123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606 |
- MODULE limthd_2
- !!======================================================================
- !! *** MODULE limthd_2 ***
- !! LIM thermo ice model : ice thermodynamic
- !!======================================================================
- !! History : 1.0 ! 2000-01 (LIM)
- !! 2.0 ! 2002-07 (C. Ethe, G. Madec) F90
- !! 2.0 ! 2003-08 (C. Ethe) add lim_thd_init
- !! - ! 2008-2008 (A. Caubel, G. Madec, E. Maisonnave, S. Masson ) generic coupled interface
- !!---------------------------------------------------------------------
- #if defined key_lim2
- !!----------------------------------------------------------------------
- !! 'key_lim2' : LIM 2.0 sea-ice model
- !!----------------------------------------------------------------------
- !! lim_thd_2 : thermodynamic of sea ice
- !! lim_thd_init_2 : initialisation of sea-ice thermodynamic
- !!----------------------------------------------------------------------
- USE phycst ! physical constants
- USE dom_oce ! ocean space and time domain variables
- USE domvvl
- USE lbclnk
- USE in_out_manager ! I/O manager
- USE lib_mpp
- USE wrk_nemo ! work arrays
- USE iom ! IOM library
- USE ice_2 ! LIM sea-ice variables
- USE sbc_oce !
- USE sbc_ice !
- USE thd_ice_2 ! LIM thermodynamic sea-ice variables
- USE dom_ice_2 ! LIM sea-ice domain
- USE limthd_zdf_2
- USE limthd_lac_2
- USE limtab_2
- USE prtctl ! Print control
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
-
- IMPLICIT NONE
- PRIVATE
- PUBLIC lim_thd_2 ! called by lim_step
- REAL(wp) :: epsi20 = 1.e-20 ! constant values
- REAL(wp) :: epsi16 = 1.e-16 !
- REAL(wp) :: epsi04 = 1.e-04 !
- REAL(wp) :: rzero = 0.e0 !
- REAL(wp) :: rone = 1.e0 !
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!-------- -------------------------------------------------------------
- !! NEMO/LIM2 3.3 , UCL - NEMO Consortium (2010)
- !! $Id: limthd_2.F90 4990 2014-12-15 16:42:49Z timgraham $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE lim_thd_2( kt )
- !!-------------------------------------------------------------------
- !! *** ROUTINE lim_thd_2 ***
- !!
- !! ** Purpose : This routine manages the ice thermodynamic.
- !!
- !! ** Action : - Initialisation of some variables
- !! - Some preliminary computation (oceanic heat flux
- !! at the ice base, snow acc.,heat budget of the leads)
- !! - selection of the icy points and put them in an array
- !! - call lim_vert_ther for vert ice thermodynamic
- !! - back to the geographic grid
- !! - selection of points for lateral accretion
- !! - call lim_lat_acc for the ice accretion
- !! - back to the geographic grid
- !!
- !! References : Goosse et al. 1996, Bul. Soc. Roy. Sc. Liege, 65, 87-90
- !!---------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! number of iteration
- !!
- INTEGER :: ji, jj ! dummy loop indices
- INTEGER :: nbpb ! nb of icy pts for thermo. cal.
- INTEGER :: nbpac ! nb of pts for lateral accretion
- CHARACTER (len=22) :: charout
- REAL(wp) :: zfric_umin = 5e-03 ! lower bound for the friction velocity
- REAL(wp) :: zfric_umax = 2e-02 ! upper bound for the friction velocity
- REAL(wp) :: zinda ! switch for test. the val. of concen.
- REAL(wp) :: zindb, zindg ! switches for test. the val of arg
- REAL(wp) :: zfricp ! temporary scalar
- REAL(wp) :: za , zh, zthsnice !
