123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- MODULE diafwb
- !!======================================================================
- !! *** MODULE diafwb ***
- !! Ocean diagnostics: freshwater budget
- !!======================================================================
- !! History : 8.2 ! 01-02 (E. Durand) Original code
- !! 8.5 ! 02-06 (G. Madec) F90: Free form and module
- !! 9.0 ! 05-11 (V. Garnier) Surface pressure gradient organization
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! Only for ORCA2 ORCA1 and ORCA025
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! dia_fwb : freshwater budget for global ocean configurations
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE sbc_oce ! ???
- USE zdf_oce ! ocean vertical physics
- USE in_out_manager ! I/O manager
- USE lib_mpp ! distributed memory computing library
- USE timing ! preformance summary
- IMPLICIT NONE
- PRIVATE
- PUBLIC dia_fwb ! routine called by step.F90
- REAL(wp) :: a_fwf , &
- & a_sshb, a_sshn, a_salb, a_saln
- REAL(wp), DIMENSION(4) :: a_flxi, a_flxo, a_temi, a_temo, a_sali, a_salo
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: diafwb.F90 5506 2015-06-29 15:19:38Z clevy $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE dia_fwb( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE dia_fwb ***
- !!
- !! ** Purpose :
- !!----------------------------------------------------------------------
- INTEGER, INTENT( in ) :: kt ! ocean time-step index
- !!
- INTEGER :: inum ! temporary logical unit
- INTEGER :: ji, jj, jk, jt ! dummy loop indices
- INTEGER :: ii0, ii1, ij0, ij1
- INTEGER :: isrow ! index for ORCA1 starting row
- REAL(wp) :: zarea, zvol, zwei
- REAL(wp) :: ztemi(4), ztemo(4), zsali(4), zsalo(4), zflxi(4), zflxo(4)
- REAL(wp) :: zt, zs, zu
- REAL(wp) :: zsm0, zfwfnew
- IF( cp_cfg == "orca" .AND. jp_cfg == 1 .OR. jp_cfg == 2 .OR. jp_cfg == 4 ) THEN
- !!----------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('dia_fwb')
- ! Mean global salinity
- zsm0 = 34.72654
- ! To compute fwf mean value mean fwf
- IF( kt == nit000 ) THEN
- a_fwf = 0.e0
- a_sshb = 0.e0 ! valeur de ssh au debut de la simulation
- a_salb = 0.e0 ! valeur de sal au debut de la simulation
- ! sshb used because diafwb called after tranxt (i.e. after the swap)
- a_sshb = SUM( e1t(:,:) * e2t(:,:) * sshb(:,:) * tmask_i(:,:) )
- IF( lk_mpp ) CALL mpp_sum( a_sshb ) ! sum over the global domain
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zwei = e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj)
- a_salb = a_salb + ( tsb(ji,jj,jk,jp_sal) - zsm0 ) * zwei
- END DO
- END DO
- END DO
- IF( lk_mpp ) CALL mpp_sum( a_salb ) ! sum over the global domain
- ENDIF
-
- a_fwf = SUM( e1t(:,:) * e2t(:,:) * ( emp(:,:)-rnf(:,:) ) * tmask_i(:,:) )
- IF( lk_mpp ) CALL mpp_sum( a_fwf ) ! sum over the global domain
- IF( kt == nitend ) THEN
- a_sshn = 0.e0
- a_saln = 0.e0
- zarea = 0.e0
- zvol = 0.e0
- zfwfnew = 0.e0
- ! Mean sea level at nitend
- a_sshn = SUM( e1t(:,:) * e2t(:,:) * sshn(:,:) * tmask_i(:,:) )
- IF( lk_mpp ) CALL mpp_sum( a_sshn ) ! sum over the global domain
- zarea = SUM( e1t(:,:) * e2t(:,:) * tmask_i(:,:) )
- IF( lk_mpp ) CALL mpp_sum( zarea ) ! sum over the global domain
-
- DO jk = 1, jpkm1
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- zwei = e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj)
