123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628 |
- MODULE bdytides
- !!======================================================================
- !! *** MODULE bdytides ***
- !! Ocean dynamics: Tidal forcing at open boundaries
- !!======================================================================
- !! History : 2.0 ! 2007-01 (D.Storkey) Original code
- !! 2.3 ! 2008-01 (J.Holt) Add date correction. Origins POLCOMS v6.3 2007
- !! 3.0 ! 2008-04 (NEMO team) add in the reference version
- !! 3.3 ! 2010-09 (D.Storkey and E.O'Dea) bug fixes
- !! 3.4 ! 2012-09 (G. Reffray and J. Chanut) New inputs + mods
- !! 3.5 ! 2013-07 (J. Chanut) Compliant with time splitting changes
- !!----------------------------------------------------------------------
- #if defined key_bdy
- !!----------------------------------------------------------------------
- !! 'key_bdy' Open Boundary Condition
- !!----------------------------------------------------------------------
- !! PUBLIC
- !! bdytide_init : read of namelist and initialisation of tidal harmonics data
- !! tide_update : calculation of tidal forcing at each timestep
- !!----------------------------------------------------------------------
- USE timing ! Timing
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE iom
- USE in_out_manager ! I/O units
- USE phycst ! physical constants
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE bdy_par ! Unstructured boundary parameters
- USE bdy_oce ! ocean open boundary conditions
- USE daymod ! calendar
- USE wrk_nemo ! Memory allocation
- USE tideini
- ! USE tide_mod ! Useless ??
- USE fldread
- USE dynspg_oce, ONLY: lk_dynspg_ts
- IMPLICIT NONE
- PRIVATE
- PUBLIC bdytide_init ! routine called in bdy_init
- PUBLIC bdytide_update ! routine called in bdy_dta
- PUBLIC bdy_dta_tides ! routine called in dyn_spg_ts
- TYPE, PUBLIC :: TIDES_DATA !: Storage for external tidal harmonics data
- REAL(wp), POINTER, DIMENSION(:,:,:) :: ssh0 !: Tidal constituents : SSH0 (read in file)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: u0 !: Tidal constituents : U0 (read in file)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: v0 !: Tidal constituents : V0 (read in file)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: ssh !: Tidal constituents : SSH (after nodal cor.)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: u !: Tidal constituents : U (after nodal cor.)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: v !: Tidal constituents : V (after nodal cor.)
- END TYPE TIDES_DATA
- !$AGRIF_DO_NOT_TREAT
- TYPE(TIDES_DATA), PUBLIC, DIMENSION(jp_bdy), TARGET :: tides !: External tidal harmonics data
- !$AGRIF_END_DO_NOT_TREAT
- TYPE(OBC_DATA) , PRIVATE, DIMENSION(jp_bdy) :: dta_bdy_s !: bdy external data (slow component)
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO Consortium (2010)
- !! $Id: bdytides.F90 4758 2014-09-05 12:13:33Z jchanut $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE bdytide_init
- !!----------------------------------------------------------------------
- !! *** SUBROUTINE bdytide_init ***
- !!
- !! ** Purpose : - Read in namelist for tides and initialise external
- !! tidal harmonics data
- !!
- !!----------------------------------------------------------------------
- !! namelist variables
- !!-------------------
- CHARACTER(len=80) :: filtide !: Filename root for tidal input files
- LOGICAL :: ln_bdytide_2ddta !: If true, read 2d harmonic data
- LOGICAL :: ln_bdytide_conj !: If true, assume complex conjugate tidal data
- !!
- INTEGER :: ib_bdy, itide, ib !: dummy loop indices
- INTEGER :: ii, ij !: dummy loop indices
- INTEGER :: inum, igrd
- INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays)
- INTEGER, POINTER, DIMENSION(:) :: nblen, nblenrim ! short cuts
- INTEGER :: ios ! Local integer output status for namelist read
- CHARACTER(len=80) :: clfile !: full file name for tidal input file
- REAL(wp),ALLOCATABLE, DIMENSION(:,:,:) :: dta_read !: work space to read in tidal harmonics data
- REAL(wp), POINTER, DIMENSION(:,:) :: ztr, zti !: " " " " " " " "
- !!
