123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385 |
- /* Do not edit this file. It is produced from the corresponding .m4 source */
- /*
- * Copyright 1996, University Corporation for Atmospheric Research
- * See netcdf/COPYRIGHT file for copying and redistribution conditions.
- *
- * This file contains some routines derived from code
- * which is copyrighted by Sun Microsystems, Inc.
- * The "#ifdef vax" versions of
- * ncx_put_float_float()
- * ncx_get_float_float()
- * ncx_put_double_double()
- * ncx_get_double_double()
- * ncx_putn_float_float()
- * ncx_getn_float_float()
- * ncx_putn_double_double()
- * ncx_getn_double_double()
- * are derived from xdr_float() and xdr_double() routines
- * in the freely available, copyrighted Sun RPCSRC 3.9
- * distribution, xdr_float.c.
- * Our "value added" is that these are always memory to memory,
- * they handle IEEE subnormals properly, and their "n" versions
- * operate speedily on arrays.
- */
- /* $Id: ncx.m4,v 2.58 2010/05/26 18:11:08 dmh Exp $ */
- /*
- * An external data representation interface.
- */
- #include "ncx.h"
- #include "nc3dispatch.h"
- #include <string.h>
- #include <limits.h>
- /* alias poorly named limits.h macros */
- #define SHORT_MAX SHRT_MAX
- #define SHORT_MIN SHRT_MIN
- #define USHORT_MAX USHRT_MAX
- #ifndef LLONG_MAX
- # define LLONG_MAX 9223372036854775807LL
- # define LLONG_MIN (-LLONG_MAX - 1LL)
- # define ULLONG_MAX 18446744073709551615ULL
- #endif
- #define LONG_LONG_MAX LLONG_MAX
- #define LONG_LONG_MIN LLONG_MIN
- #define ULONG_LONG_MAX ULLONG_MAX
- #include <float.h>
- #ifndef FLT_MAX /* This POSIX macro missing on some systems */
- # ifndef NO_IEEE_FLOAT
- # define FLT_MAX 3.40282347e+38f
- # else
- # error "You will need to define FLT_MAX"
- # endif
- #endif
- /* alias poorly named float.h macros */
- #define FLOAT_MAX FLT_MAX
- #define FLOAT_MIN (-FLT_MAX)
- #define DOUBLE_MAX DBL_MAX
- #define DOUBLE_MIN (-DBL_MAX)
- #define FLOAT_MAX_EXP FLT_MAX_EXP
- #define DOUBLE_MAX_EXP DBL_MAX_EXP
- #include <assert.h>
- #define UCHAR_MIN 0
- #define Min(a,b) ((a) < (b) ? (a) : (b))
- #define Max(a,b) ((a) > (b) ? (a) : (b))
- /*
- * If the machine's float domain is "smaller" than the external one
- * use the machine domain
- */
- #if defined(FLT_MAX_EXP) && FLT_MAX_EXP < 128 /* 128 is X_FLT_MAX_EXP */
- #undef X_FLOAT_MAX
- # define X_FLOAT_MAX FLT_MAX
- #undef X_FLOAT_MIN
- # define X_FLOAT_MIN (-X_FLOAT_MAX)
- #endif
- #if _SX /* NEC SUPER UX */
- #define LOOPCNT 256 /* must be no longer than hardware vector length */
- #if _INT64
- #undef INT_MAX /* workaround cpp bug */
- #define INT_MAX X_INT_MAX
- #undef INT_MIN /* workaround cpp bug */
- #define INT_MIN X_INT_MIN
- #undef LONG_MAX /* workaround cpp bug */
- #define LONG_MAX X_INT_MAX
- #undef LONG_MIN /* workaround cpp bug */
- #define LONG_MIN X_INT_MIN
- #elif _LONG64
- #undef LONG_MAX /* workaround cpp bug */
- #define LONG_MAX 4294967295L
- #undef LONG_MIN /* workaround cpp bug */
- #define LONG_MIN -4294967295L
- #endif
- #if !_FLOAT0
- #error "FLOAT1 and FLOAT2 not supported"
- #endif
- #endif /* _SX */
- static const char nada[X_ALIGN] = {0, 0, 0, 0};
- #ifndef WORDS_BIGENDIAN
- /* LITTLE_ENDIAN: DEC and intel */
- /*
- * Routines to convert to BIGENDIAN.
- * Optimize the swapn?b() and swap?b() routines aggressivly.
- */
- #define SWAP2(a) ( (((a) & 0xff) << 8) | \
- (((a) >> 8) & 0xff) )
- #define SWAP4(a) ( ((a) << 24) | \
- (((a) << 8) & 0x00ff0000) | \
- (((a) >> 8) & 0x0000ff00) | \
- (((a) >> 24) & 0x000000ff) )
- static void
- swapn2b(void *dst, const void *src, size_t nn)
- {
- char *op = dst;
- const char *ip = src;
- /* unroll the following to reduce loop overhead
- *
- * while(nn-- != 0)
- * {
- * *op++ = *(++ip);
- * *op++ = *(ip++ -1);
- * }
- */
- while(nn > 3)
- {
- *op++ = *(++ip);
- *op++ = *(ip++ -1);
- *op++ = *(++ip);
- *op++ = *(ip++ -1);
- *op++ = *(++ip);
- *op++ = *(ip++ -1);
- *op++ = *(++ip);
- *op++ = *(ip++ -1);
- nn -= 4;
- }
- while(nn-- != 0)
- {
- *op++ = *(++ip);
- *op++ = *(ip++ -1);
- }
- }
- # ifndef vax
- static void
- swap4b(void *dst, const void *src)
- {
- char *op = dst;
- const char *ip = src;
- op[0] = ip[3];
- op[1] = ip[2];
- op[2] = ip[1];
- op[3] = ip[0];
- }
- # endif /* !vax */
- static void
- swapn4b(void *dst, const void *src, size_t nn)
- {
- char *op = dst;
- const char *ip = src;
- /* unroll the following to reduce loop overhead
- * while(nn-- != 0)
- * {
- * op[0] = ip[3];
- * op[1] = ip[2];
- * op[2] = ip[1];
- * op[3] = ip[0];
- * op += 4;
- * ip += 4;
- * }
- */
- while(nn > 3)
- {
- op[0] = ip[3];
- op[1] = ip[2];
- op[2] = ip[1];
- op[3] = ip[0];
- op[4] = ip[7];
- op[5] = ip[6];
- op[6] = ip[5];
- op[7] = ip[4];
- op[8] = ip[11];
- op[9] = ip[10];
- op[10] = ip[9];
- op[11] = ip[8];
- op[12] = ip[15];
- op[13] = ip[14];
- op[14] = ip[13];
- op[15] = ip[12];
- op += 16;
- ip += 16;
- nn -= 4;
- }
- while(nn-- != 0)
- {
- op[0] = ip[3];
- op[1] = ip[2];
- op[2] = ip[1];
- op[3] = ip[0];
- op += 4;
- ip += 4;
- }
- }
- # ifndef vax
- static void
- swap8b(void *dst, const void *src)
- {
- char *op = dst;
- const char *ip = src;
- # ifndef FLOAT_WORDS_BIGENDIAN
- op[0] = ip[7];
- op[1] = ip[6];
- op[2] = ip[5];
- op[3] = ip[4];
- op[4] = ip[3];
- op[5] = ip[2];
- op[6] = ip[1];
- op[7] = ip[0];
- # else
- op[0] = ip[3];
- op[1] = ip[2];
- op[2] = ip[1];
- op[3] = ip[0];
- op[4] = ip[7];
- op[5] = ip[6];
- op[6] = ip[5];
- op[7] = ip[4];
- # endif
- }
- # endif /* !vax */
- # ifndef vax
- static void
- swapn8b(void *dst, const void *src, size_t nn)
- {
- char *op = dst;
- const char *ip = src;
- /* unroll the following to reduce loop overhead
- * while(nn-- != 0)
- * {
- * op[0] = ip[7];
- * op[1] = ip[6];
- * op[2] = ip[5];
- * op[3] = ip[4];
- * op[4] = ip[3];
- * op[5] = ip[2];
- * op[6] = ip[1];
- * op[7] = ip[0];
- * op += 8;
- * ip += 8;
- * }
- */
- # ifndef FLOAT_WORDS_BIGENDIAN
- while(nn > 1)
- {
- op[0] = ip[7];
- op[1] = ip[6];
- op[2] = ip[5];
- op[3] = ip[4];
- op[4] = ip[3];
- op[5] = ip[2];
- op[6] = ip[1];
- op[7] = ip[0];
- op[8] = ip[15];
- op[9] = ip[14];
- op[10] = ip[13];
- op[11] = ip[12];
- op[12] = ip[11];
- op[13] = ip[10];
- op[14] = ip[9];
- op[15] = ip[8];
- op += 16;
- ip += 16;
- nn -= 2;
- }
- while(nn-- != 0)
- {
- op[0] = ip[7];
- op[1] = ip[6];
- op[2] = ip[5];
- op[3] = ip[4];
- op[4] = ip[3];
- op[5] = ip[2];
- op[6] = ip[1];
- op[7] = ip[0];
- op += 8;
- ip += 8;
- }
- # else
- while(nn-- != 0)
- {
- op[0] = ip[3];
- op[1] = ip[2];
- op[2] = ip[1];
- op[3] = ip[0];
- op[4] = ip[7];
- op[5] = ip[6];
- op[6] = ip[5];
- op[7] = ip[4];
- op += 8;
- ip += 8;
- }
- # endif
- }
- # endif /* !vax */
- #endif /* LITTLE_ENDIAN */
- /*
- * Primitive numeric conversion functions.