- a_saln = a_saln + ( tsn(ji,jj,jk,jp_sal) - zsm0 ) * zwei
- zvol = zvol + zwei
- END DO
- END DO
- END DO
- IF( lk_mpp ) CALL mpp_sum( a_saln ) ! sum over the global domain
- IF( lk_mpp ) CALL mpp_sum( zvol ) ! sum over the global domain
-
- ! Conversion in m3
- a_fwf = a_fwf * rdttra(1) * 1.e-3
-
- ! fwf correction to bring back the mean ssh to zero
- zfwfnew = a_sshn / ( ( nitend - nit000 + 1 ) * rdt ) * 1.e3 / zarea
- ENDIF
- ! Calcul des termes de transport
- ! ------------------------------
-
- ! 1 --> Gibraltar
- ! 2 --> Cadiz
- ! 3 --> Red Sea
- ! 4 --> Baltic Sea
- IF( kt == nit000 ) THEN
- a_flxi(:) = 0.e0
- a_flxo(:) = 0.e0
- a_temi(:) = 0.e0
- a_temo(:) = 0.e0
- a_sali(:) = 0.e0
- a_salo(:) = 0.e0
- ENDIF
- zflxi(:) = 0.e0
- zflxo(:) = 0.e0
- ztemi(:) = 0.e0
- ztemo(:) = 0.e0
- zsali(:) = 0.e0
- zsalo(:) = 0.e0
- ! Mean flow at Gibraltar
- IF( cp_cfg == "orca" ) THEN
-
- SELECT CASE ( jp_cfg )
- ! ! =======================
- CASE ( 4 ) ! ORCA_R4 configuration
- ! ! =======================
- ii0 = 70 ; ii1 = 70
- ij0 = 52 ; ij1 = 52
- ! ! =======================
- CASE ( 2 ) ! ORCA_R2 configuration
- ! ! =======================
- ii0 = 140 ; ii1 = 140
- ij0 = 102 ; ij1 = 102
- ! ! =======================
- CASE ( 1 ) ! ORCA_R1 configurations
- ! ! =======================
- ! This dirty section will be suppressed by simplification process:
- ! all this will come back in input files
- ! Currently these hard-wired indices relate to configuration with
- ! extend grid (jpjglo=332)
- isrow = 332 - jpjglo
- !
- ii0 = 283 ; ii1 = 283
- ij0 = 241 - isrow ; ij1 = 241 - isrow
- ! ! =======================
- CASE DEFAULT ! ORCA R05 or R025
- ! ! =======================
- CALL ctl_stop( ' dia_fwb Not yet implemented in ORCA_R05 or R025' )
- !
- END SELECT
- !
- DO ji = mi0(ii0), MIN(mi1(ii1),jpim1)
- DO jj = mj0(ij0), mj1(ij1)
- DO jk = 1, jpk
- zt = 0.5 * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) )
- zs = 0.5 * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) )
- zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) * tmask_i(ji,jj)
- IF( un(ji,jj,jk) > 0.e0 ) THEN
- zflxi(1) = zflxi(1) + zu
- ztemi(1) = ztemi(1) + zt*zu
- zsali(1) = zsali(1) + zs*zu
- ELSE
- zflxo(1) = zflxo(1) + zu
- ztemo(1) = ztemo(1) + zt*zu
- zsalo(1) = zsalo(1) + zs*zu
- ENDIF
- END DO
- END DO
- END DO
- ENDIF
-
- ! Mean flow at Cadiz
- IF( cp_cfg == "orca" ) THEN
-
- SELECT CASE ( jp_cfg )
- ! ! =======================
- CASE ( 4 ) ! ORCA_R4 configuration
- ! ! =======================
- ii0 = 69 ; ii1 = 69
- ij0 = 52 ; ij1 = 52
- ! ! =======================
- CASE ( 2 ) ! ORCA_R2 configuration
- ! ! =======================
- ii0 = 137 ; ii1 = 137
- ij0 = 101 ; ij1 = 102
- ! ! =======================
- CASE ( 1 ) ! ORCA_R1 configurations
- ! ! =======================
- ! This dirty section will be suppressed by simplification process:
- ! all this will come back in input files
- ! Currently these hard-wired indices relate to configuration with
- ! extend grid (jpjglo=332)
- isrow = 332 - jpjglo
- ii0 = 282 ; ii1 = 282
- ij0 = 240 - isrow ; ij1 = 240 - isrow
- ! ! =======================
- CASE DEFAULT ! ORCA R05 or R025
- ! ! =======================
- CALL ctl_stop( ' dia_fwb Not yet implemented in ORCA_R05 or R025' )
- !