- TYPE(TIDES_DATA), POINTER :: td !: local short cut
- TYPE(MAP_POINTER), DIMENSION(jpbgrd) :: ibmap_ptr !: array of pointers to nbmap
- !!
- NAMELIST/nambdy_tide/filtide, ln_bdytide_2ddta, ln_bdytide_conj
- !!----------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('bdytide_init')
- IF (nb_bdy>0) THEN
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'bdytide_init : initialization of tidal harmonic forcing at open boundaries'
- IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~'
- ENDIF
- REWIND(numnam_cfg)
- DO ib_bdy = 1, nb_bdy
- IF( nn_dyn2d_dta(ib_bdy) .ge. 2 ) THEN
- td => tides(ib_bdy)
- nblen => idx_bdy(ib_bdy)%nblen
- nblenrim => idx_bdy(ib_bdy)%nblenrim
- ! Namelist nambdy_tide : tidal harmonic forcing at open boundaries
- filtide(:) = ''
- ! Don't REWIND here - may need to read more than one of these namelists.
- READ ( numnam_ref, nambdy_tide, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy_tide in reference namelist', lwp )
- READ ( numnam_cfg, nambdy_tide, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy_tide in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, nambdy_tide )
- ! ! Parameter control and print
- IF(lwp) WRITE(numout,*) ' '
- IF(lwp) WRITE(numout,*) ' Namelist nambdy_tide : tidal harmonic forcing at open boundaries'
- IF(lwp) WRITE(numout,*) ' read tidal data in 2d files: ', ln_bdytide_2ddta
- IF(lwp) WRITE(numout,*) ' assume complex conjugate : ', ln_bdytide_conj
- IF(lwp) WRITE(numout,*) ' Number of tidal components to read: ', nb_harmo
- IF(lwp) THEN
- WRITE(numout,*) ' Tidal components: '
- DO itide = 1, nb_harmo
- WRITE(numout,*) ' ', Wave(ntide(itide))%cname_tide
- END DO
- ENDIF
- IF(lwp) WRITE(numout,*) ' '
- ! Allocate space for tidal harmonics data - get size from OBC data arrays
- ! -----------------------------------------------------------------------
- ! JC: If FRS scheme is used, we assume that tidal is needed over the whole
- ! relaxation area
- IF( cn_dyn2d(ib_bdy) == 'frs' ) THEN
- ilen0(:)=nblen(:)
- ELSE
- ilen0(:)=nblenrim(:)
- ENDIF
- ALLOCATE( td%ssh0( ilen0(1), nb_harmo, 2 ) )
- ALLOCATE( td%ssh ( ilen0(1), nb_harmo, 2 ) )
- ALLOCATE( td%u0( ilen0(2), nb_harmo, 2 ) )
- ALLOCATE( td%u ( ilen0(2), nb_harmo, 2 ) )
- ALLOCATE( td%v0( ilen0(3), nb_harmo, 2 ) )
- ALLOCATE( td%v ( ilen0(3), nb_harmo, 2 ) )
- td%ssh0(:,:,:) = 0._wp
- td%ssh (:,:,:) = 0._wp
- td%u0 (:,:,:) = 0._wp
- td%u (:,:,:) = 0._wp
- td%v0 (:,:,:) = 0._wp
- td%v (:,:,:) = 0._wp
- IF (ln_bdytide_2ddta) THEN
- ! It is assumed that each data file contains all complex harmonic amplitudes
- ! given on the data domain (ie global, jpidta x jpjdta)
- !
- CALL wrk_alloc( jpi, jpj, zti, ztr )
- !
- ! SSH fields
- clfile = TRIM(filtide)//'_grid_T.nc'
- CALL iom_open (clfile , inum )
- igrd = 1 ! Everything is at T-points here
- DO itide = 1, nb_harmo
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_z1', ztr(:,:) )
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_z2', zti(:,:) )
- DO ib = 1, ilen0(igrd)
- ii = idx_bdy(ib_bdy)%nbi(ib,igrd)
- ij = idx_bdy(ib_bdy)%nbj(ib,igrd)
- td%ssh0(ib,itide,1) = ztr(ii,ij)
- td%ssh0(ib,itide,2) = zti(ii,ij)
- END DO
- END DO
- CALL iom_close( inum )
- !