- */
- /* x_schar */
- /* We don't implement any x_schar primitives. */
- /* x_short */
- #if SHORT_MAX == X_SHORT_MAX
- typedef short ix_short;
- #define SIZEOF_IX_SHORT SIZEOF_SHORT
- #define IX_SHORT_MAX SHORT_MAX
- #elif INT_MAX >= X_SHORT_MAX
- typedef int ix_short;
- #define SIZEOF_IX_SHORT SIZEOF_INT
- #define IX_SHORT_MAX INT_MAX
- #elif LONG_MAX >= X_SHORT_MAX
- typedef long ix_short;
- #define SIZEOF_IX_SHORT SIZEOF_LONG
- #define IX_SHORT_MAX LONG_MAX
- #elif LLONG_MAX >= X_SHORT_MAX
- typedef long long ix_short;
- #define SIZEOF_IX_SHORT SIZEOF_LONG_LONG
- #define IX_SHORT_MAX LLONG_MAX
- #else
- #error "ix_short implementation"
- #endif
- static void
- get_ix_short(const void *xp, ix_short *ip)
- {
- const uchar *cp = (const uchar *) xp;
- *ip = *cp++ << 8;
- #if SIZEOF_IX_SHORT > X_SIZEOF_SHORT
- if(*ip & 0x8000)
- {
- /* extern is negative */
- *ip |= (~(0xffff)); /* N.B. Assumes "twos complement" */
- }
- #endif
- *ip |= *cp;
- }
- static void
- put_ix_short(void *xp, const ix_short *ip)
- {
- uchar *cp = (uchar *) xp;
- *cp++ = (*ip) >> 8;
- *cp = (*ip) & 0xff;
- }
- int
- ncx_get_short_schar(const void *xp, schar *ip)
- {
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- if(xx > SCHAR_MAX || xx < SCHAR_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_short_uchar(const void *xp, uchar *ip)
- {
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- if(xx > UCHAR_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_short_short(const void *xp, short *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_SHORT && IX_SHORT_MAX == SHORT_MAX
- get_ix_short(xp, (ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- # if IX_SHORT_MAX > SHORT_MAX
- if(xx > SHORT_MAX || xx < SHORT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_get_short_int(const void *xp, int *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_INT && IX_SHORT_MAX == INT_MAX
- get_ix_short(xp, (ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- # if IX_SHORT_MAX > INT_MAX
- if(xx > INT_MAX || xx < INT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_get_short_uint(const void *xp, unsigned int *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_INT && IX_SHORT_MAX == INT_MAX
- get_ix_short(xp, (ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- # if IX_SHORT_MAX > INT_MAX
- if(xx > UINT_MAX || xx < 0)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_get_short_longlong(const void *xp, long long *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && IX_SHORT_MAX == LONG_LONG_MAX
- get_ix_short(xp, (ix_short *)ip);
- return ENOERR;
- #else
- /* assert(LONG_LONG_MAX >= X_SHORT_MAX); */
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- return ENOERR;
- #endif
- }
- int
- ncx_get_short_ulonglong(const void *xp, unsigned long long *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_LONG && IX_SHORT_MAX == LONG_MAX
- get_ix_short(xp, (ix_short *)ip);
- return ENOERR;
- #else
- /* assert(LONG_LONG_MAX >= X_SHORT_MAX); */
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- if(xx < 0)
- return NC_ERANGE;
- return ENOERR;
- #endif
- }
- int
- ncx_get_short_float(const void *xp, float *ip)
- {
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- #if 0 /* TODO: determine when necessary */
- if(xx > FLT_MAX || xx < (-FLT_MAX))
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_get_short_double(const void *xp, double *ip)
- {
- /* assert(DBL_MAX >= X_SHORT_MAX); */
- ix_short xx;
- get_ix_short(xp, &xx);
- *ip = xx;
- return ENOERR;
- }
- int
- ncx_put_short_schar(void *xp, const schar *ip)
- {
- uchar *cp = (uchar *) xp;
- if(*ip & 0x80)
- *cp++ = 0xff;
- else
- *cp++ = 0;
- *cp = (uchar)*ip;
- return ENOERR;
- }
- int
- ncx_put_short_uchar(void *xp, const uchar *ip)
- {
- uchar *cp = (uchar *) xp;
- *cp++ = 0;
- *cp = *ip;
- return ENOERR;
- }
- int
- ncx_put_short_short(void *xp, const short *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_SHORT && X_SHORT_MAX == SHORT_MAX
- put_ix_short(xp, (const ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx = (ix_short)*ip;
- put_ix_short(xp, &xx);
- # if X_SHORT_MAX < SHORT_MAX
- if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_short_int(void *xp, const int *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_INT && X_SHORT_MAX == INT_MAX
- put_ix_short(xp, (const ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx = (ix_short)*ip;
- put_ix_short(xp, &xx);
- # if X_SHORT_MAX < INT_MAX
- if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_short_uint(void *xp, const unsigned int *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_INT && X_SHORT_MAX == INT_MAX
- put_ix_short(xp, (const ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx = (ix_short)*ip;
- put_ix_short(xp, &xx);
- # if X_SHORT_MAX < INT_MAX
- if(*ip > X_SHORT_MAX)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_short_longlong(void *xp, const long long *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && X_SHORT_MAX == LONG_LONG_MAX
- put_ix_short(xp, (const ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx = (ix_short)*ip;
- put_ix_short(xp, &xx);
- # if X_SHORT_MAX < LONG_LONG_MAX
- if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_short_ulonglong(void *xp, const unsigned long long *ip)
- {
- #if SIZEOF_IX_SHORT == SIZEOF_LONG_LONG && X_SHORT_MAX == LONG_LONG_MAX
- put_ix_short(xp, (const ix_short *)ip);
- return ENOERR;
- #else
- ix_short xx = (ix_short)*ip;
- put_ix_short(xp, &xx);
- # if X_SHORT_MAX < LONG_LONG_MAX
- if(*ip > X_SHORT_MAX)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_short_float(void *xp, const float *ip)
- {
- ix_short xx = *ip;
- put_ix_short(xp, &xx);
- if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_put_short_double(void *xp, const double *ip)
- {
- ix_short xx = *ip;
- put_ix_short(xp, &xx);
- if(*ip > X_SHORT_MAX || *ip < X_SHORT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- /* x_int */
- #if SHORT_MAX == X_INT_MAX
- typedef short ix_int;
- #define SIZEOF_IX_INT SIZEOF_SHORT
- #define IX_INT_MAX SHORT_MAX
- #elif INT_MAX >= X_INT_MAX
- typedef int ix_int;
- #define SIZEOF_IX_INT SIZEOF_INT
- #define IX_INT_MAX INT_MAX
- #elif LONG_MAX >= X_INT_MAX
- typedef long ix_int;
- #define SIZEOF_IX_INT SIZEOF_LONG
- #define IX_INT_MAX LONG_MAX
- #else
- #error "ix_int implementation"
- #endif
- static void
- get_ix_int(const void *xp, ix_int *ip)
- {
- const uchar *cp = (const uchar *) xp;
- *ip = *cp++ << 24;
- #if SIZEOF_IX_INT > X_SIZEOF_INT
- if(*ip & 0x80000000)
- {
- /* extern is negative */
- *ip |= (~(0xffffffff)); /* N.B. Assumes "twos complement" */
- }
- #endif
- *ip |= (*cp++ << 16);
- *ip |= (*cp++ << 8);
- *ip |= *cp;
- }
- static void
- put_ix_int(void *xp, const ix_int *ip)
- {
- uchar *cp = (uchar *) xp;
- *cp++ = (*ip) >> 24;
- *cp++ = ((*ip) & 0x00ff0000) >> 16;
- *cp++ = ((*ip) & 0x0000ff00) >> 8;
- *cp = ((*ip) & 0x000000ff);
- }
- int
- ncx_get_int_schar(const void *xp, schar *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- if(xx > SCHAR_MAX || xx < SCHAR_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_int_uchar(const void *xp, uchar *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- if(xx > UCHAR_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_int_short(const void *xp, short *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_SHORT && IX_INT_MAX == SHORT_MAX
- get_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- # if IX_INT_MAX > SHORT_MAX
- if(xx > SHORT_MAX || xx < SHORT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_get_int_int(const void *xp, int *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX
- get_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- # if IX_INT_MAX > INT_MAX
- if(xx > INT_MAX || xx < INT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_get_int_uint(const void *xp, unsigned int *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- if(xx > UINT_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_int_longlong(const void *xp, long long *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- return ENOERR;
- }
- int
- ncx_get_int_ulonglong(const void *xp, unsigned long long *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- if(xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_int_float(const void *xp, float *ip)
- {
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- #if 0 /* TODO: determine when necessary */
- if(xx > FLT_MAX || xx < (-FLT_MAX))
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_get_int_double(const void *xp, double *ip)
- {
- /* assert((DBL_MAX >= X_INT_MAX); */
- ix_int xx;
- get_ix_int(xp, &xx);
- *ip = xx;
- return ENOERR;
- }
- int
- ncx_put_int_schar(void *xp, const schar *ip)
- {
- uchar *cp = (uchar *) xp;
- if(*ip & 0x80)
- {
- *cp++ = 0xff;
- *cp++ = 0xff;
- *cp++ = 0xff;
- }
- else
- {
- *cp++ = 0x00;
- *cp++ = 0x00;
- *cp++ = 0x00;
- }
