123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- MODULE sbcdcy
- !!======================================================================
- !! *** MODULE sbcdcy ***
- !! Ocean forcing: compute the diurnal cycle
- !!======================================================================
- !! History : OPA ! 2005-02 (D. Bernie) Original code
- !! NEMO 2.0 ! 2006-02 (S. Masson, G. Madec) adaptation to NEMO
- !! 3.1 ! 2009-07 (J.M. Molines) adaptation to v3.1
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! sbc_dcy : solar flux at kt from daily mean, taking diurnal cycle into account
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE phycst ! ocean physics
- USE dom_oce ! ocean space and time domain
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE in_out_manager ! I/O manager
- USE lib_mpp ! MPP library
- USE timing ! Timing
- IMPLICIT NONE
- PRIVATE
-
- INTEGER, PUBLIC :: nday_qsr !: day when parameters were computed
-
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: raa , rbb , rcc , rab ! diurnal cycle parameters
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: rtmd, rdawn, rdusk, rscal ! - - -
-
- PUBLIC sbc_dcy ! routine called by sbc
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.3 , NEMO-consortium (2010)
- !! $Id: sbcdcy.F90 3764 2013-01-23 14:33:04Z smasson $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- INTEGER FUNCTION sbc_dcy_alloc()
- !!----------------------------------------------------------------------
- !! *** FUNCTION sbc_dcy_alloc ***
- !!----------------------------------------------------------------------
- ALLOCATE( raa (jpi,jpj) , rbb (jpi,jpj) , rcc (jpi,jpj) , rab (jpi,jpj) , &
- & rtmd(jpi,jpj) , rdawn(jpi,jpj) , rdusk(jpi,jpj) , rscal(jpi,jpj) , STAT=sbc_dcy_alloc )
- !
- IF( lk_mpp ) CALL mpp_sum ( sbc_dcy_alloc )
- IF( sbc_dcy_alloc /= 0 ) CALL ctl_warn('sbc_dcy_alloc: failed to allocate arrays')
- END FUNCTION sbc_dcy_alloc
- FUNCTION sbc_dcy( pqsrin, l_mask ) RESULT( zqsrout )
- !!----------------------------------------------------------------------
- !! *** ROUTINE sbc_dcy ***
- !!
- !! ** Purpose : introduce a diurnal cycle of qsr from daily values
- !!
- !! ** Method : see Appendix A of Bernie et al. 2007.
- !!
- !! ** Action : redistribute daily QSR on each time step following the diurnal cycle
- !!
- !! reference : Bernie, DJ, E Guilyardi, G Madec, JM Slingo, and SJ Woolnough, 2007
- !! Impact of resolving the diurnal cycle in an ocean--atmosphere GCM.
- !! Part 1: a diurnally forced OGCM. Climate Dynamics 29:6, 575-590.
- !!----------------------------------------------------------------------
- LOGICAL, OPTIONAL, INTENT(in) :: l_mask ! use the routine for night mask computation
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqsrin ! input daily QSR flux
- !!
- INTEGER :: ji, jj ! dummy loop indices
- INTEGER, DIMENSION(jpi,jpj) :: imask_night ! night mask
- REAL(wp) :: ztwopi, zinvtwopi, zconvrad
- REAL(wp) :: zlo, zup, zlousd, zupusd
- REAL(wp) :: zdsws, zdecrad, ztx, zsin, zcos
- REAL(wp) :: ztmp, ztmp1, ztmp2, ztest
- REAL(wp) :: ztmpm, ztmpm1, ztmpm2
- REAL(wp), DIMENSION(jpi,jpj) :: zqsrout ! output QSR flux with diurnal cycle
- !---------------------------statement functions------------------------
- REAL(wp) :: fintegral, pt1, pt2, paaa, pbbb, pccc ! dummy statement function arguments
- fintegral( pt1, pt2, paaa, pbbb, pccc ) = &
- & paaa * pt2 + zinvtwopi * pbbb * SIN(pccc + ztwopi * pt2) &
- & - paaa * pt1 - zinvtwopi * pbbb * SIN(pccc + ztwopi * pt1)
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('sbc_dcy')
- !