- ! U fields
- clfile = TRIM(filtide)//'_grid_U.nc'
- CALL iom_open (clfile , inum )
- igrd = 2 ! Everything is at U-points here
- DO itide = 1, nb_harmo
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_u1', ztr(:,:) )
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_u2', zti(:,:) )
- DO ib = 1, ilen0(igrd)
- ii = idx_bdy(ib_bdy)%nbi(ib,igrd)
- ij = idx_bdy(ib_bdy)%nbj(ib,igrd)
- td%u0(ib,itide,1) = ztr(ii,ij)
- td%u0(ib,itide,2) = zti(ii,ij)
- END DO
- END DO
- CALL iom_close( inum )
- !
- ! V fields
- clfile = TRIM(filtide)//'_grid_V.nc'
- CALL iom_open (clfile , inum )
- igrd = 3 ! Everything is at V-points here
- DO itide = 1, nb_harmo
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_v1', ztr(:,:) )
- CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_v2', zti(:,:) )
- DO ib = 1, ilen0(igrd)
- ii = idx_bdy(ib_bdy)%nbi(ib,igrd)
- ij = idx_bdy(ib_bdy)%nbj(ib,igrd)
- td%v0(ib,itide,1) = ztr(ii,ij)
- td%v0(ib,itide,2) = zti(ii,ij)
- END DO
- END DO
- CALL iom_close( inum )
- !
- CALL wrk_dealloc( jpi, jpj, ztr, zti )
- !
- ELSE
- !
- ! Read tidal data only on bdy segments
- !
- ALLOCATE( dta_read( MAXVAL(ilen0(1:3)), 1, 1 ) )
- !
- ! Set map structure
- ibmap_ptr(1)%ptr => idx_bdy(ib_bdy)%nbmap(:,1)
- ibmap_ptr(1)%ll_unstruc = ln_coords_file(ib_bdy)
- ibmap_ptr(2)%ptr => idx_bdy(ib_bdy)%nbmap(:,2)
- ibmap_ptr(2)%ll_unstruc = ln_coords_file(ib_bdy)
- ibmap_ptr(3)%ptr => idx_bdy(ib_bdy)%nbmap(:,3)
- ibmap_ptr(3)%ll_unstruc = ln_coords_file(ib_bdy)
- ! Open files and read in tidal forcing data
- ! -----------------------------------------
- DO itide = 1, nb_harmo
- ! ! SSH fields
- clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_T.nc'
- CALL iom_open( clfile, inum )
- CALL fld_map( inum, 'z1' , dta_read(1:ilen0(1),1:1,1:1) , 1, ibmap_ptr(1) )
- td%ssh0(:,itide,1) = dta_read(1:ilen0(1),1,1)
- CALL fld_map( inum, 'z2' , dta_read(1:ilen0(1),1:1,1:1) , 1, ibmap_ptr(1) )
- td%ssh0(:,itide,2) = dta_read(1:ilen0(1),1,1)
- CALL iom_close( inum )
- ! ! U fields
- clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_U.nc'
- CALL iom_open( clfile, inum )
- CALL fld_map( inum, 'u1' , dta_read(1:ilen0(2),1:1,1:1) , 1, ibmap_ptr(2) )
- td%u0(:,itide,1) = dta_read(1:ilen0(2),1,1)
- CALL fld_map( inum, 'u2' , dta_read(1:ilen0(2),1:1,1:1) , 1, ibmap_ptr(2) )
- td%u0(:,itide,2) = dta_read(1:ilen0(2),1,1)
- CALL iom_close( inum )
- ! ! V fields
- clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_V.nc'
- CALL iom_open( clfile, inum )
- CALL fld_map( inum, 'v1' , dta_read(1:ilen0(3),1:1,1:1) , 1, ibmap_ptr(3) )
- td%v0(:,itide,1) = dta_read(1:ilen0(3),1,1)
- CALL fld_map( inum, 'v2' , dta_read(1:ilen0(3),1:1,1:1) , 1, ibmap_ptr(3) )
- td%v0(:,itide,2) = dta_read(1:ilen0(3),1,1)
- CALL iom_close( inum )
- !
- END DO ! end loop on tidal components
- !
- DEALLOCATE( dta_read )
- ENDIF ! ln_bdytide_2ddta=.true.
- !