- END SELECT
- !
- DO ji = mi0(ii0), MIN(mi1(ii1),jpim1)
- DO jj = mj0(ij0), mj1(ij1)
- DO jk = 1, jpk
- zt = 0.5 * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) )
- zs = 0.5 * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) )
- zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) * tmask_i(ji,jj)
-
- IF( un(ji,jj,jk) > 0.e0 ) THEN
- zflxi(2) = zflxi(2) + zu
- ztemi(2) = ztemi(2) + zt*zu
- zsali(2) = zsali(2) + zs*zu
- ELSE
- zflxo(2) = zflxo(2) + zu
- ztemo(2) = ztemo(2) + zt*zu
- zsalo(2) = zsalo(2) + zs*zu
- ENDIF
- END DO
- END DO
- END DO
- ENDIF
- ! Mean flow at Red Sea entrance
- IF( cp_cfg == "orca" ) THEN
-
- SELECT CASE ( jp_cfg )
- ! ! =======================
- CASE ( 4 ) ! ORCA_R4 configuration
- ! ! =======================
- ii0 = 83 ; ii1 = 83
- ij0 = 45 ; ij1 = 45
- ! ! =======================
- CASE ( 2 ) ! ORCA_R2 configuration
- ! ! =======================
- ii0 = 160 ; ii1 = 160
- ij0 = 88 ; ij1 = 88
- ! ! =======================
- CASE ( 1 ) ! ORCA_R1 configurations
- ! ! =======================
- ! This dirty section will be suppressed by simplification process:
- ! all this will come back in input files
- ! Currently these hard-wired indices relate to configuration with
- ! extend grid (jpjglo=332)
- isrow = 332 - jpjglo
- ii0 = 331 ; ii1 = 331
- ij0 = 215 - isrow ; ij1 = 215 - isrow
- ! ! =======================
- CASE DEFAULT ! ORCA R05 or R025
- ! ! =======================
- CALL ctl_stop( ' dia_fwb Not yet implemented in ORCA_R05 or R025' )
- !
- END SELECT
- !
- DO ji = mi0(ii0), MIN(mi1(ii1),jpim1)
- DO jj = mj0(ij0), mj1(ij1)
- DO jk = 1, jpk
- zt = 0.5 * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) )
- zs = 0.5 * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) )
- zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) * tmask_i(ji,jj)
-
- IF( un(ji,jj,jk) > 0.e0 ) THEN
- zflxi(3) = zflxi(3) + zu
- ztemi(3) = ztemi(3) + zt*zu
- zsali(3) = zsali(3) + zs*zu
- ELSE
- zflxo(3) = zflxo(3) + zu
- ztemo(3) = ztemo(3) + zt*zu
- zsalo(3) = zsalo(3) + zs*zu
- ENDIF
- END DO
- END DO
- END DO
- ENDIF
- ! Mean flow at Baltic Sea entrance
- IF( cp_cfg == "orca" ) THEN
-
- SELECT CASE ( jp_cfg )
- ! ! =======================
- CASE ( 4 ) ! ORCA_R4 configuration
- ! ! =======================
- ii0 = 1 ; ii1 = 1
- ij0 = 1 ; ij1 = 1
- ! ! =======================
- CASE ( 2 ) ! ORCA_R2 configuration
- ! ! =======================
- ii0 = 146 ; ii1 = 146
- ij0 = 116 ; ij1 = 116
- ! ! =======================
- CASE ( 1 ) ! ORCA_R1 configurations
- ! ! =======================
- ! This dirty section will be suppressed by simplification process:
- ! all this will come back in input files
- ! Currently these hard-wired indices relate to configuration with
- ! extend grid (jpjglo=332)
- isrow = 332 - jpjglo
- ii0 = 297 ; ii1 = 297
- ij0 = 269 - isrow ; ij1 = 269 - isrow
- ! ! =======================
- CASE DEFAULT ! ORCA R05 or R025
- ! ! =======================
- CALL ctl_stop( ' dia_fwb Not yet implemented in ORCA_R05 or R025' )
- !
