123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- MODULE traadv_mle
- !!======================================================================
- !! *** MODULE traadv_mle ***
- !! Ocean tracers: Mixed Layer Eddy induced transport
- !!======================================================================
- !! History : 3.3 ! 2010-08 (G. Madec) Original code
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! tra_adv_mle : update the effective transport with the Mixed Layer Eddy induced transport
- !! tra_adv_mle_init : initialisation of the Mixed Layer Eddy induced transport computation
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers variables
- USE dom_oce ! ocean space and time domain variables
- USE phycst ! physical constant
- USE zdfmxl ! mixed layer depth
- USE lbclnk ! lateral boundary condition / mpp link
- USE in_out_manager ! I/O manager
- USE iom ! IOM library
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE timing ! Timing
- IMPLICIT NONE
- PRIVATE
- PUBLIC tra_adv_mle ! routine called in traadv.F90
- PUBLIC tra_adv_mle_init ! routine called in traadv.F90
- ! !!* namelist namtra_adv_mle *
- LOGICAL, PUBLIC :: ln_mle ! flag to activate the Mixed Layer Eddy (MLE) parameterisation
- INTEGER :: nn_mle ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
- INTEGER :: nn_mld_uv ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
- INTEGER :: nn_conv ! =1 no MLE in case of convection ; =0 always MLE
- REAL(wp) :: rn_ce ! MLE coefficient
- ! ! parameters used in nn_mle = 0 case
- REAL(wp) :: rn_lf ! typical scale of mixed layer front
- REAL(wp) :: rn_time ! time scale for mixing momentum across the mixed layer
- ! ! parameters used in nn_mle = 1 case
- REAL(wp) :: rn_lat ! reference latitude for a 5 km scale of ML front
- REAL(wp) :: rn_rho_c_mle ! Density criterion for definition of MLD used by FK
- REAL(wp) :: r5_21 = 5.e0 / 21.e0 ! factor used in mle streamfunction computation
- REAL(wp) :: rb_c ! ML buoyancy criteria = g rho_c /rau0 where rho_c is defined in zdfmld
- REAL(wp) :: rc_f ! MLE coefficient (= rn_ce / (5 km * fo) ) in nn_mle=1 case
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: rfu, rfv ! modified Coriolis parameter (f+tau) at u- & v-pts
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: r1_ft ! inverse of the modified Coriolis parameter at t-pts
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO Consortium (2011)
- !! $Id: traadv_mle.F90 2355 2015-05-20 07:11:50Z ufla $
- !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE tra_adv_mle( kt, kit000, pu, pv, pw, cdtype )
- !!----------------------------------------------------------------------
- !! *** ROUTINE adv_mle ***
- !!
- !! ** Purpose : Add to the transport the Mixed Layer Eddy induced transport
- !!
- !! ** Method : The 3 components of the Mixed Layer Eddy (MLE) induced
- !! transport are computed as follows :
- !! zu_mle = dk[ zpsi_uw ]
- !! zv_mle = dk[ zpsi_vw ]
- !! zw_mle = - di[ zpsi_uw ] - dj[ zpsi_vw ]
- !! where zpsi is the MLE streamfunction at uw and vw points (see the doc)
- !! and added to the input velocity :
- !! p.n = p.n + z._mle
- !!
- !! ** Action : - (pun,pvn,pwn) increased by the mle transport
- !! CAUTION, the transport is not updated at the last line/raw
- !! this may be a problem for some advection schemes
- !!
- !! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
- !! Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
- !!----------------------------------------------------------------------
- !
- INTEGER , INTENT(in ) :: kt ! ocean time-step index
- INTEGER , INTENT(in ) :: kit000 ! first time step index
- CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu ! in : 3 ocean transport components
- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pv ! out: same 3 transport components
- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pw ! increased by the MLE induced transport
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: ikmax ! temporary integer
- REAL(wp) :: zcuw, zmuw ! local scalar
- REAL(wp) :: zcvw, zmvw ! - -
- REAL(wp) :: zc ! - -
- INTEGER :: ii, ij, ik ! local integers
- INTEGER, DIMENSION(3) :: ilocu !