- IF ( ln_bdytide_conj ) THEN ! assume complex conjugate in data files
- td%ssh0(:,:,2) = - td%ssh0(:,:,2)
- td%u0 (:,:,2) = - td%u0 (:,:,2)
- td%v0 (:,:,2) = - td%v0 (:,:,2)
- ENDIF
- !
- IF ( lk_dynspg_ts ) THEN ! Allocate arrays to save slowly varying boundary data during
- ! time splitting integration
- ALLOCATE( dta_bdy_s(ib_bdy)%ssh ( ilen0(1) ) )
- ALLOCATE( dta_bdy_s(ib_bdy)%u2d ( ilen0(2) ) )
- ALLOCATE( dta_bdy_s(ib_bdy)%v2d ( ilen0(3) ) )
- dta_bdy_s(ib_bdy)%ssh(:) = 0.e0
- dta_bdy_s(ib_bdy)%u2d(:) = 0.e0
- dta_bdy_s(ib_bdy)%v2d(:) = 0.e0
- ENDIF
- !
- ENDIF ! nn_dyn2d_dta(ib_bdy) .ge. 2
- !
- END DO ! loop on ib_bdy
- IF( nn_timing == 1 ) CALL timing_stop('bdytide_init')
- END SUBROUTINE bdytide_init
- SUBROUTINE bdytide_update ( kt, idx, dta, td, jit, time_offset )
- !!----------------------------------------------------------------------
- !! *** SUBROUTINE bdytide_update ***
- !!
- !! ** Purpose : - Add tidal forcing to ssh, u2d and v2d OBC data arrays.
- !!
- !!----------------------------------------------------------------------
- INTEGER, INTENT( in ) :: kt ! Main timestep counter
- TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices
- TYPE(OBC_DATA), INTENT(inout) :: dta ! OBC external data
- TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data
- INTEGER,INTENT(in),OPTIONAL :: jit ! Barotropic timestep counter (for timesplitting option)
- INTEGER,INTENT( in ), OPTIONAL :: time_offset ! time offset in units of timesteps. NB. if jit
- ! is present then units = subcycle timesteps.
- ! time_offset = 0 => get data at "now" time level
- ! time_offset = -1 => get data at "before" time level
- ! time_offset = +1 => get data at "after" time level
- ! etc.
- !!
- INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays)
- INTEGER :: itide, igrd, ib ! dummy loop indices
- INTEGER :: time_add ! time offset in units of timesteps
- REAL(wp) :: z_arg, z_sarg, zflag, zramp
- REAL(wp), DIMENSION(jpmax_harmo) :: z_sist, z_cost
- !!----------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('bdytide_update')
- ilen0(1) = SIZE(td%ssh(:,1,1))
- ilen0(2) = SIZE(td%u(:,1,1))
- ilen0(3) = SIZE(td%v(:,1,1))
- zflag=1
- IF ( PRESENT(jit) ) THEN
- IF ( jit /= 1 ) zflag=0
- ENDIF
- IF ( nsec_day == NINT(0.5_wp * rdttra(1)) .AND. zflag==1 ) THEN
- !
- kt_tide = kt
- !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'bdytide_update : (re)Initialization of the tidal bdy forcing at kt=',kt
- WRITE(numout,*) '~~~~~~~~~~~~~~ '
- ENDIF
- !
- CALL tide_init_elevation ( idx, td )
- CALL tide_init_velocities( idx, td )
- !