- REAL(wp) :: zfric_u ! friction velocity
- REAL(wp) :: zfntlat, zpareff ! test. the val. of lead heat budget
- REAL(wp) :: zuice_m, zvice_m ! Sea-ice velocities at U & V-points
- REAL(wp) :: zhice_u, zhice_v ! Sea-ice volume at U & V-points
- REAL(wp) :: ztr_fram ! Sea-ice transport through Fram strait
- REAL(wp) :: zrhoij, zrhoijm1 ! temporary scalars
- REAL(wp) :: zztmp ! temporary scalars within a loop
- REAL(wp), POINTER, DIMENSION(:,:) :: ztmp ! 2D workspace
- REAL(wp), POINTER, DIMENSION(:,:) :: zqlbsbq ! link with lead energy budget qldif
- REAL(wp), POINTER, DIMENSION(:,:) :: zlicegr ! link with lateral ice growth
- !!$ REAL(wp), DIMENSION(:,:) :: firic ! IR flux over the ice (outputs only)
- !!$ REAL(wp), DIMENSION(:,:) :: fcsic ! Sensible heat flux over the ice (outputs only)
- !!$ REAL(wp), DIMENSION(:,:) :: fleic ! Latent heat flux over the ice (outputs only)
- !!$ REAL(wp), DIMENSION(:,:) :: qlatic ! latent flux (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zdvosif ! Variation of volume at surface (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zdvobif ! Variation of ice volume at the bottom ice (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zdvolif ! Total variation of ice volume (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zdvonif ! Surface accretion Snow to Ice transformation (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zdvomif ! Bottom variation of ice volume due to melting (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zu_imasstr ! Sea-ice transport along i-axis at U-point (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:) :: zv_imasstr ! Sea-ice transport along j-axis at V-point (outputs only)
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zmsk ! 3D workspace
- !!-------------------------------------------------------------------
- CALL wrk_alloc( jpi, jpj, ztmp, zqlbsbq, zlicegr, zdvosif, zdvobif, zdvolif, zdvonif, zdvomif, zu_imasstr, zv_imasstr )
- CALL wrk_alloc( jpi, jpj, jpk, zmsk )
- IF( kt == nit000 ) CALL lim_thd_init_2 ! Initialization (first time-step only)
-
- !-------------------------------------------!
- ! Initilization of diagnostic variables !
- !-------------------------------------------!
-
- !!gm needed? yes at least for some of these arrays
- zdvosif(:,:) = 0.e0 ! variation of ice volume at surface
- zdvobif(:,:) = 0.e0 ! variation of ice volume at bottom
- zdvolif(:,:) = 0.e0 ! total variation of ice volume
- zdvonif(:,:) = 0.e0 ! transformation of snow to sea-ice volume
- zlicegr(:,:) = 0.e0 ! lateral variation of ice volume
- zdvomif(:,:) = 0.e0 ! variation of ice volume at bottom due to melting only
- ztr_fram = 0.e0 ! sea-ice transport through Fram strait
- fstric (:,:) = 0.e0 ! part of solar radiation absorbing inside the ice
- fscmbq (:,:) = 0.e0 ! linked with fstric
- ffltbif(:,:) = 0.e0 ! linked with fstric
- qfvbq (:,:) = 0.e0 ! linked with fstric
- rdm_snw(:,:) = 0.e0 ! variation of snow mass over 1 time step
- rdq_snw(:,:) = 0.e0 ! heat content associated with rdm_snw
- rdm_ice(:,:) = 0.e0 ! variation of ice mass over 1 time step
- rdq_ice(:,:) = 0.e0 ! heat content associated with rdm_ice
- zmsk (:,:,:) = 0.e0
- ! set to zero snow thickness smaller than epsi04
- DO jj = 1, jpj
- DO ji = 1, jpi
- hsnif(ji,jj) = hsnif(ji,jj) * MAX( rzero, SIGN( rone , hsnif(ji,jj) - epsi04 ) )
- END DO
- END DO
- !!gm better coded (do not use SIGN...)
- ! WHERE( hsnif(:,:) < epsi04 ) hsnif(:,:) = 0.e0
- !!gm
- IF(ln_ctl) CALL prt_ctl( tab2d_1=hsnif, clinfo1=' lim_thd: hsnif : ' )
-
- !-----------------------------------!
- ! Treatment of particular cases !
- !-----------------------------------!
-
- DO jj = 1, jpj
- DO ji = 1, jpi
- ! snow is transformed into ice if the original ice cover disappears.
- zindg = tms(ji,jj) * MAX( rzero , SIGN( rone , -hicif(ji,jj) ) )
- hicif(ji,jj) = hicif(ji,jj) + zindg * rhosn * hsnif(ji,jj) / rau0
- hsnif(ji,jj) = ( rone - zindg ) * hsnif(ji,jj) + zindg * hicif(ji,jj) * ( rau0 - rhoic ) / rhosn
- dmgwi(ji,jj) = zindg * (1.0 - frld(ji,jj)) * rhoic * hicif(ji,jj) ! snow/ice mass
-
- ! the lead fraction, frld, must be little than or equal to amax (ice ridging).
- zthsnice = hsnif(ji,jj) + hicif(ji,jj)
- zindb = tms(ji,jj) * ( 1.0 - MAX( rzero , SIGN( rone , - zthsnice ) ) )
- za = zindb * MIN( rone, ( 1.0 - frld(ji,jj) ) * uscomi )
- hsnif (ji,jj) = hsnif(ji,jj) * za
- hicif (ji,jj) = hicif(ji,jj) * za
- qstoif(ji,jj) = qstoif(ji,jj) * za
- frld (ji,jj) = 1.0 - zindb * ( 1.0 - frld(ji,jj) ) / MAX( za, epsi20 )
-
- ! the in situ ice thickness, hicif, must be equal to or greater than hiclim.