- END SELECT
- !
- DO ji = mi0(ii0), MIN(mi1(ii1),jpim1)
- DO jj = mj0(ij0), mj1(ij1)
- DO jk = 1, jpk
- zt = 0.5 * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) )
- zs = 0.5 * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) )
- zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) * tmask_i(ji,jj)
-
- IF( un(ji,jj,jk) > 0.e0 ) THEN
- zflxi(4) = zflxi(4) + zu
- ztemi(4) = ztemi(4) + zt*zu
- zsali(4) = zsali(4) + zs*zu
- ELSE
- zflxo(4) = zflxo(4) + zu
- ztemo(4) = ztemo(4) + zt*zu
- zsalo(4) = zsalo(4) + zs*zu
- ENDIF
- END DO
- END DO
- END DO
- ENDIF
- ! Sum at each time-step
- DO jt = 1, 4
- !
- IF( zflxi(jt) /= 0.e0 ) THEN
- a_flxi(jt) = a_flxi(jt) + zflxi(jt)
- a_temi(jt) = a_temi(jt) + ztemi(jt)/zflxi(jt)
- a_sali(jt) = a_sali(jt) + zsali(jt)/zflxi(jt)
- ENDIF
- !
- IF( zflxo(jt) /= 0.e0 ) THEN
- a_flxo(jt) = a_flxo(jt) + zflxo(jt)
- a_temo(jt) = a_temo(jt) + ztemo(jt)/zflxo(jt)
- a_salo(jt) = a_salo(jt) + zsalo(jt)/zflxo(jt)
- ENDIF
- !
- END DO
- IF( kt == nitend ) THEN
- DO jt = 1, 4
- a_flxi(jt) = a_flxi(jt) / ( FLOAT( nitend - nit000 + 1 ) * 1.e6 )
- a_temi(jt) = a_temi(jt) / FLOAT( nitend - nit000 + 1 )
- a_sali(jt) = a_sali(jt) / FLOAT( nitend - nit000 + 1 )
- a_flxo(jt) = a_flxo(jt) / ( FLOAT( nitend - nit000 + 1 ) * 1.e6 )
- a_temo(jt) = a_temo(jt) / FLOAT( nitend - nit000 + 1 )
- a_salo(jt) = a_salo(jt) / FLOAT( nitend - nit000 + 1 )
- END DO
- IF( lk_mpp ) THEN
- CALL mpp_sum( a_flxi, 4 ) ! sum over the global domain
- CALL mpp_sum( a_temi, 4 ) ! sum over the global domain
- CALL mpp_sum( a_sali, 4 ) ! sum over the global domain
- CALL mpp_sum( a_flxo, 4 ) ! sum over the global domain
- CALL mpp_sum( a_temo, 4 ) ! sum over the global domain
- CALL mpp_sum( a_salo, 4 ) ! sum over the global domain
- ENDIF
- ENDIF
- ! Ecriture des diagnostiques
- ! --------------------------
- IF ( kt == nitend .AND. cp_cfg == "orca" .AND. lwp ) THEN
- CALL ctl_opn( inum, 'STRAIT.dat', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea )
- WRITE(inum,*)
- WRITE(inum,*) 'Net freshwater budget '
- WRITE(inum,9010) ' fwf = ',a_fwf, ' m3 =', a_fwf /(FLOAT(nitend-nit000+1)*rdttra(1)) * 1.e-6,' Sv'
- WRITE(inum,*)
- WRITE(inum,9010) ' zarea =',zarea
- WRITE(inum,9010) ' zvol =',zvol
- WRITE(inum,*)
- WRITE(inum,*) 'Mean sea level : '
- WRITE(inum,9010) ' at nit000 = ',a_sshb ,' m3 '
- WRITE(inum,9010) ' at nitend = ',a_sshn ,' m3 '