- ENDIF
- time_add = 0
- IF( PRESENT(time_offset) ) THEN
- time_add = time_offset
- ENDIF
-
- IF( PRESENT(jit) ) THEN
- z_arg = ((kt-kt_tide) * rdt + (jit+0.5_wp*(time_add-1)) * rdt / REAL(nn_baro,wp) )
- ELSE
- z_arg = ((kt-kt_tide)+time_add) * rdt
- ENDIF
- ! Linear ramp on tidal component at open boundaries
- zramp = 1._wp
- IF (ln_tide_ramp) zramp = MIN(MAX( (z_arg + (kt_tide-nit000)*rdt)/(rdttideramp*rday),0._wp),1._wp)
- DO itide = 1, nb_harmo
- z_sarg = z_arg * omega_tide(itide)
- z_cost(itide) = COS( z_sarg )
- z_sist(itide) = SIN( z_sarg )
- END DO
- DO itide = 1, nb_harmo
- igrd=1 ! SSH on tracer grid
- DO ib = 1, ilen0(igrd)
- dta%ssh(ib) = dta%ssh(ib) + zramp*(td%ssh(ib,itide,1)*z_cost(itide) + td%ssh(ib,itide,2)*z_sist(itide))
- END DO
- igrd=2 ! U grid
- DO ib = 1, ilen0(igrd)
- dta%u2d(ib) = dta%u2d(ib) + zramp*(td%u (ib,itide,1)*z_cost(itide) + td%u (ib,itide,2)*z_sist(itide))
- END DO
- igrd=3 ! V grid
- DO ib = 1, ilen0(igrd)
- dta%v2d(ib) = dta%v2d(ib) + zramp*(td%v (ib,itide,1)*z_cost(itide) + td%v (ib,itide,2)*z_sist(itide))
- END DO
- END DO
- !
- IF( nn_timing == 1 ) CALL timing_stop('bdytide_update')
- !
- END SUBROUTINE bdytide_update
- SUBROUTINE bdy_dta_tides( kt, kit, time_offset )
- !!----------------------------------------------------------------------
- !! *** SUBROUTINE bdy_dta_tides ***
- !!
- !! ** Purpose : - Add tidal forcing to ssh, u2d and v2d OBC data arrays.
- !!
- !!----------------------------------------------------------------------
- INTEGER, INTENT( in ) :: kt ! Main timestep counter
- INTEGER, INTENT( in ),OPTIONAL :: kit ! Barotropic timestep counter (for timesplitting option)
- INTEGER, INTENT( in ),OPTIONAL :: time_offset ! time offset in units of timesteps. NB. if kit
- ! is present then units = subcycle timesteps.
- ! time_offset = 0 => get data at "now" time level
- ! time_offset = -1 => get data at "before" time level
- ! time_offset = +1 => get data at "after" time level
- ! etc.
- !!
- LOGICAL :: lk_first_btstp ! =.TRUE. if time splitting and first barotropic step
- INTEGER, DIMENSION(jpbgrd) :: ilen0
- INTEGER, DIMENSION(1:jpbgrd) :: nblen, nblenrim ! short cuts
- INTEGER :: itide, ib_bdy, ib, igrd ! loop indices
- INTEGER :: time_add ! time offset in units of timesteps
- REAL(wp) :: z_arg, z_sarg, zramp, zoff, z_cost, z_sist
- !!----------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('bdy_dta_tides')
- lk_first_btstp=.TRUE.
- IF ( PRESENT(kit).AND.( kit /= 1 ) ) THEN ; lk_first_btstp=.FALSE. ; ENDIF
- time_add = 0
- IF( PRESENT(time_offset) ) THEN
- time_add = time_offset
- ENDIF
-
- ! Absolute time from model initialization:
- IF( PRESENT(kit) ) THEN
- z_arg = ( kt + (kit+time_add-1) / REAL(nn_baro,wp) ) * rdt
- ELSE
- z_arg = ( kt + time_add ) * rdt
- ENDIF
- ! Linear ramp on tidal component at open boundaries
- zramp = 1.
- IF (ln_tide_ramp) zramp = MIN(MAX( (z_arg - nit000*rdt)/(rdttideramp*rday),0.),1.)
- DO ib_bdy = 1,nb_bdy
- IF ( nn_dyn2d_dta(ib_bdy) .ge. 2 ) THEN
- nblen(1:jpbgrd) = idx_bdy(ib_bdy)%nblen(1:jpbgrd)
- nblenrim(1:jpbgrd) = idx_bdy(ib_bdy)%nblenrim(1:jpbgrd)
- IF( cn_dyn2d(ib_bdy) == 'frs' ) THEN
- ilen0(:)=nblen(:)
- ELSE
- ilen0(:)=nblenrim(:)
- ENDIF
- ! We refresh nodal factors every day below
- ! This should be done somewhere else
- IF ( nsec_day == NINT(0.5_wp * rdttra(1)) .AND. lk_first_btstp ) THEN
- !
- kt_tide = kt
- !
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'bdy_tide_dta : Refresh nodal factors for tidal open bdy data at kt=',kt
- WRITE(numout,*) '~~~~~~~~~~~~~~ '
- ENDIF
- !