- ! Initialization
- ! --------------
- ztwopi = 2._wp * rpi
- zinvtwopi = 1._wp / ztwopi
- zconvrad = ztwopi / 360._wp
- ! When are we during the day (from 0 to 1)
- zlo = ( REAL(nsec_day, wp) - 0.5_wp * rdttra(1) ) / rday
- zup = zlo + ( REAL(nn_fsbc, wp) * rdttra(1) ) / rday
- !
- IF( nday_qsr == -1 ) THEN ! first time step only
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'sbc_dcy : introduce diurnal cycle from daily mean qsr'
- WRITE(numout,*) '~~~~~~~'
- WRITE(numout,*)
- ENDIF
- ! allocate sbcdcy arrays
- IF( sbc_dcy_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_dcy_alloc : unable to allocate arrays' )
- ! Compute rcc needed to compute the time integral of the diurnal cycle
- rcc(:,:) = zconvrad * glamt(:,:) - rpi
- ! time of midday
- rtmd(:,:) = 0.5_wp - glamt(:,:) / 360._wp
- rtmd(:,:) = MOD( (rtmd(:,:) + 1._wp) , 1._wp)
- ENDIF
- ! If this is a new day, we have to update the dawn, dusk and scaling function
- !----------------------
-
- ! 2.1 dawn and dusk
- ! nday is the number of days since the beginning of the current month
- IF( nday_qsr /= nday ) THEN
- ! save the day of the year and the daily mean of qsr
- nday_qsr = nday
- ! number of days since the previous winter solstice (supposed to be always 21 December)
- zdsws = REAL(11 + nday_year, wp)
- ! declination of the earths orbit
- zdecrad = (-23.5_wp * zconvrad) * COS( zdsws * ztwopi / REAL(nyear_len(1),wp) )
- ! Compute A and B needed to compute the time integral of the diurnal cycle
- zsin = SIN( zdecrad ) ; zcos = COS( zdecrad )
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztmp = zconvrad * gphit(ji,jj)
- raa(ji,jj) = SIN( ztmp ) * zsin
- rbb(ji,jj) = COS( ztmp ) * zcos
- END DO
- END DO
- ! Compute the time of dawn and dusk
- ! rab to test if the day time is equal to 0, less than 24h of full day
- rab(:,:) = -raa(:,:) / rbb(:,:)
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF ( ABS(rab(ji,jj)) < 1._wp ) THEN ! day duration is less than 24h
- ! When is it night?
- ztx = zinvtwopi * (ACOS(rab(ji,jj)) - rcc(ji,jj))
- ztest = -rbb(ji,jj) * SIN( rcc(ji,jj) + ztwopi * ztx )
- ! is it dawn or dusk?