- *cp = (uchar)*ip;
- return ENOERR;
- }
- int
- ncx_put_int_uchar(void *xp, const uchar *ip)
- {
- uchar *cp = (uchar *) xp;
- *cp++ = 0x00;
- *cp++ = 0x00;
- *cp++ = 0x00;
- *cp = *ip;
- return ENOERR;
- }
- int
- ncx_put_int_short(void *xp, const short *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_SHORT && IX_INT_MAX == SHORT_MAX
- put_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- # if IX_INT_MAX < SHORT_MAX
- if(*ip > X_INT_MAX || *ip < X_INT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_int_int(void *xp, const int *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX
- put_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- # if IX_INT_MAX < INT_MAX
- if(*ip > X_INT_MAX || *ip < X_INT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_int_uint(void *xp, const unsigned int *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_INT && IX_INT_MAX == INT_MAX
- put_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- if(*ip > X_UINT_MAX)
- return NC_ERANGE;
- return ENOERR;
- #endif
- }
- int
- ncx_put_int_longlong(void *xp, const longlong *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_LONG && IX_INT_MAX == LONG_MAX
- put_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- # if IX_INT_MAX < LONG_LONG_MAX
- if(*ip > X_INT_MAX || *ip < X_INT_MIN)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_int_ulonglong(void *xp, const unsigned long long *ip)
- {
- #if SIZEOF_IX_INT == SIZEOF_LONG && IX_INT_MAX == LONG_MAX
- put_ix_int(xp, (ix_int *)ip);
- return ENOERR;
- #else
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- # if IX_INT_MAX < LONG_MAX
- if(*ip > X_INT_MAX)
- return NC_ERANGE;
- # endif
- return ENOERR;
- #endif
- }
- int
- ncx_put_int_float(void *xp, const float *ip)
- {
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- if(*ip > (double)X_INT_MAX || *ip < (double)X_INT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_put_int_double(void *xp, const double *ip)
- {
- ix_int xx = (ix_int)(*ip);
- put_ix_int(xp, &xx);
- if(*ip > X_INT_MAX || *ip < X_INT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
-
- /* x_float */
- #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT)
- static void
- get_ix_float(const void *xp, float *ip)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(ip, xp, sizeof(float));
- #else
- swap4b(ip, xp);
- #endif
- }
- static void
- put_ix_float(void *xp, const float *ip)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(xp, ip, X_SIZEOF_FLOAT);
- #else
- swap4b(xp, ip);
- #endif
- }
- #elif vax
- /* What IEEE single precision floating point looks like on a Vax */
- struct ieee_single {
- unsigned int exp_hi : 7;
- unsigned int sign : 1;
- unsigned int mant_hi : 7;
- unsigned int exp_lo : 1;
- unsigned int mant_lo_hi : 8;
- unsigned int mant_lo_lo : 8;
- };
- /* Vax single precision floating point */
- struct vax_single {
- unsigned int mantissa1 : 7;
- unsigned int exp : 8;
- unsigned int sign : 1;
- unsigned int mantissa2 : 16;
- };
- #define VAX_SNG_BIAS 0x81
- #define IEEE_SNG_BIAS 0x7f
- static struct sgl_limits {
- struct vax_single s;
- struct ieee_single ieee;
- } max = {
- { 0x7f, 0xff, 0x0, 0xffff }, /* Max Vax */
- { 0x7f, 0x0, 0x0, 0x1, 0x0, 0x0 } /* Max IEEE */
- };
- static struct sgl_limits min = {
- { 0x0, 0x0, 0x0, 0x0 }, /* Min Vax */
- { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 } /* Min IEEE */
- };
- static void
- get_ix_float(const void *xp, float *ip)
- {
- struct vax_single *const vsp = (struct vax_single *) ip;
- const struct ieee_single *const isp =
- (const struct ieee_single *) xp;
- unsigned exp = isp->exp_hi << 1 | isp->exp_lo;
- switch(exp) {
- case 0 :
- /* ieee subnormal */
- if(isp->mant_hi == min.ieee.mant_hi
- && isp->mant_lo_hi == min.ieee.mant_lo_hi
- && isp->mant_lo_lo == min.ieee.mant_lo_lo)
- {
- *vsp = min.s;
- }
- else
- {
- unsigned mantissa = (isp->mant_hi << 16)
- | isp->mant_lo_hi << 8
- | isp->mant_lo_lo;
- unsigned tmp = mantissa >> 20;
- if(tmp >= 4) {
- vsp->exp = 2;
- } else if (tmp >= 2) {
- vsp->exp = 1;
- } else {
- *vsp = min.s;
- break;
- } /* else */
- tmp = mantissa - (1 << (20 + vsp->exp ));
- tmp <<= 3 - vsp->exp;
- vsp->mantissa2 = tmp;
- vsp->mantissa1 = (tmp >> 16);
- }
- break;
- case 0xfe :
- case 0xff :
- *vsp = max.s;
- break;
- default :
- vsp->exp = exp - IEEE_SNG_BIAS + VAX_SNG_BIAS;
- vsp->mantissa2 = isp->mant_lo_hi << 8 | isp->mant_lo_lo;
- vsp->mantissa1 = isp->mant_hi;
- }
- vsp->sign = isp->sign;
- }
- static void
- put_ix_float(void *xp, const float *ip)
- {
- const struct vax_single *const vsp =
- (const struct vax_single *)ip;
- struct ieee_single *const isp = (struct ieee_single *) xp;
- switch(vsp->exp){
- case 0 :
- /* all vax float with zero exponent map to zero */
- *isp = min.ieee;
- break;
- case 2 :
- case 1 :
- {
- /* These will map to subnormals */
- unsigned mantissa = (vsp->mantissa1 << 16)
- | vsp->mantissa2;
- mantissa >>= 3 - vsp->exp;
- mantissa += (1 << (20 + vsp->exp));
- isp->mant_lo_lo = mantissa;
- isp->mant_lo_hi = mantissa >> 8;
- isp->mant_hi = mantissa >> 16;
- isp->exp_lo = 0;
- isp->exp_hi = 0;
- }
- break;
- case 0xff : /* max.s.exp */
- if( vsp->mantissa2 == max.s.mantissa2
- && vsp->mantissa1 == max.s.mantissa1)
- {
- /* map largest vax float to ieee infinity */
- *isp = max.ieee;
- break;
- } /* else, fall thru */
- default :
- {
- unsigned exp = vsp->exp - VAX_SNG_BIAS + IEEE_SNG_BIAS;
- isp->exp_hi = exp >> 1;
- isp->exp_lo = exp;
- isp->mant_lo_lo = vsp->mantissa2;
- isp->mant_lo_hi = vsp->mantissa2 >> 8;
- isp->mant_hi = vsp->mantissa1;
- }
- }
- isp->sign = vsp->sign;
- }
- /* vax */
- #elif defined(_CRAY) && !defined(__crayx1)
- /*
- * Return the number of bytes until the next "word" boundary
- * N.B. This is based on the very wierd YMP address structure,
- * which puts the address within a word in the leftmost 3 bits
- * of the address.
- */
- static size_t
- word_align(const void *vp)
- {
- const size_t rem = ((size_t)vp >> (64 - 3)) & 0x7;
- return (rem != 0);
- }
- struct ieee_single_hi {
- unsigned int sign : 1;
- unsigned int exp : 8;
- unsigned int mant :23;
- unsigned int pad :32;
- };
- typedef struct ieee_single_hi ieee_single_hi;
- struct ieee_single_lo {
- unsigned int pad :32;
- unsigned int sign : 1;
- unsigned int exp : 8;
- unsigned int mant :23;
- };
- typedef struct ieee_single_lo ieee_single_lo;
- static const int ieee_single_bias = 0x7f;
- struct ieee_double {
- unsigned int sign : 1;
- unsigned int exp :11;
- unsigned int mant :52;
- };
- typedef struct ieee_double ieee_double;
- static const int ieee_double_bias = 0x3ff;
- #if defined(NO_IEEE_FLOAT)
- struct cray_single {
- unsigned int sign : 1;
- unsigned int exp :15;
- unsigned int mant :48;
- };
- typedef struct cray_single cray_single;
- static const int cs_ieis_bias = 0x4000 - 0x7f;
- static const int cs_id_bias = 0x4000 - 0x3ff;
- static void
- get_ix_float(const void *xp, float *ip)
- {
- if(word_align(xp) == 0)
- {
- const ieee_single_hi *isp = (const ieee_single_hi *) xp;
- cray_single *csp = (cray_single *) ip;
- if(isp->exp == 0)
- {
- /* ieee subnormal */
- *ip = (double)isp->mant;
- if(isp->mant != 0)
- {
- csp->exp -= (ieee_single_bias + 22);
- }
- }
- else
- {
- csp->exp = isp->exp + cs_ieis_bias + 1;
- csp->mant = isp->mant << (48 - 1 - 23);
- csp->mant |= (1 << (48 - 1));
- }
- csp->sign = isp->sign;
- }
- else
- {
- const ieee_single_lo *isp = (const ieee_single_lo *) xp;
- cray_single *csp = (cray_single *) ip;
- if(isp->exp == 0)
- {
- /* ieee subnormal */
- *ip = (double)isp->mant;
- if(isp->mant != 0)
- {
- csp->exp -= (ieee_single_bias + 22);
- }
- }
- else
- {
- csp->exp = isp->exp + cs_ieis_bias + 1;
- csp->mant = isp->mant << (48 - 1 - 23);
- csp->mant |= (1 << (48 - 1));
- }
- csp->sign = isp->sign;
- }
- }
- static void
- put_ix_float(void *xp, const float *ip)
- {
- if(word_align(xp) == 0)
- {
- ieee_single_hi *isp = (ieee_single_hi*)xp;
- const cray_single *csp = (const cray_single *) ip;
- int ieee_exp = csp->exp - cs_ieis_bias -1;
- isp->sign = csp->sign;
- if(ieee_exp >= 0xff)
- {
- /* NC_ERANGE => ieee Inf */
- isp->exp = 0xff;
- isp->mant = 0x0;
- }
- else if(ieee_exp > 0)
- {
- /* normal ieee representation */
- isp->exp = ieee_exp;
- /* assumes cray rep is in normal form */
- assert(csp->mant & 0x800000000000);
- isp->mant = (((csp->mant << 1) &
- 0xffffffffffff) >> (48 - 23));
- }
- else if(ieee_exp > -23)
- {
- /* ieee subnormal, right shift */
- const int rshift = (48 - 23 - ieee_exp);
- isp->mant = csp->mant >> rshift;
- #if 0
- if(csp->mant & (1 << (rshift -1)))
- {
- /* round up */
- isp->mant++;
- }
- #endif
- isp->exp = 0;
- }
- else
- {
- /* smaller than ieee can represent */
- isp->exp = 0;
- isp->mant = 0;
- }
- }
- else
- {
- ieee_single_lo *isp = (ieee_single_lo*)xp;
- const cray_single *csp = (const cray_single *) ip;
- int ieee_exp = csp->exp - cs_ieis_bias -1;