- CALL tide_init_elevation ( idx=idx_bdy(ib_bdy), td=tides(ib_bdy) )
- CALL tide_init_velocities( idx=idx_bdy(ib_bdy), td=tides(ib_bdy) )
- !
- ENDIF
- zoff = -kt_tide * rdt ! time offset relative to nodal factor computation time
- !
- ! If time splitting, save data at first barotropic iteration
- IF ( PRESENT(kit) ) THEN
- IF ( lk_first_btstp ) THEN ! Save slow varying open boundary data:
- IF ( dta_bdy(ib_bdy)%ll_ssh ) dta_bdy_s(ib_bdy)%ssh(1:ilen0(1)) = dta_bdy(ib_bdy)%ssh(1:ilen0(1))
- IF ( dta_bdy(ib_bdy)%ll_u2d ) dta_bdy_s(ib_bdy)%u2d(1:ilen0(2)) = dta_bdy(ib_bdy)%u2d(1:ilen0(2))
- IF ( dta_bdy(ib_bdy)%ll_v2d ) dta_bdy_s(ib_bdy)%v2d(1:ilen0(3)) = dta_bdy(ib_bdy)%v2d(1:ilen0(3))
- ELSE ! Initialize arrays from slow varying open boundary data:
- IF ( dta_bdy(ib_bdy)%ll_ssh ) dta_bdy(ib_bdy)%ssh(1:ilen0(1)) = dta_bdy_s(ib_bdy)%ssh(1:ilen0(1))
- IF ( dta_bdy(ib_bdy)%ll_u2d ) dta_bdy(ib_bdy)%u2d(1:ilen0(2)) = dta_bdy_s(ib_bdy)%u2d(1:ilen0(2))
- IF ( dta_bdy(ib_bdy)%ll_v2d ) dta_bdy(ib_bdy)%v2d(1:ilen0(3)) = dta_bdy_s(ib_bdy)%v2d(1:ilen0(3))
- ENDIF
- ENDIF
- !
- ! Update open boundary data arrays:
- DO itide = 1, nb_harmo
- !
- z_sarg = (z_arg + zoff) * omega_tide(itide)
- z_cost = zramp * COS( z_sarg )
- z_sist = zramp * SIN( z_sarg )
- !
- IF ( dta_bdy(ib_bdy)%ll_ssh ) THEN
- igrd=1 ! SSH on tracer grid
- DO ib = 1, ilen0(igrd)
- dta_bdy(ib_bdy)%ssh(ib) = dta_bdy(ib_bdy)%ssh(ib) + &
- & ( tides(ib_bdy)%ssh(ib,itide,1)*z_cost + &
- & tides(ib_bdy)%ssh(ib,itide,2)*z_sist )
- END DO
- ENDIF
- !
- IF ( dta_bdy(ib_bdy)%ll_u2d ) THEN
- igrd=2 ! U grid
- DO ib = 1, ilen0(igrd)
- dta_bdy(ib_bdy)%u2d(ib) = dta_bdy(ib_bdy)%u2d(ib) + &
- & ( tides(ib_bdy)%u(ib,itide,1)*z_cost + &
- & tides(ib_bdy)%u(ib,itide,2)*z_sist )
- END DO
- ENDIF
- !
- IF ( dta_bdy(ib_bdy)%ll_v2d ) THEN
- igrd=3 ! V grid
- DO ib = 1, ilen0(igrd)
- dta_bdy(ib_bdy)%v2d(ib) = dta_bdy(ib_bdy)%v2d(ib) + &
- & ( tides(ib_bdy)%v(ib,itide,1)*z_cost + &
- & tides(ib_bdy)%v(ib,itide,2)*z_sist )
- END DO
- ENDIF
- END DO
- END IF
- END DO
- !
- IF( nn_timing == 1 ) CALL timing_stop('bdy_dta_tides')
- !
- END SUBROUTINE bdy_dta_tides
- SUBROUTINE tide_init_elevation( idx, td )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tide_init_elevation ***
- !!----------------------------------------------------------------------
- TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices
- TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data
- !! * Local declarations
- INTEGER, DIMENSION(1) :: ilen0 !: length of boundary data (from OBC arrays)
- REAL(wp),ALLOCATABLE, DIMENSION(:) :: mod_tide, phi_tide
- INTEGER :: itide, igrd, ib ! dummy loop indices
- igrd=1
- ! SSH on tracer grid.