- INTEGER, DIMENSION(2) :: ilocs !
- REAL(wp), POINTER, DIMENSION(:,: ) :: zpsim_u, zpsim_v, zmld, zbm, zhu, zhv, zn2, zLf_NH, zLf_MH
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zpsi_uw, zpsi_vw
- INTEGER, POINTER, DIMENSION(:,:) :: inml_mle
- !!----------------------------------------------------------------------
- IF( nn_timing == 1 ) CALL timing_start('tra_adv_mle')
- CALL wrk_alloc( jpi, jpj, zpsim_u, zpsim_v, zmld, zbm, zhu, zhv, zn2, zLf_NH, zLf_MH)
- CALL wrk_alloc( jpi, jpj, jpk, zpsi_uw, zpsi_vw)
- CALL wrk_alloc( jpi, jpj, inml_mle)
- !
- ! !== MLD used for MLE ==!
- ! ! compute from the 10m density to deal with the diurnal cycle
- inml_mle(:,:) = mbkt(:,:) + 1 ! init. to number of ocean w-level (T-level + 1)
- DO jk = jpkm1, nlb10, -1 ! from the bottom to nlb10 (10m)
- DO jj = 1, jpj
- DO ji = 1, jpi ! index of the w-level at the ML based
- IF( rhop(ji,jj,jk) > rhop(ji,jj,nla10) + rn_rho_c_mle ) inml_mle(ji,jj) = jk ! Mixed layer
- END DO
- END DO
- END DO
- ikmax = MIN( MAXVAL( inml_mle(:,:) ), jpkm1 ) ! max level of the computation
- !
- !
- zmld(:,:) = 0._wp !== Horizontal shape of the MLE ==!
- zbm (:,:) = 0._wp
- zn2 (:,:) = 0._wp
- DO jk = 1, ikmax ! MLD and mean buoyancy and N2 over the mixed layer
- DO jj = 1, jpj
- DO ji = 1, jpi
- zc = fse3t(ji,jj,jk) * REAL( MIN( MAX( 0, inml_mle(ji,jj)-jk ) , 1 ) ) ! zc being 0 outside the ML t-points
- zmld(ji,jj) = zmld(ji,jj) + zc
- zbm (ji,jj) = zbm (ji,jj) + zc * (rau0 - rhop(ji,jj,jk) ) * r1_rau0
- zn2 (ji,jj) = zn2 (ji,jj) + zc * (rn2(ji,jj,jk)+rn2(ji,jj,jk+1))*0.5_wp
- END DO
- END DO
- END DO
- SELECT CASE( nn_mld_uv ) ! MLD at u- & v-pts
- CASE ( 0 ) != min of the 2 neighbour MLDs
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zhu(ji,jj) = MIN( zmld(ji+1,jj), zmld(ji,jj) )
- zhv(ji,jj) = MIN( zmld(ji,jj+1), zmld(ji,jj) )
- END DO
- END DO
- CASE ( 1 ) != average of the 2 neighbour MLDs
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zhu(ji,jj) = ( zmld(ji+1,jj) + zmld(ji,jj) ) * 0.5_wp
- zhv(ji,jj) = ( zmld(ji,jj+1) + zmld(ji,jj) ) * 0.5_wp
- END DO
- END DO
- CASE ( 2 ) != max of the 2 neighbour MLDs
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zhu(ji,jj) = MAX( zmld(ji+1,jj), zmld(ji,jj) )
- zhv(ji,jj) = MAX( zmld(ji,jj+1), zmld(ji,jj) )
- END DO
- END DO
- END SELECT
- ! ! convert density into buoyancy
- zbm(:,:) = + grav * zbm(:,:) / MAX( fse3t(:,:,1), zmld(:,:) )
- !
- !
- ! !== Magnitude of the MLE stream function ==!
- !
