse3u(:,:,jk) ! u_eiv = -dpsix/dz
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL histwrite( nid_U, "vozoeivu", it, zw3d, ndim_U , ndex_U ) ! i-eiv current
- ELSE
- #if defined key_diaeiv
- CALL histwrite( nid_U, "vozoeivu", it, u_eiv, ndim_U , ndex_U ) ! i-eiv current
- #endif
- ENDIF
- CALL histwrite( nid_U, "sozotaux", it, utau , ndim_hU, ndex_hU ) ! i-wind stress
- CALL histwrite( nid_V, "vomecrty", it, vn , ndim_V , ndex_V ) ! j-current
- IF( ln_traldf_gdia ) THEN
- DO jk=1,jpk-1
- zw3d(:,:,jk) = (psiy_eiv(:,:,jk+1) - psiy_eiv(:,:,jk))/fse3v(:,:,jk) ! v_eiv = -dpsiy/dz
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL histwrite( nid_V, "vomeeivv", it, zw3d, ndim_V , ndex_V ) ! j-eiv current
- ELSE
- #if defined key_diaeiv
- CALL histwrite( nid_V, "vomeeivv", it, v_eiv, ndim_V , ndex_V ) ! j-eiv current
- #endif
- ENDIF
- CALL histwrite( nid_V, "sometauy", it, vtau , ndim_hV, ndex_hV ) ! j-wind stress
- CALL histwrite( nid_W, "vovecrtz", it, wn , ndim_T, ndex_T ) ! vert. current
- IF( ln_traldf_gdia ) THEN
- DO jk=1,jpk-1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zw3d(ji,jj,jk) = (psiy_eiv(ji,jj,jk) - psiy_eiv(ji,jj-1,jk))/e2v(ji,jj) + &
- & (psix_eiv(ji,jj,jk) - psix_eiv(ji-1,jj,jk))/e1u(ji,jj) ! w_eiv = dpsiy/dy + dpsiy/dx
- END DO
- END DO
- END DO
- zw3d(:,:,jpk) = 0._wp
- CALL histwrite( nid_W, "voveeivw", it, zw3d , ndim_T, ndex_T ) ! vert. eiv current
- ELSE
- # if defined key_diaeiv
- CALL histwrite( nid_W, "voveeivw", it, w_eiv , ndim_T, ndex_T ) ! vert. eiv current
- # endif
- ENDIF
- CALL histwrite( nid_W, "votkeavt", it, avt , ndim_T, ndex_T ) ! T vert. eddy diff. coef.
- CALL histwrite( nid_W, "votkeavm", it, avmu , ndim_T, ndex_T ) ! T vert. eddy visc. coef.
- IF( lk_zdfddm ) THEN
- CALL histwrite( nid_W, "voddmavs", it, fsavs(:,:,:), ndim_T, ndex_T ) ! S vert. eddy diff. coef.
- ENDIF
- #if defined key_traldf_c2d
- CALL histwrite( nid_W, "soleahtw", it, ahtw , ndim_hT, ndex_hT ) ! lateral eddy diff. coef.
- # if defined key_traldf_eiv
- CALL histwrite( nid_W, "soleaeiw", it, aeiw , ndim_hT, ndex_hT ) ! EIV coefficient at w-point
- # endif
- #endif
- ! 3. Close all files
- ! ---------------------------------------
- IF( kt == nitend ) THEN
- CALL histclo( nid_T )
- CALL histclo( nid_U )
- CALL histclo( nid_V )
- CALL histclo( nid_W )
- ENDIF
- !
- CALL wrk_dealloc( jpi , jpj , zw2d )
- IF ( ln_traldf_gdia .OR. lk_vvl ) call wrk_dealloc( jpi , jpj , jpk , zw3d )
- !
- IF( nn_timing == 1 ) CALL timing_stop('dia_wri')
- !
- END SUBROUTINE dia_wri
- # endif
- #endif
- SUBROUTINE dia_wri_state( cdfile_name, kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE dia_wri_state ***
- !!
- !! ** Purpose : create a NetCDF file named cdfile_name which contains
- !! the instantaneous ocean state and forcing fields.
- !! Used to find errors in the initial state or save the last
- !! ocean state in case of abnormal end of a simulation
- !!
- !! ** Method : NetCDF files using ioipsl
- !! File 'output.init.nc' is created if ninist = 1 (namelist)
- !! File 'output.abort.nc' is created in case of abnormal job end
- !!----------------------------------------------------------------------
- CHARACTER (len=* ), INTENT( in ) :: cdfile_name ! name of the file created
- INTEGER , INTENT( in ) :: kt ! ocean time-step index
- !!
- CHARACTER (len=32) :: clname
- CHARACTER (len=40) :: clop
- INTEGER :: id_i , nz_i, nh_i
- INTEGER, DIMENSION(1) :: idex ! local workspace
- REAL(wp) :: zsto, zout, zmax, zjulian, zdt
- !!----------------------------------------------------------------------
- !