- zh = MAX( rone , zindb * hiclim / MAX( hicif(ji,jj), epsi20 ) )
- hsnif (ji,jj) = hsnif(ji,jj) * zh
- hicif (ji,jj) = hicif(ji,jj) * zh
- qstoif(ji,jj) = qstoif(ji,jj) * zh
- frld (ji,jj) = ( frld(ji,jj) + ( zh - 1.0 ) ) / zh
- END DO
- END DO
- IF(ln_ctl) THEN
- CALL prt_ctl( tab2d_1=hicif , clinfo1=' lim_thd: hicif : ' )
- CALL prt_ctl( tab2d_1=hsnif , clinfo1=' lim_thd: hsnif : ' )
- CALL prt_ctl( tab2d_1=dmgwi , clinfo1=' lim_thd: dmgwi : ' )
- CALL prt_ctl( tab2d_1=qstoif, clinfo1=' lim_thd: qstoif : ' )
- CALL prt_ctl( tab2d_1=frld , clinfo1=' lim_thd: frld : ' )
- ENDIF
-
- !-------------------------------!
- ! Thermodynamics of sea ice !
- !-------------------------------!
-
- ! Partial computation of forcing for the thermodynamic sea ice model.
- !--------------------------------------------------------------------------
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zthsnice = hsnif(ji,jj) + hicif(ji,jj)
- zindb = tms(ji,jj) * ( 1.0 - MAX( rzero , SIGN( rone , - zthsnice ) ) )
- pfrld(ji,jj) = frld(ji,jj)
- zfricp = 1.0 - frld(ji,jj)
- zinda = 1.0 - MAX( rzero , SIGN( rone , - zfricp ) )
-
- ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget
- thcm(ji,jj) = 0.e0
-
- ! net downward heat flux from the ice to the ocean, expressed as a function of ocean
- ! temperature and turbulent mixing (McPhee, 1992)
- zfric_u = MAX ( MIN( SQRT( ust2s(ji,jj) ) , zfric_umax ) , zfric_umin ) ! friction velocity
- fdtcn(ji,jj) = zindb * rau0 * rcp * 0.006 * zfric_u * ( sst_m(ji,jj) + rt0 - tfu(ji,jj) )
- qdtcn(ji,jj) = zindb * fdtcn(ji,jj) * frld(ji,jj) * rdt_ice
-
- ! partial computation of the lead energy budget (qldif)
- IF( ln_cpl ) THEN
- qldif(ji,jj) = tms(ji,jj) * rdt_ice &
- & * ( ( qsr_tot(ji,jj) - qsr_ice(ji,jj,1) * zfricp ) * ( 1.0 - thcm(ji,jj) ) &
- & + ( qns_tot(ji,jj) - qns_ice(ji,jj,1) * zfricp ) &
- & + frld(ji,jj) * ( fdtcn(ji,jj) + ( 1.0 - zindb ) * fsbbq(ji,jj) ) )
- ELSE
- qldif(ji,jj) = tms(ji,jj) * rdt_ice * frld(ji,jj) &
- & * ( qsr(ji,jj) * ( 1.0 - thcm(ji,jj) ) &
- & + qns(ji,jj) + fdtcn(ji,jj) &
- & + ( 1.0 - zindb ) * fsbbq(ji,jj) )
- ENDIF
- ! parlat : percentage of energy used for lateral ablation (0.0)
- zfntlat = 1.0 - MAX( rzero , SIGN( rone , - qldif(ji,jj) ) )
- zpareff = 1.0 + ( parlat - 1.0 ) * zinda * zfntlat
- zqlbsbq(ji,jj) = qldif(ji,jj) * ( 1.0 - zpareff ) / MAX( (1.0 - frld(ji,jj)) * rdt_ice , epsi16 )
- qldif (ji,jj) = zpareff * qldif(ji,jj)
- qdtcn (ji,jj) = zpareff * qdtcn(ji,jj)
-
- ! energy needed to bring ocean surface layer until its freezing
- qcmif (ji,jj) = rau0 * rcp * fse3t_m(ji,jj) * ( tfu(ji,jj) - sst_m(ji,jj) - rt0 ) * ( 1 - zinda )
-
- ! calculate oceanic heat flux.
- fbif (ji,jj) = zindb * ( fsbbq(ji,jj) / MAX( (1.0 - frld(ji,jj)) , epsi20 ) + fdtcn(ji,jj) )
-
- ! computation of the thermodynamic ice production (only needed for output)
- hicifp(ji,jj) = hicif(ji,jj) * ( 1.0 - frld(ji,jj) )
- END DO
- END DO
-
- ! Select icy points and fulfill arrays for the vectorial grid.