- ! di[bm] Ds
- ! Psi = Ce H^2 ---------------- e2u mu(z) where fu Lf = MAX( fu*rn_fl , (Db H)^1/2 )
- ! e1u Lf fu and the e2u for the "transport"
- ! (not *e3u as divided by e3u at the end)
- !
- IF( nn_mle == 0 ) THEN ! Fox-Kemper et al. 2010 formulation
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zpsim_u(ji,jj) = rn_ce * zhu(ji,jj) * zhu(ji,jj) * e2u(ji,jj) &
- & * ( zbm(ji+1,jj) - zbm(ji,jj) ) * MIN( 111.e3_wp , e1u(ji,jj) ) &
- & / ( e1u(ji,jj) * MAX( rn_lf * rfu(ji,jj) , SQRT( rb_c * zhu(ji,jj) ) ) )
- !
- zpsim_v(ji,jj) = rn_ce * zhv(ji,jj) * zhv(ji,jj) * e1v(ji,jj) &
- & * ( zbm(ji,jj+1) - zbm(ji,jj) ) * MIN( 111.e3_wp , e2v(ji,jj) ) &
- & / ( e2v(ji,jj) * MAX( rn_lf * rfv(ji,jj) , SQRT( rb_c * zhv(ji,jj) ) ) )
- END DO
- END DO
- !
- ELSEIF( nn_mle == 1 ) THEN ! New formulation (Lf = 5km fo/ff with fo=Coriolis parameter at latitude rn_lat)
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zpsim_u(ji,jj) = rc_f * zhu(ji,jj) * zhu(ji,jj) * e2u(ji,jj) / e1u(ji,jj) &
- & * ( zbm(ji+1,jj) - zbm(ji,jj) ) * MIN( 111.e3_wp , e1u(ji,jj) )
- !
- zpsim_v(ji,jj) = rc_f * zhv(ji,jj) * zhv(ji,jj) * e1v(ji,jj) / e2v(ji,jj) &
- & * ( zbm(ji,jj+1) - zbm(ji,jj) ) * MIN( 111.e3_wp , e2v(ji,jj) )
- END DO
- END DO
- ENDIF
- !
- IF( nn_conv == 1 ) THEN ! No MLE in case of convection
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- IF( MIN( zn2(ji,jj) , zn2(ji+1,jj) ) < 0._wp ) zpsim_u(ji,jj) = 0._wp
- IF( MIN( zn2(ji,jj) , zn2(ji,jj+1) ) < 0._wp ) zpsim_v(ji,jj) = 0._wp
- END DO
- END DO
- ENDIF
- !
- ! !== structure function value at uw- and vw-points ==!
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zhu(ji,jj) = 1._wp / zhu(ji,jj) ! hu --> 1/hu
- zhv(ji,jj) = 1._wp / zhv(ji,jj)
- END DO
- END DO
- !
- zpsi_uw(:,:,:) = 0._wp
- zpsi_vw(:,:,:) = 0._wp
- !
- DO jk = 2, ikmax ! start from 2 : surface value = 0
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- zcuw = 1._wp - ( fsdepw(ji+1,jj,jk) + fsdepw(ji,jj,jk) ) * zhu(ji,jj)
- zcvw = 1._wp - ( fsdepw(ji,jj+1,jk) + fsdepw(ji,jj,jk) ) * zhv(ji,jj)
- zcuw = zcuw * zcuw
- zcvw = zcvw * zcvw
- zmuw = MAX( 0._wp , ( 1._wp - zcuw ) * ( 1._wp + r5_21 * zcuw ) )
- zmvw = MAX( 0._wp , ( 1._wp - zcvw ) * ( 1._wp + r5_21 * zcvw ) )
- !
- zpsi_uw(ji,jj,jk) = zpsim_u(ji,jj) * zmuw * umask(ji,jj,jk)
- zpsi_vw(ji,jj,jk) = zpsim_v(ji,jj) * zmvw * vmask(ji,jj,jk)
- END DO
- END DO
- END DO
- !
- ! !== transport increased by the MLE induced transport ==!