- IF ( ztest > 0._wp ) THEN
- rdawn(ji,jj) = ztx
- rdusk(ji,jj) = rtmd(ji,jj) + ( rtmd(ji,jj) - rdawn(ji,jj) )
- ELSE
- rdusk(ji,jj) = ztx
- rdawn(ji,jj) = rtmd(ji,jj) - ( rdusk(ji,jj) - rtmd(ji,jj) )
- ENDIF
- ELSE
- rdawn(ji,jj) = rtmd(ji,jj) + 0.5_wp
- rdusk(ji,jj) = rdawn(ji,jj)
- ENDIF
- END DO
- END DO
- rdawn(:,:) = MOD( (rdawn(:,:) + 1._wp), 1._wp )
- rdusk(:,:) = MOD( (rdusk(:,:) + 1._wp), 1._wp )
- ! 2.2 Compute the scaling function:
- ! S* = the inverse of the time integral of the diurnal cycle from dawn to dusk
- ! Avoid possible infinite scaling factor, associated with very short daylight
- ! periods, by ignoring periods less than 1/1000th of a day (ticket #1040)
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF ( ABS(rab(ji,jj)) < 1._wp ) THEN ! day duration is less than 24h
- rscal(ji,jj) = 0.0_wp
- IF ( rdawn(ji,jj) < rdusk(ji,jj) ) THEN ! day time in one part
- IF( (rdusk(ji,jj) - rdawn(ji,jj) ) .ge. 0.001_wp ) THEN
- rscal(ji,jj) = fintegral(rdawn(ji,jj), rdusk(ji,jj), raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- rscal(ji,jj) = 1._wp / rscal(ji,jj)
- ENDIF
- ELSE ! day time in two parts
- IF( (rdusk(ji,jj) + (1._wp - rdawn(ji,jj)) ) .ge. 0.001_wp ) THEN
- rscal(ji,jj) = fintegral(0._wp, rdusk(ji,jj), raa(ji,jj), rbb(ji,jj), rcc(ji,jj)) &
- & + fintegral(rdawn(ji,jj), 1._wp, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- rscal(ji,jj) = 1. / rscal(ji,jj)
- ENDIF
- ENDIF
- ELSE
- IF ( raa(ji,jj) > rbb(ji,jj) ) THEN ! 24h day
- rscal(ji,jj) = fintegral(0._wp, 1._wp, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- rscal(ji,jj) = 1._wp / rscal(ji,jj)
- ELSE ! No day
- rscal(ji,jj) = 0.0_wp
- ENDIF
- ENDIF
- END DO
- END DO
- !
- ztmp = rday / ( rdttra(1) * REAL(nn_fsbc, wp) )
- rscal(:,:) = rscal(:,:) * ztmp
- !
- ENDIF
- ! 3. update qsr with the diurnal cycle
- ! ------------------------------------
- imask_night(:,:) = 0
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztmpm = 0.0
- IF( ABS(rab(ji,jj)) < 1. ) THEN ! day duration is less than 24h
- !
- IF( rdawn(ji,jj) < rdusk(ji,jj) ) THEN ! day time in one part
- zlousd = MAX(zlo, rdawn(ji,jj))
- zlousd = MIN(zlousd, zup)
- zupusd = MIN(zup, rdusk(ji,jj))
- zupusd = MAX(zupusd, zlo)
- ztmp = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
- ztmpm = zupusd - zlousd
- IF ( ztmpm .EQ. 0 ) imask_night(ji,jj) = 1
- !
- ELSE ! day time in two parts
- zlousd = MIN(zlo, rdusk(ji,jj))
- zupusd = MIN(zup, rdusk(ji,jj))
- ztmp1 = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- ztmpm1=zupusd-zlousd
- zlousd = MAX(zlo, rdawn(ji,jj))
- zupusd = MAX(zup, rdawn(ji,jj))
- ztmp2 = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- ztmpm2 =zupusd-zlousd
- ztmp = ztmp1 + ztmp2
- ztmpm = ztmpm1 + ztmpm2
- zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
- IF (ztmpm .EQ. 0.) imask_night(ji,jj) = 1
- ENDIF
- ELSE ! 24h light or 24h night
- !
- IF( raa(ji,jj) > rbb(ji,jj) ) THEN ! 24h day
- ztmp = fintegral(zlo, zup, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
- zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
- imask_night(ji,jj) = 0
- !
- ELSE ! No day
- zqsrout(ji,jj) = 0.0_wp
- imask_night(ji,jj) = 1
- ENDIF
- ENDIF
- END DO
- END DO
- !
- IF ( PRESENT(l_mask) .AND. l_mask ) THEN
- zqsrout(:,:) = float(imask_night(:,:))
- ENDIF
- !
- IF( nn_timing == 1 ) CALL timing_stop('sbc_dcy')
- !
- END FUNCTION sbc_dcy
- !!======================================================================
- END MODULE sbcdcy
|