- isp->sign = csp->sign;
- if(ieee_exp >= 0xff)
- {
- /* NC_ERANGE => ieee Inf */
- isp->exp = 0xff;
- isp->mant = 0x0;
- }
- else if(ieee_exp > 0)
- {
- /* normal ieee representation */
- isp->exp = ieee_exp;
- /* assumes cray rep is in normal form */
- assert(csp->mant & 0x800000000000);
- isp->mant = (((csp->mant << 1) &
- 0xffffffffffff) >> (48 - 23));
- }
- else if(ieee_exp > -23)
- {
- /* ieee subnormal, right shift */
- const int rshift = (48 - 23 - ieee_exp);
- isp->mant = csp->mant >> rshift;
- #if 0
- if(csp->mant & (1 << (rshift -1)))
- {
- /* round up */
- isp->mant++;
- }
- #endif
- isp->exp = 0;
- }
- else
- {
- /* smaller than ieee can represent */
- isp->exp = 0;
- isp->mant = 0;
- }
- }
- }
- #else
- /* IEEE Cray with only doubles */
- static void
- get_ix_float(const void *xp, float *ip)
- {
- ieee_double *idp = (ieee_double *) ip;
- if(word_align(xp) == 0)
- {
- const ieee_single_hi *isp = (const ieee_single_hi *) xp;
- if(isp->exp == 0 && isp->mant == 0)
- {
- idp->exp = 0;
- idp->mant = 0;
- }
- else
- {
- idp->exp = isp->exp + (ieee_double_bias - ieee_single_bias);
- idp->mant = isp->mant << (52 - 23);
- }
- idp->sign = isp->sign;
- }
- else
- {
- const ieee_single_lo *isp = (const ieee_single_lo *) xp;
- if(isp->exp == 0 && isp->mant == 0)
- {
- idp->exp = 0;
- idp->mant = 0;
- }
- else
- {
- idp->exp = isp->exp + (ieee_double_bias - ieee_single_bias);
- idp->mant = isp->mant << (52 - 23);
- }
- idp->sign = isp->sign;
- }
- }
- static void
- put_ix_float(void *xp, const float *ip)
- {
- const ieee_double *idp = (const ieee_double *) ip;
- if(word_align(xp) == 0)
- {
- ieee_single_hi *isp = (ieee_single_hi*)xp;
- if(idp->exp > (ieee_double_bias - ieee_single_bias))
- isp->exp = idp->exp - (ieee_double_bias - ieee_single_bias);
- else
- isp->exp = 0;
- isp->mant = idp->mant >> (52 - 23);
- isp->sign = idp->sign;
- }
- else
- {
- ieee_single_lo *isp = (ieee_single_lo*)xp;
- if(idp->exp > (ieee_double_bias - ieee_single_bias))
- isp->exp = idp->exp - (ieee_double_bias - ieee_single_bias);
- else
- isp->exp = 0;
- isp->mant = idp->mant >> (52 - 23);
- isp->sign = idp->sign;
- }
- }
- #endif
- #else
- #error "ix_float implementation"
- #endif
- int
- ncx_get_float_schar(const void *xp, schar *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (schar) xx;
- if(xx > SCHAR_MAX || xx < SCHAR_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_uchar(const void *xp, uchar *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (uchar) xx;
- if(xx > UCHAR_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_short(const void *xp, short *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (short) xx;
- if(xx > SHORT_MAX || xx < SHORT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_int(const void *xp, int *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (int) xx;
- if(xx > (double)INT_MAX || xx < (double)INT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_uint(const void *xp, unsigned int *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (unsigned int) xx;
- if(xx > (double)UINT_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_longlong(const void *xp, longlong *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (longlong) xx;
- if(xx > (double)LONG_LONG_MAX || xx < (double)LONG_LONG_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_ulonglong(const void *xp, unsigned long long *ip)
- {
- float xx;
- get_ix_float(xp, &xx);
- *ip = (longlong) xx;
- if(xx > (double)ULONG_LONG_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_float_float(const void *xp, float *ip)
- {
- /* TODO */
- get_ix_float(xp, ip);
- return ENOERR;
- }
- int
- ncx_get_float_double(const void *xp, double *ip)
- {
- /* TODO */
- float xx;
- get_ix_float(xp, &xx);
- *ip = xx;
- return ENOERR;
- }
- int
- ncx_put_float_schar(void *xp, const schar *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- return ENOERR;
- }
- int
- ncx_put_float_uchar(void *xp, const uchar *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- return ENOERR;
- }
- int
- ncx_put_float_short(void *xp, const short *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- #if 0 /* TODO: figure this out */
- if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_int(void *xp, const int *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_uint(void *xp, const unsigned int *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((float)(*ip) > X_FLOAT_MAX)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_longlong(void *xp, const longlong *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((float)(*ip) > X_FLOAT_MAX || (float)(*ip) < X_FLOAT_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_ulonglong(void *xp, const unsigned long long *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((float)(*ip) > X_FLOAT_MAX)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_float(void *xp, const float *ip)
- {
- put_ix_float(xp, ip);
- #ifdef NO_IEEE_FLOAT
- if(*ip > X_FLOAT_MAX || *ip < X_FLOAT_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_float_double(void *xp, const double *ip)
- {
- float xx = (float) *ip;
- put_ix_float(xp, &xx);
- if(*ip > X_FLOAT_MAX || *ip < X_FLOAT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- /* x_double */
- #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT)
- static void
- get_ix_double(const void *xp, double *ip)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(ip, xp, sizeof(double));
- #else
- swap8b(ip, xp);
- #endif
- }
- static void
- put_ix_double(void *xp, const double *ip)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(xp, ip, X_SIZEOF_DOUBLE);
- #else
- swap8b(xp, ip);
- #endif
- }
- #elif vax
- /* What IEEE double precision floating point looks like on a Vax */
- struct ieee_double {
- unsigned int exp_hi : 7;
- unsigned int sign : 1;
- unsigned int mant_6 : 4;
- unsigned int exp_lo : 4;
- unsigned int mant_5 : 8;
- unsigned int mant_4 : 8;
- unsigned int mant_lo : 32;
- };
- /* Vax double precision floating point */
- struct vax_double {
- unsigned int mantissa1 : 7;
- unsigned int exp : 8;
- unsigned int sign : 1;
- unsigned int mantissa2 : 16;
- unsigned int mantissa3 : 16;
- unsigned int mantissa4 : 16;
- };
- #define VAX_DBL_BIAS 0x81
- #define IEEE_DBL_BIAS 0x3ff
- #define MASK(nbits) ((1 << nbits) - 1)
- static const struct dbl_limits {
- struct vax_double d;
- struct ieee_double ieee;
- } dbl_limits[2] = {
- {{ 0x7f, 0xff, 0x0, 0xffff, 0xffff, 0xffff }, /* Max Vax */
- { 0x7f, 0x0, 0x0, 0xf, 0x0, 0x0, 0x0}}, /* Max IEEE */
- {{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, /* Min Vax */
- { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}, /* Min IEEE */
- };
- static void
- get_ix_double(const void *xp, double *ip)
- {
- struct vax_double *const vdp =
- (struct vax_double *)ip;
- const struct ieee_double *const idp =
- (const struct ieee_double *) xp;
- {
- const struct dbl_limits *lim;
- int ii;
- for (ii = 0, lim = dbl_limits;
- ii < sizeof(dbl_limits)/sizeof(struct dbl_limits);
- ii++, lim++)
- {
- if ((idp->mant_lo == lim->ieee.mant_lo)
- && (idp->mant_4 == lim->ieee.mant_4)
- && (idp->mant_5 == lim->ieee.mant_5)
- && (idp->mant_6 == lim->ieee.mant_6)
- && (idp->exp_lo == lim->ieee.exp_lo)
- && (idp->exp_hi == lim->ieee.exp_hi)
- )
- {
- *vdp = lim->d;
- goto doneit;
- }
- }
- }
- {
- unsigned exp = idp->exp_hi << 4 | idp->exp_lo;
- vdp->exp = exp - IEEE_DBL_BIAS + VAX_DBL_BIAS;
- }
- {
- unsigned mant_hi = ((idp->mant_6 << 16)
- | (idp->mant_5 << 8)
- | idp->mant_4);
- unsigned mant_lo = SWAP4(idp->mant_lo);
- vdp->mantissa1 = (mant_hi >> 13);
- vdp->mantissa2 = ((mant_hi & MASK(13)) << 3)
- | (mant_lo >> 29);
- vdp->mantissa3 = (mant_lo >> 13);
- vdp->mantissa4 = (mant_lo << 3);
- }
- doneit:
- vdp->sign = idp->sign;
- }
- static void
- put_ix_double(void *xp, const double *ip)
- {
- const struct vax_double *const vdp =
- (const struct vax_double *)ip;
- struct ieee_double *const idp =
- (struct ieee_double *) xp;
- if ((vdp->mantissa4 > (dbl_limits[0].d.mantissa4 - 3)) &&
- (vdp->mantissa3 == dbl_limits[0].d.mantissa3) &&
- (vdp->mantissa2 == dbl_limits[0].d.mantissa2) &&
- (vdp->mantissa1 == dbl_limits[0].d.mantissa1) &&
- (vdp->exp == dbl_limits[0].d.exp))
- {
- *idp = dbl_limits[0].ieee;
- goto shipit;
- }
- if ((vdp->mantissa4 == dbl_limits[1].d.mantissa4) &&
- (vdp->mantissa3 == dbl_limits[1].d.mantissa3) &&
- (vdp->mantissa2 == dbl_limits[1].d.mantissa2) &&
- (vdp->mantissa1 == dbl_limits[1].d.mantissa1) &&
- (vdp->exp == dbl_limits[1].d.exp))
- {
- *idp = dbl_limits[1].ieee;
- goto shipit;
- }
- {
- unsigned exp = vdp->exp - VAX_DBL_BIAS + IEEE_DBL_BIAS;
- unsigned mant_lo = ((vdp->mantissa2 & MASK(3)) << 29) |
- (vdp->mantissa3 << 13) |
- ((vdp->mantissa4 >> 3) & MASK(13));
- unsigned mant_hi = (vdp->mantissa1 << 13)
- | (vdp->mantissa2 >> 3);
- if((vdp->mantissa4 & 7) > 4)
- {
- /* round up */