- !----------------------------------------------------------------------
- nbpb = 0
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF ( frld(ji,jj) < 1.0 ) THEN
- nbpb = nbpb + 1
- npb(nbpb) = (jj - 1) * jpi + ji
- ENDIF
- END DO
- END DO
- IF(ln_ctl) THEN
- CALL prt_ctl(tab2d_1=pfrld, clinfo1=' lim_thd: pfrld : ', tab2d_2=thcm , clinfo2=' thcm : ')
- CALL prt_ctl(tab2d_1=fdtcn, clinfo1=' lim_thd: fdtcn : ', tab2d_2=qdtcn , clinfo2=' qdtcn : ')
- CALL prt_ctl(tab2d_1=qldif, clinfo1=' lim_thd: qldif : ', tab2d_2=zqlbsbq, clinfo2=' zqlbsbq : ')
- CALL prt_ctl(tab2d_1=qcmif, clinfo1=' lim_thd: qcmif : ', tab2d_2=fbif , clinfo2=' fbif : ')
- zmsk(:,:,1) = tms(:,:)
- CALL prt_ctl(tab2d_1=qcmif , clinfo1=' lim_thd: qcmif : ', mask1=zmsk)
- CALL prt_ctl(tab2d_1=hicifp, clinfo1=' lim_thd: hicifp : ')
- WRITE(charout, FMT="('lim_thd: nbpb = ',I4)") nbpb
- CALL prt_ctl_info(charout)
- ENDIF
-
-
- ! If there is no ice, do nothing. Otherwise, compute Top and Bottom accretion/ablation
- !------------------------------------------------------------------------------------
- IF( nbpb > 0 ) THEN
- !
- ! put the variable in a 1-D array for thermodynamics process
- CALL tab_2d_1d_2( nbpb, frld_1d (1:nbpb) , frld , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, h_ice_1d (1:nbpb) , hicif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, h_snow_1d (1:nbpb) , hsnif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, sist_1d (1:nbpb) , sist , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, tbif_1d (1:nbpb , 1 ), tbif(:,:,1) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, tbif_1d (1:nbpb , 2 ), tbif(:,:,2) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, tbif_1d (1:nbpb , 3 ), tbif(:,:,3) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, qsr_ice_1d (1:nbpb) , qsr_ice(:,:,1) , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, fr1_i0_1d (1:nbpb) , fr1_i0 , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, fr2_i0_1d (1:nbpb) , fr2_i0 , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, qns_ice_1d(1:nbpb) , qns_ice(:,:,1), jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, dqns_ice_1d(1:nbpb) , dqns_ice(:,:,1), jpi, jpj, npb(1:nbpb) )
- IF( .NOT. ln_cpl ) THEN
- CALL tab_2d_1d_2( nbpb, qla_ice_1d (1:nbpb) , qla_ice(:,:,1), jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, dqla_ice_1d(1:nbpb) , dqla_ice(:,:,1), jpi, jpj, npb(1:nbpb) )
- ENDIF
- CALL tab_2d_1d_2( nbpb, tfu_1d (1:nbpb) , tfu , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, sprecip_1d (1:nbpb) , sprecip , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, fbif_1d (1:nbpb) , fbif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, thcm_1d (1:nbpb) , thcm , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, qldif_1d (1:nbpb) , qldif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, qstbif_1d (1:nbpb) , qstoif , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, rdm_ice_1d (1:nbpb) , rdm_ice , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, rdq_ice_1d (1:nbpb) , rdq_ice , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, dmgwi_1d (1:nbpb) , dmgwi , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, rdm_snw_1d (1:nbpb) , rdm_snw , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, rdq_snw_1d (1:nbpb) , rdq_snw , jpi, jpj, npb(1:nbpb) )
- CALL tab_2d_1d_2( nbpb, qlbbq_1d (1:nbpb) , zqlbsbq , jpi, jpj, npb(1:nbpb) )
- !
- CALL lim_thd_zdf_2( 1, nbpb ) ! compute ice growth
- !
- ! back to the geographic grid.