- ! IF( nn_timing == 1 ) CALL timing_start('dia_wri_state') ! not sure this works for routines not called in first timestep
- ! 0. Initialisation
- ! -----------------
- ! Define name, frequency of output and means
- clname = cdfile_name
- IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//'_'//TRIM(clname)
- zdt = rdt
- zsto = rdt
- clop = "inst(x)" ! no use of the mask value (require less cpu time)
- zout = rdt
- zmax = ( nitend - nit000 + 1 ) * zdt
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'dia_wri_state : single instantaneous ocean state'
- IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ and forcing fields file created '
- IF(lwp) WRITE(numout,*) ' and named :', clname, '.nc'
- ! 1. Define NETCDF files and fields at beginning of first time step
- ! -----------------------------------------------------------------
- ! Compute julian date from starting date of the run
- CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian ) ! time axis
- zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment
- CALL histbeg( clname, jpi, glamt, jpj, gphit, &
- 1, jpi, 1, jpj, nit000-1, zjulian, zdt, nh_i, id_i, domain_id=nidom, snc4chunks=snc4set ) ! Horizontal grid : glamt and gphit
- CALL histvert( id_i, "deptht", "Vertical T levels", & ! Vertical grid : gdept
- "m", jpk, gdept_1d, nz_i, "down")
- ! Declare all the output fields as NetCDF variables
- CALL histdef( id_i, "vosaline", "Salinity" , "PSU" , & ! salinity
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "votemper", "Temperature" , "C" , & ! temperature
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "sossheig", "Sea Surface Height" , "m" , & ! ssh
- & jpi, jpj, nh_i, 1 , 1, 1 , nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "vozocrtx", "Zonal Current" , "m/s" , & ! zonal current
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "vomecrty", "Meridional Current" , "m/s" , & ! meridonal current
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "vovecrtz", "Vertical Velocity" , "m/s" , & ! vertical current
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "sowaflup", "Net Upward Water Flux" , "Kg/m2/S", & ! net freshwater
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( id_i, "sohefldo", "Net Downward Heat Flux", "W/m2" , & ! net heat flux
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( id_i, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! solar flux
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( id_i, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( id_i, "sozotaux", "Zonal Wind Stress" , "N/m2" , & ! i-wind stress
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- CALL histdef( id_i, "sometauy", "Meridional Wind Stress", "N/m2" , & ! j-wind stress
- & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
- IF( lk_vvl ) THEN
- CALL histdef( id_i, "vovvldep", "T point depth" , "m" , & ! t-point depth
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- CALL histdef( id_i, "vovvle3t", "T point thickness" , "m" , & ! t-point depth
- & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout )
- END IF
- #if defined key_lim2
- CALL lim_wri_state_2( kt, id_i, nh_i )
- #elif defined key_lim3
- CALL lim_wri_state( kt, id_i, nh_i )
- #else
- CALL histend( id_i, snc4chunks=snc4set )
- #endif
- ! 2. Start writing data
- ! ---------------------
- ! idex(1) est utilise ssi l'avant dernier argument est diffferent de
- ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument
- ! donne le nombre d'elements, et idex la liste des indices a sortir
- idex(1) = 1 ! init to avoid compil warning
- ! Write all fields on T grid
- CALL histwrite( id_i, "votemper", kt, tsn(:,:,:,jp_tem), jpi*jpj*jpk, idex ) ! now temperature
- CALL histwrite( id_i, "vosaline", kt, tsn(:,:,:,jp_sal), jpi*jpj*jpk, idex ) ! now salinity
- CALL histwrite( id_i, "sossheig", kt, sshn , jpi*jpj , idex ) ! sea surface height
- CALL histwrite( id_i, "vozocrtx", kt, un , jpi*jpj*jpk, idex ) ! now i-velocity
- CALL histwrite( id_i, "vomecrty", kt, vn , jpi*jpj*jpk, idex ) ! now j-velocity
- CALL histwrite( id_i, "vovecrtz", kt, wn , jpi*jpj*jpk, idex ) ! now k-velocity
- CALL histwrite( id_i, "sowaflup", kt, (emp-rnf ) , jpi*jpj , idex ) ! freshwater budget
- CALL histwrite( id_i, "sohefldo", kt, qsr + qns , jpi*jpj , idex ) ! total heat flux
- CALL histwrite( id_i, "soshfldo", kt, qsr , jpi*jpj , idex ) ! solar heat flux
- CALL histwrite( id_i, "soicecov", kt, fr_i , jpi*jpj , idex ) ! ice fraction
- CALL histwrite( id_i, "sozotaux", kt, utau , jpi*jpj , idex ) ! i-wind stress
- CALL histwrite( id_i, "sometauy", kt, vtau , jpi*jpj , idex ) ! j-wind stress
- IF( lk_vvl ) THEN
- CALL histwrite( id_i, "vovvldep", kt, fsdept_n(:,:,:), jpi*jpj*jpk, idex )! T-cell depth
- CALL histwrite( id_i, "vovvle3t", kt, fse3t_n (:,:,:), jpi*jpj*jpk, idex )! T-cell thickness
- END IF
- ! 3. Close the file
- ! -----------------
- CALL histclo( id_i )
- #if ! defined key_iomput && ! defined key_dimgout
- IF( ninist /= 1 ) THEN
- CALL histclo( nid_T )
- CALL histclo( nid_U )
- CALL histclo( nid_V )
- CALL histclo( nid_W )
- ENDIF
- #endif
-
- ! IF( nn_timing == 1 ) CALL timing_stop('dia_wri_state') ! not sure this works for routines not called in first timestep
- !
- END SUBROUTINE dia_wri_state
- !!======================================================================
- END MODULE diawri
|