- DO jk = 1, ikmax
- DO jj = 1, jpjm1 ! CAUTION pu,pv must be defined at row/column i=1 / j=1
- DO ji = 1, fs_jpim1 ! vector opt.
- pu(ji,jj,jk) = pu(ji,jj,jk) + ( zpsi_uw(ji,jj,jk) - zpsi_uw(ji,jj,jk+1) )
- pv(ji,jj,jk) = pv(ji,jj,jk) + ( zpsi_vw(ji,jj,jk) - zpsi_vw(ji,jj,jk+1) )
- END DO
- END DO
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- pw(ji,jj,jk) = pw(ji,jj,jk) - ( zpsi_uw(ji,jj,jk) - zpsi_uw(ji-1,jj,jk) &
- & + zpsi_vw(ji,jj,jk) - zpsi_vw(ji,jj-1,jk) )
- END DO
- END DO
- END DO
- IF( cdtype == 'TRA') THEN !== outputs ==!
- !
- zLf_NH(:,:) = SQRT( rb_c * zmld(:,:) ) * r1_ft(:,:) ! Lf = N H / f
- CALL iom_put( "Lf_NHpf" , zLf_NH ) ! Lf = N H / f
- !
- ! divide by cross distance to give streamfunction with dimensions m^2/s
- DO jk = 1, ikmax+1
- zpsi_uw(:,:,jk) = zpsi_uw(:,:,jk)/e2u(:,:)
- zpsi_vw(:,:,jk) = zpsi_vw(:,:,jk)/e1v(:,:)
- END DO
- CALL iom_put( "psiu_mle", zpsi_uw ) ! i-mle streamfunction
- CALL iom_put( "psiv_mle", zpsi_vw ) ! j-mle streamfunction
- ENDIF
- CALL wrk_dealloc( jpi, jpj, zpsim_u, zpsim_v, zmld, zbm, zhu, zhv, zn2, zLf_NH, zLf_MH)
- CALL wrk_dealloc( jpi, jpj, jpk, zpsi_uw, zpsi_vw)
- CALL wrk_dealloc( jpi, jpj, inml_mle)
- IF( nn_timing == 1 ) CALL timing_stop('tra_adv_mle')
- !
- END SUBROUTINE tra_adv_mle
- SUBROUTINE tra_adv_mle_init
- !!---------------------------------------------------------------------
- !! *** ROUTINE tra_adv_mle_init ***
- !!
- !! ** Purpose : Control the consistency between namelist options for
- !! tracer advection schemes and set nadv
- !!----------------------------------------------------------------------
- INTEGER :: ji, jj, jk ! dummy loop indices
- INTEGER :: ierr
- INTEGER :: ios ! Local integer output status for namelist read
- REAL(wp) :: z1_t2, zfu, zfv ! - -
- !
- NAMELIST/namtra_adv_mle/ ln_mle , nn_mle, rn_ce, rn_lf, rn_time, rn_lat, nn_mld_uv, nn_conv, rn_rho_c_mle
- !!----------------------------------------------------------------------
- REWIND( numnam_ref ) ! Namelist namtra_adv_mle in reference namelist : Tracer advection scheme
- READ ( numnam_ref, namtra_adv_mle, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_adv_mle in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namtra_adv_mle in configuration namelist : Tracer advection scheme
- READ ( numnam_cfg, namtra_adv_mle, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_adv_mle in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namtra_adv_mle )
- IF(lwp) THEN ! Namelist print
- WRITE(numout,*)
- WRITE(numout,*) 'tra_adv_mle_init : mixed layer eddy (MLE) advection acting on tracers'
- WRITE(numout,*) '~~~~~~~~~~~~~~~~'
- WRITE(numout,*) ' Namelist namtra_adv_mle : mixed layer eddy advection on tracers'
- WRITE(numout,*) ' use mixed layer eddy (MLE, i.e. Fox-Kemper param) (T/F) ln_mle = ', ln_mle
- WRITE(numout,*) ' MLE type: =0 standard Fox-Kemper ; =1 new formulation nn_mle = ', nn_mle
- WRITE(numout,*) ' magnitude of the MLE (typical value: 0.06 to 0.08) rn_ce = ', rn_ce
- WRITE(numout,*) ' scale of ML front (ML radius of deformation) (rn_mle=0) rn_lf = ', rn_lf, 'm'
- WRITE(numout,*) ' maximum time scale of MLE (rn_mle=0) rn_time = ', rn_time, 's'
- WRITE(numout,*) ' reference latitude (degrees) of MLE coef. (rn_mle=1) rn_lat = ', rn_lat, 'deg'
- WRITE(numout,*) ' space interp. of MLD at u-(v-)pts (0=min,1=averaged,2=max) nn_mld_uv = ', nn_mld_uv
- WRITE(numout,*) ' =1 no MLE in case of convection ; =0 always MLE nn_conv = ', nn_conv
- WRITE(numout,*) ' Density difference used to define ML for FK rn_rho_c_mle = ', rn_rho_c_mle
- ENDIF
- !