- CALL tab_1d_2d_2( nbpb, frld , npb, frld_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, hicif , npb, h_ice_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, hsnif , npb, h_snow_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, sist , npb, sist_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, tbif(:,:,1), npb, tbif_1d (1:nbpb , 1 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpb, tbif(:,:,2), npb, tbif_1d (1:nbpb , 2 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpb, tbif(:,:,3), npb, tbif_1d (1:nbpb , 3 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpb, fscmbq , npb, fscbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, ffltbif , npb, fltbif_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, fstric , npb, fstbif_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, qldif , npb, qldif_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, qfvbq , npb, qfvbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, qstoif , npb, qstbif_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, rdm_ice , npb, rdm_ice_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, rdq_ice , npb, rdq_ice_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, dmgwi , npb, dmgwi_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, rdm_snw , npb, rdm_snw_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, rdq_snw , npb, rdq_snw_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, zdvosif , npb, dvsbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, zdvobif , npb, dvbbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, zdvomif , npb, rdvomif_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, zdvolif , npb, dvlbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, zdvonif , npb, dvnbq_1d (1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, qsr_ice(:,:,1), npb, qsr_ice_1d(1:nbpb) , jpi, jpj )
- CALL tab_1d_2d_2( nbpb, qns_ice(:,:,1), npb, qns_ice_1d(1:nbpb) , jpi, jpj )
- IF( .NOT. ln_cpl ) CALL tab_1d_2d_2( nbpb, qla_ice(:,:,1), npb, qla_ice_1d(1:nbpb), jpi, jpj )
- !
- ENDIF
- ! Up-date sea ice thickness
- !--------------------------
- DO jj = 1, jpj
- DO ji = 1, jpi
- phicif(ji,jj) = hicif(ji,jj)
- hicif(ji,jj) = hicif(ji,jj) * ( rone - MAX( rzero, SIGN( rone, - ( 1.0 - frld(ji,jj) ) ) ) )
- END DO
- END DO
-
- ! Tricky trick : add 2 to frld in the Southern Hemisphere
- !--------------------------------------------------------
- IF( fcor(1,1) < 0.e0 ) THEN
- DO jj = 1, njeqm1
- DO ji = 1, jpi
- frld(ji,jj) = frld(ji,jj) + 2.0
- END DO
- END DO
- ENDIF
- CALL lbc_lnk( frld , 'T', 1. )
-
- ! Select points for lateral accretion (this occurs when heat exchange
- ! between ice and ocean is negative; ocean losing heat)
- !-----------------------------------------------------------------
- nbpac = 0
- DO jj = 1, jpj
- DO ji = 1, jpi
- !i yes! IF ( ( qcmif(ji,jj) - qldif(ji,jj) ) > 0.e0 ) THEN
- IF ( tms(ji,jj) * ( qcmif(ji,jj) - qldif(ji,jj) ) > 0.e0 ) THEN
- nbpac = nbpac + 1
- npac( nbpac ) = (jj - 1) * jpi + ji
- ENDIF
- END DO
- END DO
-
- IF(ln_ctl) THEN
- CALL prt_ctl(tab2d_1=phicif, clinfo1=' lim_thd: phicif : ', tab2d_2=hicif, clinfo2=' hicif : ')
- WRITE(charout, FMT="('lim_thd: nbpac = ',I4)") nbpac
- CALL prt_ctl_info(charout)
- ENDIF
- ! If ocean gains heat do nothing ; otherwise, one performs lateral accretion
- !--------------------------------------------------------------------------------
- IF( nbpac > 0 ) THEN
- !
- zlicegr(:,:) = rdm_ice(:,:) ! to output the lateral sea-ice growth
- !...Put the variable in a 1-D array for lateral accretion
- CALL tab_2d_1d_2( nbpac, frld_1d (1:nbpac) , frld , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, h_snow_1d (1:nbpac) , hsnif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, h_ice_1d (1:nbpac) , hicif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, tbif_1d (1:nbpac , 1 ), tbif(:,:,1), jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, tbif_1d (1:nbpac , 2 ), tbif(:,:,2), jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, tbif_1d (1:nbpac , 3 ), tbif(:,:,3), jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, qldif_1d (1:nbpac) , qldif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, qcmif_1d (1:nbpac) , qcmif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, qstbif_1d (1:nbpac) , qstoif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, rdm_ice_1d(1:nbpac) , rdm_ice , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, rdq_ice_1d(1:nbpac) , rdq_ice , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, dvlbq_1d (1:nbpac) , zdvolif , jpi, jpj, npac(1:nbpac) )
- CALL tab_2d_1d_2( nbpac, tfu_1d (1:nbpac) , tfu , jpi, jpj, npac(1:nbpac) )
- !
- CALL lim_thd_lac_2( 1 , nbpac ) ! lateral accretion routine.
- !
