123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ! Math and Computer Science Division, Argonne National Laboratory !
- !-----------------------------------------------------------------------
- ! CVS twocmp.con.F90,v 1.4 2006-07-25 22:31:34 jacob Exp
- ! CVS MCT_2_8_0
- !BOP -------------------------------------------------------------------
- !
- ! !ROUTINE: twocomponent.concurrent
- !
- ! !DESCRIPTION: Provide a simple example of using MCT to connect two
- ! components executing concurrently in a single executable.
- !
- !
- ! !INTERFACE:
- !
- program twocon
- !
- ! !USES:
- !
- !--- Use only the things needed from MCT
- use m_MCTWorld,only: MCTWorld_init => init
- use m_GlobalSegMap,only: GlobalSegMap
- use m_GlobalSegMap,only: MCT_GSMap_init => init
- use m_GlobalSegMap,only: MCT_GSMap_lsize => lsize
- use m_AttrVect,only : AttrVect
- use m_AttrVect,only : MCT_AtrVt_init => init
- use m_AttrVect,only : MCT_AtrVt_zero => zero
- use m_AttrVect,only : MCT_AtrVt_lsize => lsize
- use m_AttrVect,only : MCT_AtrVt_indexRA => indexRA
- use m_AttrVect,only : MCT_AtrVt_importRA => importRAttr
- use m_Router,only: Router
- use m_Router,only: MCT_Router_init => init
- use m_Transfer,only : MCT_Send => send
- use m_Transfer,only : MCT_Recv => recv
- implicit none
- include 'mpif.h'
- !-----------------------------------------------------------------------
- ! Local variables
- integer,parameter :: npoints = 24 ! number of grid points
- integer ier,nprocs
- integer color,myrank,mycomm
- !-----------------------------------------------------------------------
- ! The Main program.
- ! We are implementing a single-executable, concurrent-execution system.
- ! This small main program carves up MPI_COMM_WORLD and then starts
- ! each component on its own processor set.
- call MPI_init(ier)
- call mpi_comm_size(MPI_COMM_WORLD, nprocs,ier)
- call mpi_comm_rank(MPI_COMM_WORLD, myrank,ier)
- if((nprocs .gt. 14).or.(nprocs .lt. 3)) then
- write(6,*)"The small problem size in this example &
- &requires between 3 and 14 processors."
- write(6,*)"nprocs =",nprocs
- stop
- endif
- ! Force the model1 to run on the first 2 processors
- color =1
- if (myrank .lt. 2) then
- color = 0
- endif
- ! Split MPI_COMM_WORLD into a communicator for each model
- call mpi_comm_split(MPI_COMM_WORLD,color,0,mycomm,ier)
- ! Start up the the models, pass in the communicators
- if(color .eq. 0) then
- call model1(mycomm)
- else
- call model2(mycomm)
- endif
- ! Models are finished.
- call mpi_finalize(ier)
- contains
- !-----------------------------------------------------------------------
- !-----------------------------------------------------------------------
- ! !ROUTINE:
- subroutine model1(comm1) ! the first model
- implicit none
- integer :: comm1,mysize,ier,asize,myproc
- integer :: fieldindx,avsize,i
- integer,dimension(1) :: start,length
- real,pointer :: testarray(:)
-
- type(GlobalSegMap) :: GSmap
- type(AttrVect) :: av1
- type(Router) :: Rout
- !---------------------------
- ! find local rank and size
- call mpi_comm_size(comm1,mysize,ier)
- call mpi_comm_rank(comm1,myproc,ier)
- write(6,*)"model1 size",mysize
- ! initialize ThisMCTWorld
- call MCTWorld_init(2,MPI_COMM_WORLD,comm1,1)
- ! set up a grid and decomposition
- asize = npoints/mysize
- start(1)= (myproc*asize) +1
- length(1)=asize
- ! describe decomposition with MCT GSmap type
- call MCT_GSMap_init(GSMap,start,length,0,comm1,1)
- write(6,*)"model 1 GSMap ngseg",myproc,GSMap%ngseg,start(1)
- ! Initialize an Attribute Vector
- call MCT_AtrVt_init(av1,rList="field1:field2",lsize=MCT_GSMap_lsize(GSMap,comm1))
- avsize = MCT_AtrVt_lsize(av1)
- write(6,*)"model 1 av size", avsize
- ! Fill Av with some data
- ! fill first attribute the direct way
- fieldindx = MCT_AtrVt_indexRA(av1,"field1")
- do i=1,avsize
- av1%rAttr(fieldindx,i) = float(i)
- enddo
- ! fill second attribute using Av import function
- allocate(testarray(avsize))
- do i=1,avsize
- testarray(i)= cos((float(i)/npoints) * 3.14)
- enddo
- call MCT_AtrVt_importRA(av1,"field2",testarray)
- ! initialize a Router
- call MCT_Router_init(2,GSMap,comm1,Rout)
- ! print out Av data
- do i=1,asize
- write(6,*) "model 1 data", myproc,i,av1%rAttr(1,i),av1%rAttr(2,i)
- enddo
-
- ! send the data
- call MCT_Send(av1,Rout)
- end subroutine model1
- !-----------------------------------------------------------------------
- !-----------------------------------------------------------------------
- ! !ROUTINE:
- subroutine model2(comm2)
- implicit none
- integer :: comm2,mysize,ier,asize,myproc
- integer :: i
- integer,dimension(1) :: start,length
- type(GlobalSegMap) :: GSmap
- type(AttrVect) :: av1
- type(Router) :: Rout
- !---------------------------
- ! find local rank and size
- call mpi_comm_size(comm2,mysize,ier)
- call mpi_comm_rank(comm2,myproc,ier)
- write(6,*)"model2 size",mysize
- ! initialize ThisMCTWorld
- call MCTWorld_init(2,MPI_COMM_WORLD,comm2,2)
- ! set up a grid and decomposition
- asize = npoints/mysize
- start(1)= (myproc*asize) +1
- length(1)=asize
- ! describe decomposition with MCT GSmap type
- call MCT_GSMap_init(GSMap,start,length,0,comm2,2)
- write(6,*)"model 2 GSMap ngseg",myproc,GSMap%ngseg,start(1)
- ! Initialize an Attribute Vector
- call MCT_AtrVt_init(av1,rList="field1:field2",lsize=MCT_GSMap_lsize(GSMap,comm2))
- write(6,*)"model 2 av size", MCT_AtrVt_lsize(av1)
- ! initialize Av to be zero everywhere
- call MCT_AtrVt_zero(av1)
- ! initialize a Router
- call MCT_Router_init(1,GSMap,comm2,Rout)
- ! print out Av data before Recv
- do i=1,asize
- write(6,*) "model 2 data", myproc,i,av1%rAttr(1,i),av1%rAttr(2,i)
- enddo
- ! Recv the data
- call MCT_Recv(av1,Rout)
- ! print out Av data after Recv.
- do i=1,asize
- write(6,*) "model 2 data after", myproc,i,av1%rAttr(1,i),av1%rAttr(2,i)
- enddo
- end subroutine model2
- end
|