-
- ilen0(1) = SIZE(td%ssh0(:,1,1))
- ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd)))
- DO itide = 1, nb_harmo
- DO ib = 1, ilen0(igrd)
- mod_tide(ib)=SQRT(td%ssh0(ib,itide,1)**2.+td%ssh0(ib,itide,2)**2.)
- phi_tide(ib)=ATAN2(-td%ssh0(ib,itide,2),td%ssh0(ib,itide,1))
- END DO
- DO ib = 1 , ilen0(igrd)
- mod_tide(ib)=mod_tide(ib)*ftide(itide)
- phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide)
- ENDDO
- DO ib = 1 , ilen0(igrd)
- td%ssh(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib))
- td%ssh(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib))
- ENDDO
- END DO
- DEALLOCATE(mod_tide,phi_tide)
- END SUBROUTINE tide_init_elevation
- SUBROUTINE tide_init_velocities( idx, td )
- !!----------------------------------------------------------------------
- !! *** ROUTINE tide_init_elevation ***
- !!----------------------------------------------------------------------
- TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices
- TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data
- !! * Local declarations
- INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays)
- REAL(wp),ALLOCATABLE, DIMENSION(:) :: mod_tide, phi_tide
- INTEGER :: itide, igrd, ib ! dummy loop indices
- ilen0(2) = SIZE(td%u0(:,1,1))
- ilen0(3) = SIZE(td%v0(:,1,1))
- igrd=2 ! U grid.
- ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd)))
- DO itide = 1, nb_harmo
- DO ib = 1, ilen0(igrd)
- mod_tide(ib)=SQRT(td%u0(ib,itide,1)**2.+td%u0(ib,itide,2)**2.)
- phi_tide(ib)=ATAN2(-td%u0(ib,itide,2),td%u0(ib,itide,1))
- END DO
- DO ib = 1, ilen0(igrd)
- mod_tide(ib)=mod_tide(ib)*ftide(itide)
- phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide)
- ENDDO
- DO ib = 1, ilen0(igrd)
- td%u(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib))
- td%u(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib))
- ENDDO
- END DO
- DEALLOCATE(mod_tide,phi_tide)
- igrd=3 ! V grid.
- ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd)))
- DO itide = 1, nb_harmo
- DO ib = 1, ilen0(igrd)
- mod_tide(ib)=SQRT(td%v0(ib,itide,1)**2.+td%v0(ib,itide,2)**2.)
- phi_tide(ib)=ATAN2(-td%v0(ib,itide,2),td%v0(ib,itide,1))
- END DO
- DO ib = 1, ilen0(igrd)
- mod_tide(ib)=mod_tide(ib)*ftide(itide)
- phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide)
- ENDDO
- DO ib = 1, ilen0(igrd)
- td%v(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib))
- td%v(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib))
- ENDDO
- END DO
- DEALLOCATE(mod_tide,phi_tide)
- END SUBROUTINE tide_init_velocities
- #else
- !!----------------------------------------------------------------------
- !! Dummy module NO Unstruct Open Boundary Conditions for tides
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE bdytide_init ! Empty routine
- WRITE(*,*) 'bdytide_init: You should not have seen this print! error?'
- END SUBROUTINE bdytide_init
- SUBROUTINE bdytide_update( kt, jit ) ! Empty routine
- WRITE(*,*) 'bdytide_update: You should not have seen this print! error?', kt, jit
- END SUBROUTINE bdytide_update
- SUBROUTINE bdy_dta_tides( kt, kit, time_offset ) ! Empty routine
- INTEGER, INTENT( in ) :: kt ! Dummy argument empty routine
- INTEGER, INTENT( in ),OPTIONAL :: kit ! Dummy argument empty routine
- INTEGER, INTENT( in ),OPTIONAL :: time_offset ! Dummy argument empty routine
- WRITE(*,*) 'bdy_dta_tides: You should not have seen this print! error?', kt, jit
- END SUBROUTINE bdy_dta_tides
- #endif
- !!======================================================================
- END MODULE bdytides
|