- ! back to the geographic grid
- CALL tab_1d_2d_2( nbpac, frld , npac(1:nbpac), frld_1d (1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, hsnif , npac(1:nbpac), h_snow_1d (1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, hicif , npac(1:nbpac), h_ice_1d (1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, tbif(:,:,1), npac(1:nbpac), tbif_1d (1:nbpac , 1 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpac, tbif(:,:,2), npac(1:nbpac), tbif_1d (1:nbpac , 2 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpac, tbif(:,:,3), npac(1:nbpac), tbif_1d (1:nbpac , 3 ), jpi, jpj )
- CALL tab_1d_2d_2( nbpac, qstoif , npac(1:nbpac), qstbif_1d (1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, rdm_ice , npac(1:nbpac), rdm_ice_1d(1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, rdq_ice , npac(1:nbpac), rdq_ice_1d(1:nbpac) , jpi, jpj )
- CALL tab_1d_2d_2( nbpac, zdvolif , npac(1:nbpac), dvlbq_1d (1:nbpac) , jpi, jpj )
- !
- ENDIF
-
-
- ! Recover frld values between 0 and 1 in the Southern Hemisphere (tricky trick)
- ! Update daily thermodynamic ice production.
- !------------------------------------------------------------------------------
- DO jj = 1, jpj
- DO ji = 1, jpi
- frld (ji,jj) = MIN( frld(ji,jj), ABS( frld(ji,jj) - 2.0 ) )
- fr_i (ji,jj) = 1.0 - frld(ji,jj)
- hicifp(ji,jj) = hicif(ji,jj) * fr_i(ji,jj) - hicifp(ji,jj)
- END DO
- END DO
- ! Outputs
- !--------------------------------------------------------------------------------
- ztmp(:,:) = 1. - pfrld(:,:) ! fraction of ice after the dynamic, before the thermodynamic
- IF( iom_use('ist_cea' ) ) CALL iom_put( 'ist_cea', (sist(:,:) - rt0) * ztmp(:,:) ) ! Ice surface temperature [Celius]
- IF( iom_use('qsr_ai_cea' ) ) CALL iom_put( 'qsr_ai_cea', qsr_ice(:,:,1) * ztmp(:,:) ) ! Solar flux over the ice [W/m2]
- IF( iom_use('qns_ai_cea' ) ) CALL iom_put( 'qns_ai_cea', qns_ice(:,:,1) * ztmp(:,:) ) ! Non-solar flux over the ice [W/m2]
- IF( iom_use('qla_ai_cea' ) .AND. .NOT. ln_cpl ) &
- & CALL iom_put( 'qla_ai_cea', qla_ice(:,:,1) * ztmp(:,:) ) ! Latent flux over the ice [W/m2]
- !
- IF( iom_use('snowthic_cea')) CALL iom_put( 'snowthic_cea', hsnif (:,:) * fr_i(:,:) ) ! Snow thickness [m]
- IF( iom_use('icethic_cea' )) CALL iom_put( 'icethic_cea' , hicif (:,:) * fr_i(:,:) ) ! Ice thickness [m]
- zztmp = 1.0 / rdt_ice
- IF( iom_use('iceprod_cea') ) CALL iom_put( 'iceprod_cea' , hicifp (:,:) * zztmp ) ! Ice produced [m/s]
- IF( iom_use('iiceconc' ) ) CALL iom_put( 'iiceconc' , fr_i(:,:) ) ! Ice concentration [-]
- IF( iom_use('snowmel_cea') ) CALL iom_put( 'snowmel_cea' , rdm_snw(:,:) * zztmp ) ! Snow melt [kg/m2/s]
- zztmp = rhoic / rdt_ice
- IF( iom_use('sntoice_cea') ) CALL iom_put( 'sntoice_cea' , zdvonif(:,:) * zztmp ) ! Snow to Ice transformation [kg/m2/s]
- IF( iom_use('ticemel_cea') ) CALL iom_put( 'ticemel_cea' , zdvosif(:,:) * zztmp ) ! Melt at Sea Ice top [kg/m2/s]
- IF( iom_use('bicemel_cea') ) CALL iom_put( 'bicemel_cea' , zdvomif(:,:) * zztmp ) ! Melt at Sea Ice bottom [kg/m2/s]
- IF( iom_use('licepro_cea') ) THEN
- zlicegr(:,:) = MAX( 0.e0, rdm_ice(:,:)-zlicegr(:,:) )
- CALL iom_put( 'licepro_cea' , zlicegr(:,:) * zztmp ) ! Lateral sea ice growth [kg/m2/s]
- ENDIF
- !
- ! Compute the Eastward & Northward sea-ice transport
- IF( iom_use('u_imasstr') ) THEN
- zztmp = 0.25 * rhoic
- DO jj = 1, jpjm1
- DO ji = 1, jpim1 ! NO vector opt.
