| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- MODULE coastdist
- USE utils
- USE netcdf
- IMPLICIT NONE
- PUBLIC
- CONTAINS
- SUBROUTINE coast_dist_weight( presto )
- !!----------------------------------------------------------------------
- !! *** ROUTINE coast_dist_weight ***
- !!
- !! ** Purpose: Weight restoration coefficient by distance to coast
- !!
- !! ** Method: 1) Calculate distance to coast
- !! 2) Reduce resto with 1000km of coast
- !!
- IMPLICIT NONE
- REAL(wp), DIMENSION(jpi,jpj), INTENT( inout ) :: presto
- REAL(wp), DIMENSION(jpi,jpj) :: zdct
- REAL(wp) :: zinfl = 1000.e3_wp ! Distance of influence of coast line (could be
- ! a namelist setting)
- INTEGER :: jj, ji ! dummy loop indices
-
- CALL cofdis( zdct )
- DO jj = 1, jpj
- DO ji = 1, jpi
- zdct(ji,jj) = MIN( zinfl, zdct(ji,jj) )
- presto(ji,jj) = presto(ji, jj) * 0.5_wp * ( 1._wp - COS( rpi*zdct(ji,jj)/zinfl) )
- END DO
- END DO
- END SUBROUTINE coast_dist_weight
- SUBROUTINE cofdis( pdct )
- !!----------------------------------------------------------------------
- !! *** ROUTINE cofdis ***
- !!
- !! ** Purpose : Compute the distance between ocean T-points and the
- !! ocean model coastlines.
- !!
- !! ** Method : For each model level, the distance-to-coast is
- !! computed as follows :
- !! - The coastline is defined as the serie of U-,V-,F-points
- !! that are at the ocean-land bound.
- !! - For each ocean T-point, the distance-to-coast is then
- !! computed as the smallest distance (on the sphere) between the
- !! T-point and all the coastline points.
- !! - For land T-points, the distance-to-coast is set to zero.
- !!
- !! ** Action : - pdct, distance to the coastline (argument)
- !! - NetCDF file 'dist.coast.nc'
- !!----------------------------------------------------------------------
- !!
- REAL(wp), DIMENSION(jpi,jpj), INTENT( out ) :: pdct ! distance to the coastline
- !!
- INTEGER :: ji, jj, jl ! dummy loop indices
- INTEGER :: iju, ijt, icoast, itime, ierr, icot ! local integers
- CHARACTER (len=32) :: clname ! local name
- REAL(wp) :: zdate0 ! local scalar
- REAL(wp), POINTER, DIMENSION(:,:) :: zxt, zyt, zzt, zmask
- REAL(wp), POINTER, DIMENSION(: ) :: zxc, zyc, zzc, zdis ! temporary workspace
- LOGICAL , ALLOCATABLE, DIMENSION(:,:) :: llcotu, llcotv, llcotf ! 2D logical workspace
- !!----------------------------------------------------------------------
- !
- ALLOCATE( zxt(jpi,jpj) , zyt(jpi,jpj) , zzt(jpi,jpj) , zmask(jpi,jpj) )
- ALLOCATE(zxc(3*jpi*jpj), zyc(3*jpi*jpj), zzc(3*jpi*jpj), zdis(3*jpi*jpj) )
- ALLOCATE( llcotu(jpi,jpj), llcotv(jpi,jpj), llcotf(jpi,jpj) )
- ALLOCATE( gphiu(jpi,jpj), gphiv(jpi,jpj), gphif(jpi,jpj) )
- ALLOCATE( glamu(jpi,jpj), glamv(jpi,jpj), glamf(jpi,jpj), glamt(jpi,jpj) )
- ALLOCATE( umask(jpi,jpj), vmask(jpi,jpj), fmask(jpi,jpj) )
- !
- CALL check_nf90( nf90_get_var( ncin, gphit_id, gphit, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, gphiu_id, gphiu, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, gphiv_id, gphiv, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, gphif_id, gphif, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, glamt_id, glamt, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, glamu_id, glamu, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, glamv_id, glamv, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, glamf_id, glamf, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, tmask_id, tmask, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, umask_id, umask, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, vmask_id, vmask, (/ 1,1 /), (/ jpi, jpj /) ) )
- CALL check_nf90( nf90_get_var( ncin, fmask_id, fmask, (/ 1,1 /), (/ jpi, jpj /) ) )