- mant_lo++;
- if(mant_lo == 0)
- {
- mant_hi++;
- if(mant_hi > 0xffffff)
- {
- mant_hi = 0;
- exp++;
- }
- }
- }
- idp->mant_lo = SWAP4(mant_lo);
- idp->mant_6 = mant_hi >> 16;
- idp->mant_5 = (mant_hi & 0xff00) >> 8;
- idp->mant_4 = mant_hi;
- idp->exp_hi = exp >> 4;
- idp->exp_lo = exp;
- }
-
- shipit:
- idp->sign = vdp->sign;
- }
- /* vax */
- #elif defined(_CRAY) && !defined(__crayx1)
- static void
- get_ix_double(const void *xp, double *ip)
- {
- const ieee_double *idp = (const ieee_double *) xp;
- cray_single *csp = (cray_single *) ip;
- if(idp->exp == 0)
- {
- /* ieee subnormal */
- *ip = (double)idp->mant;
- if(idp->mant != 0)
- {
- csp->exp -= (ieee_double_bias + 51);
- }
- }
- else
- {
- csp->exp = idp->exp + cs_id_bias + 1;
- csp->mant = idp->mant >> (52 - 48 + 1);
- csp->mant |= (1 << (48 - 1));
- }
- csp->sign = idp->sign;
- }
- static void
- put_ix_double(void *xp, const double *ip)
- {
- ieee_double *idp = (ieee_double *) xp;
- const cray_single *csp = (const cray_single *) ip;
- int ieee_exp = csp->exp - cs_id_bias -1;
- idp->sign = csp->sign;
- if(ieee_exp >= 0x7ff)
- {
- /* NC_ERANGE => ieee Inf */
- idp->exp = 0x7ff;
- idp->mant = 0x0;
- }
- else if(ieee_exp > 0)
- {
- /* normal ieee representation */
- idp->exp = ieee_exp;
- /* assumes cray rep is in normal form */
- assert(csp->mant & 0x800000000000);
- idp->mant = (((csp->mant << 1) &
- 0xffffffffffff) << (52 - 48));
- }
- else if(ieee_exp >= (-(52 -48)))
- {
- /* ieee subnormal, left shift */
- const int lshift = (52 - 48) + ieee_exp;
- idp->mant = csp->mant << lshift;
- idp->exp = 0;
- }
- else if(ieee_exp >= -52)
- {
- /* ieee subnormal, right shift */
- const int rshift = (- (52 - 48) - ieee_exp);
- idp->mant = csp->mant >> rshift;
- #if 0
- if(csp->mant & (1 << (rshift -1)))
- {
- /* round up */
- idp->mant++;
- }
- #endif
- idp->exp = 0;
- }
- else
- {
- /* smaller than ieee can represent */
- idp->exp = 0;
- idp->mant = 0;
- }
- }
- #else
- #error "ix_double implementation"
- #endif
- int
- ncx_get_double_schar(const void *xp, schar *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (schar) xx;
- if(xx > SCHAR_MAX || xx < SCHAR_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_uchar(const void *xp, uchar *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (uchar) xx;
- if(xx > UCHAR_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_short(const void *xp, short *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (short) xx;
- if(xx > SHORT_MAX || xx < SHORT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_int(const void *xp, int *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (int) xx;
- if(xx > INT_MAX || xx < INT_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_uint(const void *xp, unsigned int *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (unsigned int) xx;
- if(xx > UINT_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_longlong(const void *xp, longlong *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (longlong) xx;
- if(xx > LONG_LONG_MAX || xx < LONG_LONG_MIN)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_ulonglong(const void *xp, unsigned long long *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- *ip = (unsigned longlong) xx;
- if(xx > ULONG_LONG_MAX || xx < 0)
- return NC_ERANGE;
- return ENOERR;
- }
- int
- ncx_get_double_float(const void *xp, float *ip)
- {
- double xx;
- get_ix_double(xp, &xx);
- if(xx > FLT_MAX)
- {
- *ip = FLT_MAX;
- return NC_ERANGE;
- }
- if(xx < (-FLT_MAX))
- {
- *ip = (-FLT_MAX);
- return NC_ERANGE;
- }
- *ip = (float) xx;
- return ENOERR;
- }
- int
- ncx_get_double_double(const void *xp, double *ip)
- {
- /* TODO */
- get_ix_double(xp, ip);
- return ENOERR;
- }
- int
- ncx_put_double_schar(void *xp, const schar *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- return ENOERR;
- }
- int
- ncx_put_double_uchar(void *xp, const uchar *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- return ENOERR;
- }
- int
- ncx_put_double_short(void *xp, const short *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 0 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_int(void *xp, const int *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 0 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_uint(void *xp, const unsigned int *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 0 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_longlong(void *xp, const longlong *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_ulonglong(void *xp, const unsigned long long *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_float(void *xp, const float *ip)
- {
- double xx = (double) *ip;
- put_ix_double(xp, &xx);
- #if 1 /* TODO: figure this out */
- if((double)(*ip) > X_DOUBLE_MAX || (double)(*ip) < X_DOUBLE_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- int
- ncx_put_double_double(void *xp, const double *ip)
- {
- put_ix_double(xp, ip);
- #ifdef NO_IEEE_FLOAT
- if(*ip > X_DOUBLE_MAX || *ip < X_DOUBLE_MIN)
- return NC_ERANGE;
- #endif
- return ENOERR;
- }
- /* x_size_t */
- #if SIZEOF_SIZE_T < X_SIZEOF_SIZE_T
- #error "x_size_t implementation"
- /* netcdf requires size_t which can hold a values from 0 to 2^32 -1 */
- #endif
- int
- ncx_put_size_t(void **xpp, const size_t *ulp)
- {
- /* similar to put_ix_int() */
- uchar *cp = (uchar *) *xpp;
- assert(*ulp <= X_SIZE_MAX);
- *cp++ = (uchar)((*ulp) >> 24);
- *cp++ = (uchar)(((*ulp) & 0x00ff0000) >> 16);
- *cp++ = (uchar)(((*ulp) & 0x0000ff00) >> 8);
- *cp = (uchar)((*ulp) & 0x000000ff);
- *xpp = (void *)((char *)(*xpp) + X_SIZEOF_SIZE_T);
- return ENOERR;
- }
- int
- ncx_get_size_t(const void **xpp, size_t *ulp)
- {
- /* similar to get_ix_int */
- const uchar *cp = (const uchar *) *xpp;
- *ulp = (unsigned)(*cp++ << 24);
- *ulp |= (*cp++ << 16);
- *ulp |= (*cp++ << 8);
- *ulp |= *cp;
- *xpp = (const void *)((const char *)(*xpp) + X_SIZEOF_SIZE_T);
- return ENOERR;
- }
- /* x_off_t */
- int
- ncx_put_off_t(void **xpp, const off_t *lp, size_t sizeof_off_t)
- {
- /* similar to put_ix_int() */
- uchar *cp = (uchar *) *xpp;
- /* No negative offsets stored in netcdf */
- if (*lp < 0) {
- /* Assume this is an overflow of a 32-bit int... */
- return ERANGE;
- }
-
- assert(sizeof_off_t == 4 || sizeof_off_t == 8);
- if (sizeof_off_t == 4) {
- *cp++ = (uchar) ((*lp) >> 24);
- *cp++ = (uchar)(((*lp) & 0x00ff0000) >> 16);
- *cp++ = (uchar)(((*lp) & 0x0000ff00) >> 8);
- *cp = (uchar)( (*lp) & 0x000000ff);
- } else {
- #if SIZEOF_OFF_T == 4
- /* Write a 64-bit offset on a system with only a 32-bit offset */
- *cp++ = (uchar)0;
- *cp++ = (uchar)0;
- *cp++ = (uchar)0;
- *cp++ = (uchar)0;
- *cp++ = (uchar)(((*lp) & 0xff000000) >> 24);
- *cp++ = (uchar)(((*lp) & 0x00ff0000) >> 16);
- *cp++ = (uchar)(((*lp) & 0x0000ff00) >> 8);
- *cp = (uchar)( (*lp) & 0x000000ff);
- #else
- *cp++ = (uchar) ((*lp) >> 56);
- *cp++ = (uchar)(((*lp) & 0x00ff000000000000ULL) >> 48);
- *cp++ = (uchar)(((*lp) & 0x0000ff0000000000ULL) >> 40);
- *cp++ = (uchar)(((*lp) & 0x000000ff00000000ULL) >> 32);
- *cp++ = (uchar)(((*lp) & 0x00000000ff000000ULL) >> 24);
- *cp++ = (uchar)(((*lp) & 0x0000000000ff0000ULL) >> 16);
- *cp++ = (uchar)(((*lp) & 0x000000000000ff00ULL) >> 8);
- *cp = (uchar)( (*lp) & 0x00000000000000ffULL);
- #endif
- }
- *xpp = (void *)((char *)(*xpp) + sizeof_off_t);
- return ENOERR;
- }
- int
- ncx_get_off_t(const void **xpp, off_t *lp, size_t sizeof_off_t)
- {
- /* similar to get_ix_int() */
- const uchar *cp = (const uchar *) *xpp;
- assert(sizeof_off_t == 4 || sizeof_off_t == 8);
- if (sizeof_off_t == 4) {
- *lp = *cp++ << 24;
- *lp |= (*cp++ << 16);
- *lp |= (*cp++ << 8);
- *lp |= *cp;
- } else {
- #if SIZEOF_OFF_T == 4
- /* Read a 64-bit offset on a system with only a 32-bit offset */
- /* If the offset overflows, set an error code and return */
- *lp = ((off_t)(*cp++) << 24);
- *lp |= ((off_t)(*cp++) << 16);
- *lp |= ((off_t)(*cp++) << 8);
- *lp |= ((off_t)(*cp++));
- /*
- * lp now contains the upper 32-bits of the 64-bit offset. if lp is
- * not zero, then the dataset is larger than can be represented
- * on this system. Set an error code and return.
- */
- if (*lp != 0) {
- return ERANGE;
- }
- *lp = ((off_t)(*cp++) << 24);
- *lp |= ((off_t)(*cp++) << 16);
- *lp |= ((off_t)(*cp++) << 8);
- *lp |= (off_t)*cp;
- if (*lp < 0) {
- /*
- * If this fails, then the offset is >2^31, but less
- * than 2^32 which is not allowed, but is not caught
- * by the previous check
- */
- return ERANGE;
- }
- #else
- *lp = ((off_t)(*cp++) << 56);
- *lp |= ((off_t)(*cp++) << 48);
- *lp |= ((off_t)(*cp++) << 40);
- *lp |= ((off_t)(*cp++) << 32);
- *lp |= ((off_t)(*cp++) << 24);
- *lp |= ((off_t)(*cp++) << 16);
- *lp |= ((off_t)(*cp++) << 8);
- *lp |= (off_t)*cp;
- #endif
- }
- *xpp = (const void *)((const char *)(*xpp) + sizeof_off_t);
- return ENOERR;
- }
- /*
- * Aggregate numeric conversion functions.