- IF(lwp) THEN
- WRITE(numout,*)
- IF( ln_mle ) THEN
- WRITE(numout,*) ' Mixed Layer Eddy induced transport added to tracer advection'
- IF( nn_mle == 0 ) WRITE(numout,*) ' Fox-Kemper et al 2010 formulation'
- IF( nn_mle == 1 ) WRITE(numout,*) ' New formulation'
- ELSE
- WRITE(numout,*) ' Mixed Layer Eddy parametrisation NOT used'
- ENDIF
- ENDIF
- !
- IF( ln_mle ) THEN ! MLE initialisation
- !
- rb_c = grav * rn_rho_c_mle /rau0 ! Mixed Layer buoyancy criteria
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ML buoyancy criteria = ', rb_c, ' m/s2 '
- IF(lwp) WRITE(numout,*) ' associated ML density criteria defined in zdfmxl = ', rho_c, 'kg/m3'
- !
- IF( nn_mle == 0 ) THEN ! MLE array allocation & initialisation
- ALLOCATE( rfu(jpi,jpj) , rfv(jpi,jpj) , STAT= ierr )
- IF( ierr /= 0 ) CALL ctl_stop( 'tra_adv_mle_init: failed to allocate arrays' )
- z1_t2 = 1._wp / ( rn_time * rn_time )
- DO jj = 2, jpj ! "coriolis+ time^-1" at u- & v-points
- DO ji = fs_2, jpi ! vector opt.
- zfu = ( ff(ji,jj) + ff(ji,jj-1) ) * 0.5_wp
- zfv = ( ff(ji,jj) + ff(ji-1,jj) ) * 0.5_wp
- rfu(ji,jj) = SQRT( zfu * zfu + z1_t2 )
- rfv(ji,jj) = SQRT( zfv * zfv + z1_t2 )
- END DO
- END DO
- CALL lbc_lnk( rfu, 'U', 1. ) ; CALL lbc_lnk( rfv, 'V', 1. )
- !
- ELSEIF( nn_mle == 1 ) THEN ! MLE array allocation & initialisation
- rc_f = rn_ce / ( 5.e3_wp * 2._wp * omega * SIN( rad * rn_lat ) )
- !
- ENDIF
- !
- ! ! 1/(f^2+tau^2)^1/2 at t-point (needed in both nn_mle case)
- ALLOCATE( r1_ft(jpi,jpj) , STAT= ierr )
- IF( ierr /= 0 ) CALL ctl_stop( 'tra_adv_mle_init: failed to allocate r1_ft array' )
- !
- z1_t2 = 1._wp / ( rn_time * rn_time )
- r1_ft(:,:) = 2._wp * omega * SIN( rad * gphit(:,:) )
- r1_ft(:,:) = 1._wp / SQRT( r1_ft(:,:) * r1_ft(:,:) + z1_t2 )
- !
- ENDIF
- !
- END SUBROUTINE tra_adv_mle_init
- !!==============================================================================
- END MODULE traadv_mle
|