- ! Ice velocities, volume & transport at U-points
- zuice_m = u_ice(ji+1,jj+1) + u_ice(ji+1,jj )
- zhice_u = hicif(ji,jj)*e2t(ji,jj)*fr_i(ji,jj) + hicif(ji+1,jj )*e2t(ji+1,jj )*fr_i(ji+1,jj )
- zu_imasstr(ji,jj) = zztmp * zhice_u * zuice_m
- END DO
- END DO
- CALL lbc_lnk( zu_imasstr, 'U', -1. )
- CALL iom_put( 'u_imasstr', zu_imasstr(:,:) ) ! Ice transport along i-axis at U-point [kg/s]
- ENDIF
- IF( iom_use('v_imasstr') ) THEN
- zztmp = 0.25 * rhoic
- DO jj = 1, jpjm1
- DO ji = 1, jpim1 ! NO vector opt.
- ! Ice velocities, volume & transport at V-points
- zvice_m = v_ice(ji+1,jj+1) + v_ice(ji ,jj+1)
- zhice_v = hicif(ji,jj)*e1t(ji,jj)*fr_i(ji,jj) + hicif(ji ,jj+1)*e1t(ji ,jj+1)*fr_i(ji ,jj+1)
- zv_imasstr(ji,jj) = zztmp * zhice_v * zvice_m
- END DO
- END DO
- CALL lbc_lnk( zv_imasstr, 'V', -1. )
- CALL iom_put( 'v_imasstr', zv_imasstr(:,:) ) ! Ice transport along j-axis at V-point [kg/s]
- ENDIF
- !! Fram Strait sea-ice transport (sea-ice + snow) (in ORCA2 = 5 points)
- IF( iom_use('fram_trans') .and. cp_cfg == "orca" .AND. jp_cfg == 2 ) THEN ! ORCA R2 configuration
- DO jj = mj0(137), mj1(137) ! B grid
- IF( mj0(jj-1) >= nldj ) THEN
- DO ji = MAX(mi0(134),nldi), MIN(mi1(138),nlei)
- zrhoij = e1t(ji,jj ) * fr_i(ji,jj ) * ( rhoic*hicif(ji,jj ) + rhosn*hsnif(ji,jj ) )
- zrhoijm1 = e1t(ji,jj-1) * fr_i(ji,jj-1) * ( rhoic*hicif(ji,jj-1) + rhosn*hsnif(ji,jj-1) )
- ztr_fram = ztr_fram - 0.25 * ( v_ice(ji,jj)+ v_ice(ji+1,jj) ) * ( zrhoij + zrhoijm1 )
- END DO
- ENDIF
- END DO
- IF( lk_mpp ) CALL mpp_sum( ztr_fram )
- CALL iom_put( 'fram_trans', ztr_fram ) ! Ice transport through Fram strait [kg/s]
- ENDIF
- IF( iom_use('ice_pres') .OR. iom_use('ist_ipa') .OR. iom_use('uice_ipa') .OR. iom_use('vice_ipa') ) THEN
- !! ce ztmp(:,:) = 1. - AINT( frld(:,:), wp ) ! return 1 as soon as there is ice
- !! ce A big warning because the model crashes on IDRIS/IBM SP6 with xlf 13.1.0.3, see ticket #761
- !! ce We Unroll the loop and everything works fine
- DO jj = 1, jpj
- DO ji = 1, jpi
- ztmp(ji,jj) = 1. - AINT( frld(ji,jj), wp ) ! return 1 as soon as there is ice
- END DO
- END DO
- !
- IF( iom_use('ice_pres') ) CALL iom_put( 'ice_pres', ztmp ) ! Ice presence [-]
- IF( iom_use('ist_ipa' ) ) CALL iom_put( 'ist_ipa' , ( sist(:,:) - rt0 ) * ztmp(:,:) ) ! Ice surface temperature [Celius]
- IF( iom_use('uice_ipa') ) CALL iom_put( 'uice_ipa', u_ice(:,:) * ztmp(:,:) ) ! Ice velocity along i-axis at I-point [m/s]
- IF( iom_use('vice_ipa') ) CALL iom_put( 'vice_ipa', v_ice(:,:) * ztmp(:,:) ) ! Ice velocity along j-axis at I-point [m/s]
- ENDIF
- IF(ln_ctl) THEN
- CALL prt_ctl_info(' lim_thd end ')
- CALL prt_ctl( tab2d_1=hicif , clinfo1=' lim_thd: hicif : ', tab2d_2=hsnif , clinfo2=' hsnif : ' )
- CALL prt_ctl( tab2d_1=frld , clinfo1=' lim_thd: frld : ', tab2d_2=hicifp, clinfo2=' hicifp : ' )
- CALL prt_ctl( tab2d_1=phicif , clinfo1=' lim_thd: phicif : ', tab2d_2=pfrld , clinfo2=' pfrld : ' )
- CALL prt_ctl( tab2d_1=sist , clinfo1=' lim_thd: sist : ' )
- CALL prt_ctl( tab2d_1=tbif(:,:,1), clinfo1=' lim_thd: tbif 1 : ' )
- CALL prt_ctl( tab2d_1=tbif(:,:,2), clinfo1=' lim_thd: tbif 2 : ' )
- CALL prt_ctl( tab2d_1=tbif(:,:,3), clinfo1=' lim_thd: tbif 3 : ' )
- CALL prt_ctl( tab2d_1=fdtcn , clinfo1=' lim_thd: fdtcn : ', tab2d_2=qdtcn , clinfo2=' qdtcn : ' )
- CALL prt_ctl( tab2d_1=qstoif , clinfo1=' lim_thd: qstoif : ', tab2d_2=fsbbq , clinfo2=' fsbbq : ' )
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, ztmp, zqlbsbq, zlicegr, zdvosif, zdvobif, zdvolif, zdvonif, zdvomif, zu_imasstr, zv_imasstr )
- CALL wrk_dealloc( jpi, jpj, jpk, zmsk )
- !