- */
- /* schar */
- int
- ncx_getn_schar_schar(const void **xpp, size_t nelems, schar *tp)
- {
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_getn_schar_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_getn_schar_short(const void **xpp, size_t nelems, short *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_int(const void **xpp, size_t nelems, int *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_float(const void **xpp, size_t nelems, float *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_double(const void **xpp, size_t nelems, double *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_uint(const void **xpp, size_t nelems, uint *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_getn_schar_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- schar *xp = (schar *)(*xpp);
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (const void *)xp;
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_schar(const void **xpp, size_t nelems, schar *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_short(const void **xpp, size_t nelems, short *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_int(const void **xpp, size_t nelems, int *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_float(const void **xpp, size_t nelems, float *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_double(const void **xpp, size_t nelems, double *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_uint(const void **xpp, size_t nelems, uint *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_pad_getn_schar_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- *tp++ = *xp++;
- }
- *xpp = (void *)(xp + rndup);
- return ENOERR;
- }
- int
- ncx_putn_schar_schar(void **xpp, size_t nelems, const schar *tp)
- {
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_putn_schar_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_putn_schar_short(void **xpp, size_t nelems, const short *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_int(void **xpp, size_t nelems, const int *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_float(void **xpp, size_t nelems, const float *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_double(void **xpp, size_t nelems, const double *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_uint(void **xpp, size_t nelems, const uint *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_schar_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- int status = ENOERR;
- schar *xp = (schar *) *xpp;
- while(nelems-- != 0)
- {
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_schar(void **xpp, size_t nelems, const schar *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- if(rndup)
- {
- (void) memcpy(*xpp, nada, rndup);
- *xpp = (void *)((char *)(*xpp) + rndup);
- }
-
- return ENOERR;
- }
- int
- ncx_pad_putn_schar_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- if(rndup)
- {
- (void) memcpy(*xpp, nada, rndup);
- *xpp = (void *)((char *)(*xpp) + rndup);
- }
-
- return ENOERR;
- }
- int
- ncx_pad_putn_schar_short(void **xpp, size_t nelems, const short *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_int(void **xpp, size_t nelems, const int *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_float(void **xpp, size_t nelems, const float *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_double(void **xpp, size_t nelems, const double *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_uint(void **xpp, size_t nelems, const uint *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_schar_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- int status = ENOERR;
- size_t rndup = nelems % X_ALIGN;
- schar *xp = (schar *) *xpp;
- if(rndup)
- rndup = X_ALIGN - rndup;
- while(nelems-- != 0)
- {
- /* N.B. schar as signed */
- if(*tp > X_SCHAR_MAX || *tp < X_SCHAR_MIN)
- status = NC_ERANGE;
- *xp++ = (schar) *tp++;
- }
- if(rndup)
- {
- (void) memcpy(xp, nada, rndup);
- xp += rndup;
- }
- *xpp = (void *)xp;
- return status;
- }
- /* short */
- int
- ncx_getn_short_schar(const void **xpp, size_t nelems, schar *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (schar) Max( SCHAR_MIN, Min(SCHAR_MAX, (schar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SCHAR_MIN || xp[i] > SCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uchar) Max( UCHAR_MIN, Min(UCHAR_MAX, (uchar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UCHAR_MIN || xp[i] > UCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #if X_SIZEOF_SHORT == SIZEOF_SHORT
- /* optimized version */
- int
- ncx_getn_short_short(const void **xpp, size_t nelems, short *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(tp, *xpp, nelems * sizeof(short));
- # else
- swapn2b(tp, *xpp, nelems);
- # endif
- *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_SHORT);
- return ENOERR;
- }
- #else
- int
- ncx_getn_short_short(const void **xpp, size_t nelems, short *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (short) Max( SHORT_MIN, Min(SHORT_MAX, (short) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SHORT_MIN || xp[i] > SHORT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #endif
- int
- ncx_getn_short_int(const void **xpp, size_t nelems, int *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (int) Max( INT_MIN, Min(INT_MAX, (int) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < INT_MIN || xp[i] > INT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_float(const void **xpp, size_t nelems, float *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (float) Max( FLOAT_MIN, Min(FLOAT_MAX, (float) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < FLOAT_MIN || xp[i] > FLOAT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_double(const void **xpp, size_t nelems, double *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (double) Max( DOUBLE_MIN, Min(DOUBLE_MAX, (double) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < DOUBLE_MIN || xp[i] > DOUBLE_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_uint(const void **xpp, size_t nelems, uint *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uint) Max( UINT_MIN, Min(UINT_MAX, (uint) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UINT_MIN || xp[i] > UINT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (longlong) Max( LONGLONG_MIN, Min(LONGLONG_MAX, (longlong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < LONGLONG_MIN || xp[i] > LONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_short_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_SHORT);
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (ulonglong) Max( ULONGLONG_MIN, Min(ULONGLONG_MAX, (ulonglong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < ULONGLONG_MIN || xp[i] > ULONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (short *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_pad_getn_short_schar(const void **xpp, size_t nelems, schar *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_short(const void **xpp, size_t nelems, short *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_int(const void **xpp, size_t nelems, int *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_float(const void **xpp, size_t nelems, float *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_double(const void **xpp, size_t nelems, double *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_uint(const void **xpp, size_t nelems, uint *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_getn_short_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- const size_t rndup = nelems % 2;
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- const int lstatus = ncx_get_short_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- xp += X_SIZEOF_SHORT;
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_putn_short_schar(void **xpp, size_t nelems, const schar *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #if X_SIZEOF_SHORT == SIZEOF_SHORT
- /* optimized version */
- int
- ncx_putn_short_short(void **xpp, size_t nelems, const short *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(*xpp, tp, nelems * X_SIZEOF_SHORT);
- # else
- swapn2b(*xpp, tp, nelems);
- # endif
- *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_SHORT);
- return ENOERR;
- }
- #else
- int
- ncx_putn_short_short(void **xpp, size_t nelems, const short *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #endif
- int
- ncx_putn_short_int(void **xpp, size_t nelems, const int *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_float(void **xpp, size_t nelems, const float *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_double(void **xpp, size_t nelems, const double *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_uint(void **xpp, size_t nelems, const uint *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_short_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_SHORT == SIZEOF_SHORT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- short tmp[LOOPCNT]; /* in case input is misaligned */
- short *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_SHORT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (short *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (short) Max( X_SHORT_MIN, Min(X_SHORT_MAX, (short) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_SHORT_MIN || tp[i] > X_SHORT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_SHORT);
- xp = (short *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_pad_putn_short_schar(void **xpp, size_t nelems, const schar *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_short(void **xpp, size_t nelems, const short *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_int(void **xpp, size_t nelems, const int *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_float(void **xpp, size_t nelems, const float *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_double(void **xpp, size_t nelems, const double *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_uint(void **xpp, size_t nelems, const uint *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- int
- ncx_pad_putn_short_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- const size_t rndup = nelems % 2;
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_SHORT, tp++)
- {
- int lstatus = ncx_put_short_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- if(rndup != 0)
- {
- (void) memcpy(xp, nada, X_SIZEOF_SHORT);
- xp += X_SIZEOF_SHORT;
- }
-
- *xpp = (void *)xp;
- return status;
- }
- /* int */
- int
- ncx_getn_int_schar(const void **xpp, size_t nelems, schar *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (schar) Max( SCHAR_MIN, Min(SCHAR_MAX, (schar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SCHAR_MIN || xp[i] > SCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uchar) Max( UCHAR_MIN, Min(UCHAR_MAX, (uchar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UCHAR_MIN || xp[i] > UCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_short(const void **xpp, size_t nelems, short *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (short) Max( SHORT_MIN, Min(SHORT_MAX, (short) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SHORT_MIN || xp[i] > SHORT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #if X_SIZEOF_INT == SIZEOF_INT
- /* optimized version */
- int
- ncx_getn_int_int(const void **xpp, size_t nelems, int *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(tp, *xpp, nelems * sizeof(int));
- # else
- swapn4b(tp, *xpp, nelems);
- # endif
- *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_INT);