- WRITE(inum,9010) ' diff = ',(a_sshn-a_sshb),' m3 =', (a_sshn-a_sshb)/(FLOAT(nitend-nit000+1)*rdt) * 1.e-6,' Sv'
- WRITE(inum,9020) ' mean sea level elevation =', a_sshn/zarea,' m'
- WRITE(inum,*)
- WRITE(inum,*) 'Anomaly of salinity content : '
- WRITE(inum,9010) ' at nit000 = ',a_salb ,' psu.m3 '
- WRITE(inum,9010) ' at nitend = ',a_saln ,' psu.m3 '
- WRITE(inum,9010) ' diff = ',(a_saln-a_salb),' psu.m3'
- WRITE(inum,*)
- WRITE(inum,*) 'Mean salinity : '
- WRITE(inum,9020) ' at nit000 =',a_salb/zvol+zsm0 ,' psu '
- WRITE(inum,9020) ' at nitend =',a_saln/zvol+zsm0 ,' psu '
- WRITE(inum,9020) ' diff =',(a_saln-a_salb)/zvol,' psu'
- WRITE(inum,9020) ' S-SLevitus=',a_saln/zvol,' psu'
- WRITE(inum,*)
- WRITE(inum,*) 'Gibraltar : '
- WRITE(inum,9030) ' Flux entrant (Sv) :', a_flxi(1)
- WRITE(inum,9030) ' Flux sortant (Sv) :', a_flxo(1)
- WRITE(inum,9030) ' T entrant (deg) :', a_temi(1)
- WRITE(inum,9030) ' T sortant (deg) :', a_temo(1)
- WRITE(inum,9030) ' S entrant (psu) :', a_sali(1)
- WRITE(inum,9030) ' S sortant (psu) :', a_salo(1)
- WRITE(inum,*)
- WRITE(inum,*) 'Cadiz : '
- WRITE(inum,9030) ' Flux entrant (Sv) :', a_flxi(2)
- WRITE(inum,9030) ' Flux sortant (Sv) :', a_flxo(2)
- WRITE(inum,9030) ' T entrant (deg) :', a_temi(2)
- WRITE(inum,9030) ' T sortant (deg) :', a_temo(2)
- WRITE(inum,9030) ' S entrant (psu) :', a_sali(2)
- WRITE(inum,9030) ' S sortant (psu) :', a_salo(2)
- WRITE(inum,*)
- WRITE(inum,*) 'Bab el Mandeb : '
- WRITE(inum,9030) ' Flux entrant (Sv) :', a_flxi(3)
- WRITE(inum,9030) ' Flux sortant (Sv) :', a_flxo(3)
- WRITE(inum,9030) ' T entrant (deg) :', a_temi(3)
- WRITE(inum,9030) ' T sortant (deg) :', a_temo(3)
- WRITE(inum,9030) ' S entrant (psu) :', a_sali(3)
- WRITE(inum,9030) ' S sortant (psu) :', a_salo(3)
- WRITE(inum,*)
- WRITE(inum,*) 'Baltic : '
- WRITE(inum,9030) ' Flux entrant (Sv) :', a_flxi(4)
- WRITE(inum,9030) ' Flux sortant (Sv) :', a_flxo(4)
- WRITE(inum,9030) ' T entrant (deg) :', a_temi(4)
- WRITE(inum,9030) ' T sortant (deg) :', a_temo(4)
- WRITE(inum,9030) ' S entrant (psu) :', a_sali(4)
- WRITE(inum,9030) ' S sortant (psu) :', a_salo(4)
- CLOSE(inum)
- ENDIF
- IF( nn_timing == 1 ) CALL timing_start('dia_fwb')
- 9005 FORMAT(1X,A,ES24.16)
- 9010 FORMAT(1X,A,ES12.5,A,F10.5,A)
- 9020 FORMAT(1X,A,F10.5,A)
- 9030 FORMAT(1X,A,F9.4,A)
-
- ENDIF
- END SUBROUTINE dia_fwb
- !!======================================================================
- END MODULE diafwb
|