- pdct(:,:) = 0._wp
- zxt(:,:) = COS( rad * gphit(:,:) ) * COS( rad * glamt(:,:) )
- zyt(:,:) = COS( rad * gphit(:,:) ) * SIN( rad * glamt(:,:) )
- zzt(:,:) = SIN( rad * gphit(:,:) )
- ! Define the coastline points (U, V and F)
- DO jj = 2, jpj-1
- DO ji = 2, jpi-1
- zmask(ji,jj) = ( tmask(ji,jj+1) + tmask(ji+1,jj+1) &
- & + tmask(ji,jj ) + tmask(ji+1,jj ) )
- llcotu(ji,jj) = ( tmask(ji,jj ) + tmask(ji+1,jj ) == 1._wp )
- llcotv(ji,jj) = ( tmask(ji,jj ) + tmask(ji ,jj+1) == 1._wp )
- llcotf(ji,jj) = ( zmask(ji,jj) > 0._wp ) .AND. ( zmask(ji,jj) < 4._wp )
- END DO
- END DO
- ! Lateral boundaries conditions
- llcotu(:, 1 ) = umask(:, 2 ) == 1
- llcotu(:,jpj) = umask(:,jpj-1) == 1
- llcotv(:, 1 ) = vmask(:, 2 ) == 1
- llcotv(:,jpj) = vmask(:,jpj-1) == 1
- llcotf(:, 1 ) = fmask(:, 2 ) == 1
- llcotf(:,jpj) = fmask(:,jpj-1) == 1
- IF( jperio == 1 .OR. jperio == 4 .OR. jperio == 6 ) THEN
- llcotu( 1 ,:) = llcotu(jpi-1,:)
- llcotu(jpi,:) = llcotu( 2 ,:)
- llcotv( 1 ,:) = llcotv(jpi-1,:)
- llcotv(jpi,:) = llcotv( 2 ,:)
- llcotf( 1 ,:) = llcotf(jpi-1,:)
- llcotf(jpi,:) = llcotf( 2 ,:)
- ELSE
- llcotu( 1 ,:) = umask( 2 ,:) == 1
- llcotu(jpi,:) = umask(jpi-1,:) == 1
- llcotv( 1 ,:) = vmask( 2 ,:) == 1
- llcotv(jpi,:) = vmask(jpi-1,:) == 1
- llcotf( 1 ,:) = fmask( 2 ,:) == 1
- llcotf(jpi,:) = fmask(jpi-1,:) == 1
- ENDIF
- IF( jperio == 3 .OR. jperio == 4 ) THEN
- DO ji = 1, jpi-1
- iju = jpi - ji + 1
- llcotu(ji,jpj ) = llcotu(iju,jpj-2)
- llcotf(ji,jpj-1) = llcotf(iju,jpj-2)
- llcotf(ji,jpj ) = llcotf(iju,jpj-3)
- END DO
- DO ji = jpi/2, jpi-1
- iju = jpi - ji + 1
- llcotu(ji,jpj-1) = llcotu(iju,jpj-1)
- END DO
- DO ji = 2, jpi
- ijt = jpi - ji + 2
- llcotv(ji,jpj-1) = llcotv(ijt,jpj-2)
- llcotv(ji,jpj ) = llcotv(ijt,jpj-3)
- END DO
- ENDIF
- IF( jperio == 5 .OR. jperio == 6 ) THEN
- DO ji = 1, jpi-1
- iju = jpi - ji
- llcotu(ji,jpj ) = llcotu(iju,jpj-1)
- llcotf(ji,jpj ) = llcotf(iju,jpj-2)
- END DO
- DO ji = jpi/2, jpi-1
- iju = jpi - ji
- llcotf(ji,jpj-1) = llcotf(iju,jpj-1)
- END DO
- DO ji = 1, jpi
- ijt = jpi - ji + 1
- llcotv(ji,jpj ) = llcotv(ijt,jpj-1)
- END DO
- DO ji = jpi/2+1, jpi
- ijt = jpi - ji + 1
- llcotv(ji,jpj-1) = llcotv(ijt,jpj-1)
- END DO
- ENDIF
- ! Compute cartesian coordinates of coastline points
- ! and the number of coastline points
- icoast = 0
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( llcotf(ji,jj) ) THEN
- icoast = icoast + 1
- zxc(icoast) = COS( rad*gphif(ji,jj) ) * COS( rad*glamf(ji,jj) )
- zyc(icoast) = COS( rad*gphif(ji,jj) ) * SIN( rad*glamf(ji,jj) )
- zzc(icoast) = SIN( rad*gphif(ji,jj) )
- ENDIF
- IF( llcotu(ji,jj) ) THEN
- icoast = icoast+1
- zxc(icoast) = COS( rad*gphiu(ji,jj) ) * COS( rad*glamu(ji,jj) )
- zyc(icoast) = COS( rad*gphiu(ji,jj) ) * SIN( rad*glamu(ji,jj) )
- zzc(icoast) = SIN( rad*gphiu(ji,jj) )
- ENDIF
- IF( llcotv(ji,jj) ) THEN
- icoast = icoast+1
- zxc(icoast) = COS( rad*gphiv(ji,jj) ) * COS( rad*glamv(ji,jj) )
- zyc(icoast) = COS( rad*gphiv(ji,jj) ) * SIN( rad*glamv(ji,jj) )
- zzc(icoast) = SIN( rad*gphiv(ji,jj) )
- ENDIF
- END DO
- END DO
- ! Distance for the T-points
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( tmask(ji,jj) == 0._wp ) THEN
- pdct(ji,jj) = 0._wp
- ELSE
- DO jl = 1, icoast
- zdis(jl) = ( zxt(ji,jj) - zxc(jl) )**2 &
- & + ( zyt(ji,jj) - zyc(jl) )**2 &
- & + ( zzt(ji,jj) - zzc(jl) )**2
- END DO
- pdct(ji,jj) = ra * SQRT( MINVAL( zdis(1:icoast) ) )
- ENDIF
- END DO
- END DO
- DEALLOCATE( zxt , zyt , zzt , zmask )
- DEALLOCATE(zxc, zyc, zzc, zdis )
- DEALLOCATE( llcotu, llcotv, llcotf )
- DEALLOCATE( gphiu, gphiv, gphif )
- DEALLOCATE( glamu, glamv, glamf, glamt )
- DEALLOCATE( umask, vmask, fmask )
- END SUBROUTINE cofdis
- END MODULE coastdist
|