- return ENOERR;
- }
- int
- ncx_getn_int_uint(const void **xpp, size_t nelems, unsigned int *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(tp, *xpp, nelems * sizeof(int));
- # else
- swapn4b(tp, *xpp, nelems);
- # endif
- *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_INT);
- return ENOERR;
- }
- #else
- int
- ncx_getn_int_int(const void **xpp, size_t nelems, int *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (int) Max( INT_MIN, Min(INT_MAX, (int) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < INT_MIN || xp[i] > INT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_uint(const void **xpp, size_t nelems, uint *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uint) Max( UINT_MIN, Min(UINT_MAX, (uint) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UINT_MIN || xp[i] > UINT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #endif
- int
- ncx_getn_int_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (longlong) Max( LONGLONG_MIN, Min(LONGLONG_MAX, (longlong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < LONGLONG_MIN || xp[i] > LONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (ulonglong) Max( ULONGLONG_MIN, Min(ULONGLONG_MAX, (ulonglong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < ULONGLONG_MIN || xp[i] > ULONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_float(const void **xpp, size_t nelems, float *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (float) Max( FLOAT_MIN, Min(FLOAT_MAX, (float) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < FLOAT_MIN || xp[i] > FLOAT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_int_double(const void **xpp, size_t nelems, double *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_INT);
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (double) Max( DOUBLE_MIN, Min(DOUBLE_MAX, (double) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < DOUBLE_MIN || xp[i] > DOUBLE_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (int *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- const int lstatus = ncx_get_int_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_putn_int_schar(void **xpp, size_t nelems, const schar *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_short(void **xpp, size_t nelems, const short *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #if X_SIZEOF_INT == SIZEOF_INT
- /* optimized version */
- int
- ncx_putn_int_int(void **xpp, size_t nelems, const int *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(*xpp, tp, nelems * X_SIZEOF_INT);
- # else
- swapn4b(*xpp, tp, nelems);
- # endif
- *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_INT);
- return ENOERR;
- }
- int
- ncx_putn_int_uint(void **xpp, size_t nelems, const unsigned int *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(*xpp, tp, nelems * X_SIZEOF_INT);
- # else
- swapn4b(*xpp, tp, nelems);
- # endif
- *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_INT);
- return ENOERR;
- }
- #else
- int
- ncx_putn_int_int(void **xpp, size_t nelems, const int *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_uint(void **xpp, size_t nelems, const uint *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #endif
- int
- ncx_putn_int_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_float(void **xpp, size_t nelems, const float *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- double d; /* special case for ncx_putn_int_float */
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* for some reason int to float, for putn, requires a special case */
- d = tp[i];
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) d));
- nrange += d < X_INT_MIN || d > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_int_double(void **xpp, size_t nelems, const double *tp)
- {
- #if _SX && \
- X_SIZEOF_INT == SIZEOF_INT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- int tmp[LOOPCNT]; /* in case input is misaligned */
- int *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_INT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (int *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (int) Max( X_INT_MIN, Min(X_INT_MAX, (int) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_INT_MIN || tp[i] > X_INT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_INT);
- xp = (int *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_INT, tp++)
- {
- int lstatus = ncx_put_int_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- /* float */
- int
- ncx_getn_float_schar(const void **xpp, size_t nelems, schar *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (schar) Max( SCHAR_MIN, Min(SCHAR_MAX, (schar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SCHAR_MIN || xp[i] > SCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uchar) Max( UCHAR_MIN, Min(UCHAR_MAX, (uchar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UCHAR_MIN || xp[i] > UCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_short(const void **xpp, size_t nelems, short *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (short) Max( SHORT_MIN, Min(SHORT_MAX, (short) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SHORT_MIN || xp[i] > SHORT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_int(const void **xpp, size_t nelems, int *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (int) Max( INT_MIN, Min(INT_MAX, (int) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < INT_MIN || xp[i] > INT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT)
- /* optimized version */
- int
- ncx_getn_float_float(const void **xpp, size_t nelems, float *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(tp, *xpp, nelems * sizeof(float));
- # else
- swapn4b(tp, *xpp, nelems);
- # endif
- *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_FLOAT);
- return ENOERR;
- }
- #elif vax
- int
- ncx_getn_float_float(const void **xpp, size_t nfloats, float *ip)
- {
- float *const end = ip + nfloats;
- while(ip < end)
- {
- struct vax_single *const vsp = (struct vax_single *) ip;
- const struct ieee_single *const isp =
- (const struct ieee_single *) (*xpp);
- unsigned exp = isp->exp_hi << 1 | isp->exp_lo;
- switch(exp) {
- case 0 :
- /* ieee subnormal */
- if(isp->mant_hi == min.ieee.mant_hi
- && isp->mant_lo_hi == min.ieee.mant_lo_hi
- && isp->mant_lo_lo == min.ieee.mant_lo_lo)
- {
- *vsp = min.s;
- }
- else
- {
- unsigned mantissa = (isp->mant_hi << 16)
- | isp->mant_lo_hi << 8
- | isp->mant_lo_lo;
- unsigned tmp = mantissa >> 20;
- if(tmp >= 4) {
- vsp->exp = 2;
- } else if (tmp >= 2) {
- vsp->exp = 1;
- } else {
- *vsp = min.s;
- break;
- } /* else */
- tmp = mantissa - (1 << (20 + vsp->exp ));
- tmp <<= 3 - vsp->exp;
- vsp->mantissa2 = tmp;
- vsp->mantissa1 = (tmp >> 16);
- }
- break;
- case 0xfe :
- case 0xff :
- *vsp = max.s;
- break;
- default :
- vsp->exp = exp - IEEE_SNG_BIAS + VAX_SNG_BIAS;
- vsp->mantissa2 = isp->mant_lo_hi << 8 | isp->mant_lo_lo;
- vsp->mantissa1 = isp->mant_hi;
- }
- vsp->sign = isp->sign;
- ip++;
- *xpp = (char *)(*xpp) + X_SIZEOF_FLOAT;
- }
- return ENOERR;
- }
- #else
- int
- ncx_getn_float_float(const void **xpp, size_t nelems, float *tp)
- {
- const char *xp = *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- }
- #endif
- int
- ncx_getn_float_double(const void **xpp, size_t nelems, double *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (double) Max( DOUBLE_MIN, Min(DOUBLE_MAX, (double) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < DOUBLE_MIN || xp[i] > DOUBLE_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_uint(const void **xpp, size_t nelems, uint *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uint) Max( UINT_MIN, Min(UINT_MAX, (uint) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UINT_MIN || xp[i] > UINT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (longlong) Max( LONGLONG_MIN, Min(LONGLONG_MAX, (longlong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < LONGLONG_MIN || xp[i] > LONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_float_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_FLOAT);
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (ulonglong) Max( ULONGLONG_MIN, Min(ULONGLONG_MAX, (ulonglong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < ULONGLONG_MIN || xp[i] > ULONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (float *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- const int lstatus = ncx_get_float_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_putn_float_schar(void **xpp, size_t nelems, const schar *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_short(void **xpp, size_t nelems, const short *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_int(void **xpp, size_t nelems, const int *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #if X_SIZEOF_FLOAT == SIZEOF_FLOAT && !defined(NO_IEEE_FLOAT)
- /* optimized version */
- int
- ncx_putn_float_float(void **xpp, size_t nelems, const float *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(*xpp, tp, nelems * X_SIZEOF_FLOAT);
- # else
- swapn4b(*xpp, tp, nelems);
- # endif
- *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_FLOAT);
- return ENOERR;
- }
- #elif vax
- int
- ncx_putn_float_float(void **xpp, size_t nfloats, const float *ip)
- {
- const float *const end = ip + nfloats;
- while(ip < end)
- {
- const struct vax_single *const vsp =
- (const struct vax_single *)ip;
- struct ieee_single *const isp = (struct ieee_single *) (*xpp);
- switch(vsp->exp){
- case 0 :
- /* all vax float with zero exponent map to zero */
- *isp = min.ieee;
- break;
- case 2 :
- case 1 :
- {
- /* These will map to subnormals */
- unsigned mantissa = (vsp->mantissa1 << 16)
- | vsp->mantissa2;
- mantissa >>= 3 - vsp->exp;
- mantissa += (1 << (20 + vsp->exp));
- isp->mant_lo_lo = mantissa;
- isp->mant_lo_hi = mantissa >> 8;
- isp->mant_hi = mantissa >> 16;
- isp->exp_lo = 0;
- isp->exp_hi = 0;
- }
- break;
- case 0xff : /* max.s.exp */
- if( vsp->mantissa2 == max.s.mantissa2
- && vsp->mantissa1 == max.s.mantissa1)
- {
- /* map largest vax float to ieee infinity */
- *isp = max.ieee;
- break;
- } /* else, fall thru */
- default :
- {
- unsigned exp = vsp->exp - VAX_SNG_BIAS + IEEE_SNG_BIAS;
- isp->exp_hi = exp >> 1;
- isp->exp_lo = exp;
- isp->mant_lo_lo = vsp->mantissa2;
- isp->mant_lo_hi = vsp->mantissa2 >> 8;
- isp->mant_hi = vsp->mantissa1;
- }
- }
- isp->sign = vsp->sign;
-
- ip++;
- *xpp = (char *)(*xpp) + X_SIZEOF_FLOAT;
- }
- return ENOERR;
- }
- #else
- int
- ncx_putn_float_float(void **xpp, size_t nelems, const float *tp)
- {
- char *xp = *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- }
- #endif
- int
- ncx_putn_float_double(void **xpp, size_t nelems, const double *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_uint(void **xpp, size_t nelems, const uint *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_float_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_FLOAT == SIZEOF_FLOAT
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- float tmp[LOOPCNT]; /* in case input is misaligned */
- float *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_FLOAT;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (float *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (float) Max( X_FLOAT_MIN, Min(X_FLOAT_MAX, (float) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_FLOAT_MIN || tp[i] > X_FLOAT_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_FLOAT);
- xp = (float *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_FLOAT, tp++)
- {