- END SUBROUTINE lim_thd_2
- SUBROUTINE lim_thd_init_2
- !!-------------------------------------------------------------------
- !! *** ROUTINE lim_thd_init_2 ***
- !!
- !! ** Purpose : Physical constants and parameters linked to the ice
- !! thermodynamics
- !!
- !! ** Method : Read the namicethd namelist and check the ice-thermo
- !! parameter values called at the first timestep (nit000)
- !!
- !! ** input : Namelist namicether
- !!-------------------------------------------------------------------
- INTEGER :: ios ! Local integer output status for namelist read
- NAMELIST/namicethd/ hmelt , hiccrit, hicmin, hiclim, amax , &
- & swiqst, sbeta , parlat, hakspl, hibspl, exld, &
- & hakdif, hnzst , thth , parsub, alphs
- !!-------------------------------------------------------------------
-
- REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics
- READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp )
- REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics
- READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp )
- IF(lwm) WRITE ( numoni, namicethd )
- IF( ln_cpl .AND. parsub /= 0.0 ) CALL ctl_stop( 'In coupled mode, use parsub = 0. or send dqla' )
- !
- IF(lwp) THEN ! control print
- WRITE(numout,*)
- WRITE(numout,*)'lim_thd_init_2: ice parameters for ice thermodynamic computation '
- WRITE(numout,*)'~~~~~~~~~~~~~~'
- WRITE(numout,*)' maximum melting at the bottom hmelt = ', hmelt
- WRITE(numout,*)' ice thick. for lateral accretion in NH (SH) hiccrit(1/2) = ', hiccrit
- WRITE(numout,*)' ice thick. corr. to max. energy stored in brine pocket hicmin = ', hicmin
- WRITE(numout,*)' minimum ice thickness hiclim = ', hiclim
- WRITE(numout,*)' maximum lead fraction amax = ', amax
- WRITE(numout,*)' energy stored in brine pocket (=1) or not (=0) swiqst = ', swiqst
- WRITE(numout,*)' numerical carac. of the scheme for diffusion in ice '
- WRITE(numout,*)' Cranck-Nicholson (=0.5), implicit (=1), explicit (=0) sbeta = ', sbeta
- WRITE(numout,*)' percentage of energy used for lateral ablation parlat = ', parlat
- WRITE(numout,*)' slope of distr. for Hakkinen-Mellor lateral melting hakspl = ', hakspl
- WRITE(numout,*)' slope of distribution for Hibler lateral melting hibspl = ', hibspl
- WRITE(numout,*)' exponent for leads-closure rate exld = ', exld
- WRITE(numout,*)' coefficient for diffusions of ice and snow hakdif = ', hakdif
- WRITE(numout,*)' threshold thick. for comp. of eq. thermal conductivity zhth = ', thth
- WRITE(numout,*)' thickness of the surf. layer in temp. computation hnzst = ', hnzst
- WRITE(numout,*)' switch for snow sublimation (=1) or not (=0) parsub = ', parsub
- WRITE(numout,*)' coefficient for snow density when snow ice formation alphs = ', alphs
- ENDIF
- !
- uscomi = 1.0 / ( 1.0 - amax ) ! inverse of minimum lead fraction
- rcdsn = hakdif * rcdsn
- rcdic = hakdif * rcdic
- !
- IF( hsndif > 100.e0 .OR. hicdif > 100.e0 ) THEN
- cnscg = 0.e0
- ELSE
- cnscg = rcpsn / rcpic ! ratio rcpsn/rcpic
- ENDIF
- !
- END SUBROUTINE lim_thd_init_2
- #else
- !!----------------------------------------------------------------------
- !! Default option Dummy module NO LIM 2.0 sea-ice model
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE lim_thd_2 ! Dummy routine
- END SUBROUTINE lim_thd_2
- #endif
- !!======================================================================
- END MODULE limthd_2
|