- int lstatus = ncx_put_float_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- /* double */
- int
- ncx_getn_double_schar(const void **xpp, size_t nelems, schar *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (schar) Max( SCHAR_MIN, Min(SCHAR_MAX, (schar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SCHAR_MIN || xp[i] > SCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_uchar(const void **xpp, size_t nelems, uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uchar) Max( UCHAR_MIN, Min(UCHAR_MAX, (uchar) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UCHAR_MIN || xp[i] > UCHAR_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_short(const void **xpp, size_t nelems, short *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (short) Max( SHORT_MIN, Min(SHORT_MAX, (short) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < SHORT_MIN || xp[i] > SHORT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_int(const void **xpp, size_t nelems, int *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (int) Max( INT_MIN, Min(INT_MAX, (int) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < INT_MIN || xp[i] > INT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_float(const void **xpp, size_t nelems, float *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (float) Max( FLOAT_MIN, Min(FLOAT_MAX, (float) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < FLOAT_MIN || xp[i] > FLOAT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_uint(const void **xpp, size_t nelems, uint *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (uint) Max( UINT_MIN, Min(UINT_MAX, (uint) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < UINT_MIN || xp[i] > UINT_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_longlong(const void **xpp, size_t nelems, longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (longlong) Max( LONGLONG_MIN, Min(LONGLONG_MAX, (longlong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < LONGLONG_MIN || xp[i] > LONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- int
- ncx_getn_double_ulonglong(const void **xpp, size_t nelems, ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of input data
- * - copy (conversion happens automatically) input data
- * to output
- * - update xpp to point at next unconverted input, and tp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- memcpy(tmp, *xpp, ni*SIZEOF_DOUBLE);
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- tp[i] = (ulonglong) Max( ULONGLONG_MIN, Min(ULONGLONG_MAX, (ulonglong) xp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += xp[i] < ULONGLONG_MIN || xp[i] > ULONGLONG_MAX;
- }
- /* update xpp and tp */
- if (realign) xp = (double *) *xpp;
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- const char *xp = (const char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- # endif
- }
- #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT)
- /* optimized version */
- int
- ncx_getn_double_double(const void **xpp, size_t nelems, double *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(tp, *xpp, nelems * sizeof(double));
- # else
- swapn8b(tp, *xpp, nelems);
- # endif
- *xpp = (const void *)((const char *)(*xpp) + nelems * X_SIZEOF_DOUBLE);
- return ENOERR;
- }
- #elif vax
- int
- ncx_getn_double_double(const void **xpp, size_t ndoubles, double *ip)
- {
- double *const end = ip + ndoubles;
- while(ip < end)
- {
- struct vax_double *const vdp =
- (struct vax_double *)ip;
- const struct ieee_double *const idp =
- (const struct ieee_double *) (*xpp);
- {
- const struct dbl_limits *lim;
- int ii;
- for (ii = 0, lim = dbl_limits;
- ii < sizeof(dbl_limits)/sizeof(struct dbl_limits);
- ii++, lim++)
- {
- if ((idp->mant_lo == lim->ieee.mant_lo)
- && (idp->mant_4 == lim->ieee.mant_4)
- && (idp->mant_5 == lim->ieee.mant_5)
- && (idp->mant_6 == lim->ieee.mant_6)
- && (idp->exp_lo == lim->ieee.exp_lo)
- && (idp->exp_hi == lim->ieee.exp_hi)
- )
- {
- *vdp = lim->d;
- goto doneit;
- }
- }
- }
- {
- unsigned exp = idp->exp_hi << 4 | idp->exp_lo;
- vdp->exp = exp - IEEE_DBL_BIAS + VAX_DBL_BIAS;
- }
- {
- unsigned mant_hi = ((idp->mant_6 << 16)
- | (idp->mant_5 << 8)
- | idp->mant_4);
- unsigned mant_lo = SWAP4(idp->mant_lo);
- vdp->mantissa1 = (mant_hi >> 13);
- vdp->mantissa2 = ((mant_hi & MASK(13)) << 3)
- | (mant_lo >> 29);
- vdp->mantissa3 = (mant_lo >> 13);
- vdp->mantissa4 = (mant_lo << 3);
- }
- doneit:
- vdp->sign = idp->sign;
- ip++;
- *xpp = (char *)(*xpp) + X_SIZEOF_DOUBLE;
- }
- return ENOERR;
- }
- /* vax */
- #else
- int
- ncx_getn_double_double(const void **xpp, size_t nelems, double *tp)
- {
- const char *xp = *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- const int lstatus = ncx_get_double_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (const void *)xp;
- return status;
- }
- #endif
- int
- ncx_putn_double_schar(void **xpp, size_t nelems, const schar *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_schar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_uchar(void **xpp, size_t nelems, const uchar *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_uchar(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_short(void **xpp, size_t nelems, const short *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_short(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_int(void **xpp, size_t nelems, const int *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_int(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_float(void **xpp, size_t nelems, const float *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_float(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_uint(void **xpp, size_t nelems, const uint *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_uint(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_longlong(void **xpp, size_t nelems, const longlong *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_longlong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- int
- ncx_putn_double_ulonglong(void **xpp, size_t nelems, const ulonglong *tp)
- {
- #if _SX && \
- X_SIZEOF_DOUBLE == SIZEOF_DOUBLE
- /* basic algorithm is:
- * - ensure sane alignment of output data
- * - copy (conversion happens automatically) input data
- * to output
- * - update tp to point at next unconverted input, and xpp to point
- * at next location for converted output
- */
- long i, j, ni;
- double tmp[LOOPCNT]; /* in case input is misaligned */
- double *xp;
- int nrange = 0; /* number of range errors */
- int realign = 0; /* "do we need to fix input data alignment?" */
- long cxp = (long) *((char**)xpp);
- realign = (cxp & 7) % SIZEOF_DOUBLE;
- /* sjl: manually stripmine so we can limit amount of
- * vector work space reserved to LOOPCNT elements. Also
- * makes vectorisation easy */
- for (j=0; j<nelems && nrange==0; j+=LOOPCNT) {
- ni=Min(nelems-j,LOOPCNT);
- if (realign) {
- xp = tmp;
- } else {
- xp = (double *) *xpp;
- }
- /* copy the next block */
- #pragma cdir loopcnt=LOOPCNT
- #pragma cdir shortloop
- for (i=0; i<ni; i++) {
- /* the normal case: */
- xp[i] = (double) Max( X_DOUBLE_MIN, Min(X_DOUBLE_MAX, (double) tp[i]));
- /* test for range errors (not always needed but do it anyway) */
- nrange += tp[i] < X_DOUBLE_MIN || tp[i] > X_DOUBLE_MAX;
- }
- /* copy workspace back if necessary */
- if (realign) {
- memcpy(*xpp, tmp, ni*X_SIZEOF_DOUBLE);
- xp = (double *) *xpp;
- }
- /* update xpp and tp */
- xp += ni;
- tp += ni;
- *xpp = (void*)xp;
- }
- return nrange == 0 ? ENOERR : NC_ERANGE;
- #else /* not SX */
- char *xp = (char *) *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_ulonglong(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- #endif
- }
- #if X_SIZEOF_DOUBLE == SIZEOF_DOUBLE && !defined(NO_IEEE_FLOAT)
- /* optimized version */
- int
- ncx_putn_double_double(void **xpp, size_t nelems, const double *tp)
- {
- #ifdef WORDS_BIGENDIAN
- (void) memcpy(*xpp, tp, nelems * X_SIZEOF_DOUBLE);
- # else
- swapn8b(*xpp, tp, nelems);
- # endif
- *xpp = (void *)((char *)(*xpp) + nelems * X_SIZEOF_DOUBLE);
- return ENOERR;
- }
- #elif vax
- int
- ncx_putn_double_double(void **xpp, size_t ndoubles, const double *ip)
- {
- const double *const end = ip + ndoubles;
- while(ip < end)
- {
- const struct vax_double *const vdp =
- (const struct vax_double *)ip;
- struct ieee_double *const idp =
- (struct ieee_double *) (*xpp);
- if ((vdp->mantissa4 > (dbl_limits[0].d.mantissa4 - 3)) &&
- (vdp->mantissa3 == dbl_limits[0].d.mantissa3) &&
- (vdp->mantissa2 == dbl_limits[0].d.mantissa2) &&
- (vdp->mantissa1 == dbl_limits[0].d.mantissa1) &&
- (vdp->exp == dbl_limits[0].d.exp))
- {
- *idp = dbl_limits[0].ieee;
- goto shipit;
- }
- if ((vdp->mantissa4 == dbl_limits[1].d.mantissa4) &&
- (vdp->mantissa3 == dbl_limits[1].d.mantissa3) &&
- (vdp->mantissa2 == dbl_limits[1].d.mantissa2) &&
- (vdp->mantissa1 == dbl_limits[1].d.mantissa1) &&
- (vdp->exp == dbl_limits[1].d.exp))
- {
- *idp = dbl_limits[1].ieee;
- goto shipit;
- }
- {
- unsigned exp = vdp->exp - VAX_DBL_BIAS + IEEE_DBL_BIAS;
- unsigned mant_lo = ((vdp->mantissa2 & MASK(3)) << 29) |
- (vdp->mantissa3 << 13) |
- ((vdp->mantissa4 >> 3) & MASK(13));
- unsigned mant_hi = (vdp->mantissa1 << 13)
- | (vdp->mantissa2 >> 3);
- if((vdp->mantissa4 & 7) > 4)
- {
- /* round up */
- mant_lo++;
- if(mant_lo == 0)
- {
- mant_hi++;
- if(mant_hi > 0xffffff)
- {
- mant_hi = 0;
- exp++;
- }
- }
- }
- idp->mant_lo = SWAP4(mant_lo);
- idp->mant_6 = mant_hi >> 16;
- idp->mant_5 = (mant_hi & 0xff00) >> 8;
- idp->mant_4 = mant_hi;
- idp->exp_hi = exp >> 4;
- idp->exp_lo = exp;
- }
-
- shipit:
- idp->sign = vdp->sign;
- ip++;
- *xpp = (char *)(*xpp) + X_SIZEOF_DOUBLE;
- }
- return ENOERR;
- }
- /* vax */
- #else
- int
- ncx_putn_double_double(void **xpp, size_t nelems, const double *tp)
- {
- char *xp = *xpp;
- int status = ENOERR;
- for( ; nelems != 0; nelems--, xp += X_SIZEOF_DOUBLE, tp++)
- {
- int lstatus = ncx_put_double_double(xp, tp);
- if(lstatus != ENOERR)
- status = lstatus;
- }
- *xpp = (void *)xp;
- return status;
- }
- #endif
- /*
- * Other aggregate conversion functions.
- */
- /* text */
- int
- ncx_getn_text(const void **xpp, size_t nelems, char *tp)
- {
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_pad_getn_text(const void **xpp, size_t nelems, char *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems + rndup);
- return ENOERR;
- }
- int
- ncx_putn_text(void **xpp, size_t nelems, const char *tp)
- {
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_pad_putn_text(void **xpp, size_t nelems, const char *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- if(rndup)
- {
- (void) memcpy(*xpp, nada, rndup);
- *xpp = (void *)((char *)(*xpp) + rndup);
- }
-
- return ENOERR;
- }
- /* opaque */
- int
- ncx_getn_void(const void **xpp, size_t nelems, void *tp)
- {
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_pad_getn_void(const void **xpp, size_t nelems, void *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(tp, *xpp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems + rndup);
- return ENOERR;
- }
- int
- ncx_putn_void(void **xpp, size_t nelems, const void *tp)
- {
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- return ENOERR;
- }
- int
- ncx_pad_putn_void(void **xpp, size_t nelems, const void *tp)
- {
- size_t rndup = nelems % X_ALIGN;
- if(rndup)
- rndup = X_ALIGN - rndup;
- (void) memcpy(*xpp, tp, nelems);
- *xpp = (void *)((char *)(*xpp) + nelems);
- if(rndup)
- {
- (void) memcpy(*xpp, nada, rndup);
- *xpp = (void *)((char *)(*xpp) + rndup);
- }
-
- return ENOERR;
- }
|