123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- MODULE limdyn_2
- !!======================================================================
- !! *** MODULE limdyn_2 ***
- !! Sea-Ice dynamics :
- !!======================================================================
- !! History : 1.0 ! 2001-04 (LIM) Original code
- !! 2.0 ! 2002-08 (C. Ethe, G. Madec) F90, mpp
- !! 2.0 ! 2003-08 (C. Ethe) add lim_dyn_init
- !! 2.0 ! 2006-07 (G. Madec) Surface module
- !! 3.3 ! 2009-05 (G. Garric, C. Bricaud) addition of the lim2_evp case
- !!---------------------------------------------------------------------
- #if defined key_lim2
- !!----------------------------------------------------------------------
- !! 'key_lim2' : LIM 2.0 sea-ice model
- !!----------------------------------------------------------------------
- !! lim_dyn_2 : computes ice velocities
- !! lim_dyn_init_2 : initialization and namelist read
- !!----------------------------------------------------------------------
- USE dom_oce ! ocean space and time domain
- USE sbc_oce ! ocean surface boundary condition
- USE phycst ! physical constant
- USE ice_2 ! LIM-2: ice variables
- USE sbc_ice ! Surface boundary condition: sea-ice fields
- USE dom_ice_2 ! LIM-2: ice domain
- USE limistate_2 ! LIM-2: initial state
- USE limrhg_2 ! LIM-2: VP ice rheology
- USE limrhg ! LIM : EVP ice rheology
- USE lbclnk ! lateral boundary condition - MPP link
- USE lib_mpp ! MPP library
- USE wrk_nemo ! work arrays
- USE in_out_manager ! I/O manager
- USE prtctl ! Print control
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- IMPLICIT NONE
- PRIVATE
- PUBLIC lim_dyn_2 ! routine called by sbc_ice_lim
- !! * Substitutions
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/LIM2 3.3 , UCL - NEMO Consortium (2010)
- !! $Id: limdyn_2.F90 4624 2014-04-28 12:09:03Z acc $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE lim_dyn_2( kt )
- !!-------------------------------------------------------------------
- !! *** ROUTINE lim_dyn_2 ***
- !!
- !! ** Purpose : compute ice velocity and ocean-ice friction velocity
- !!
- !! ** Method :
- !!
- !! ** Action : - Initialisation
- !! - Call of the dynamic routine for each hemisphere
- !! - computation of the friction velocity at the sea-ice base
- !! - treatment of the case if no ice dynamic
- !!---------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! number of iteration
- !!
- INTEGER :: ji, jj ! dummy loop indices
- INTEGER :: i_j1, i_jpj ! Starting/ending j-indices for rheology
- REAL(wp) :: zcoef ! temporary scalar
- REAL(wp), POINTER, DIMENSION(: ) :: zind ! i-averaged indicator of sea-ice
- REAL(wp), POINTER, DIMENSION(: ) :: zmsk ! i-averaged of tmask
- REAL(wp), POINTER, DIMENSION(:,:) :: zu_io, zv_io ! ice-ocean velocity
- !!---------------------------------------------------------------------
- CALL wrk_alloc( jpi, jpj, zu_io, zv_io )
- CALL wrk_alloc( jpj, zind , zmsk )
- IF( kt == nit000 ) CALL lim_dyn_init_2 ! Initialization (first time-step only)
-
- IF( ln_limdyn ) THEN
- !
- ! Mean ice and snow thicknesses.
- hsnm(:,:) = ( 1.0 - frld(:,:) ) * hsnif(:,:)
- hicm(:,:) = ( 1.0 - frld(:,:) ) * hicif(:,:)
- !
- ! ! Rheology (ice dynamics)
- ! ! ========
-
- ! Define the j-limits where ice rheology is computed
- ! ---------------------------------------------------
-
- IF( lk_mpp .OR. lk_mpp_rep ) THEN ! mpp: compute over the whole domain
- i_j1 = 1
- i_jpj = jpj
- IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj )
- IF( lk_lim2_vp ) THEN ; CALL lim_rhg_2( i_j1, i_jpj ) ! VP rheology
- ELSE ; CALL lim_rhg ( i_j1, i_jpj ) ! EVP rheology
- ENDIF
- !
- ELSE ! optimization of the computational area
- !
- DO jj = 1, jpj
- zind(jj) = SUM( frld (:,jj ) ) ! = REAL(jpj) if ocean everywhere on a j-line
- zmsk(jj) = SUM( tmask(:,jj,1) ) ! = 0 if land everywhere on a j-line
- END DO
- !
- IF( l_jeq ) THEN ! local domain include both hemisphere
- ! ! Rheology is computed in each hemisphere
- ! ! only over the ice cover latitude strip
- ! Northern hemisphere
- i_j1 = njeq
- i_jpj = jpj
- DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 )
- i_j1 = i_j1 + 1
- END DO
- IF( lk_lim2_vp ) THEN ! VP rheology
- i_j1 = MAX( 1, i_j1-1 )
- CALL lim_rhg_2( i_j1, i_jpj )
- ELSE ! EVP rheology
- i_j1 = MAX( 1, i_j1-2 )
- CALL lim_rhg( i_j1, i_jpj )
- ENDIF
- IF(ln_ctl) WRITE(numout,*) 'lim_dyn : NH i_j1 = ', i_j1, 'ij_jpj = ', i_jpj
- !
- ! Southern hemisphere
- i_j1 = 1
- i_jpj = njeq
- DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 )
- i_jpj = i_jpj - 1
- END DO
- IF( lk_lim2_vp ) THEN ! VP rheology
- i_jpj = MIN( jpj, i_jpj+2 )
- CALL lim_rhg_2( i_j1, i_jpj )
- ELSE ! EVP rheology
- i_jpj = MIN( jpj, i_jpj+1 )
- CALL lim_rhg( i_j1, i_jpj )
- ENDIF
- IF(ln_ctl) WRITE(numout,*) 'lim_dyn : SH i_j1 = ', i_j1, 'ij_jpj = ', i_jpj
- !
- ELSE ! local domain extends over one hemisphere only
- ! ! Rheology is computed only over the ice cover
- ! ! latitude strip
- i_j1 = 1
- DO WHILE ( i_j1 <= jpj .AND. zind(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 )
- i_j1 = i_j1 + 1
- END DO
- i_j1 = MAX( 1, i_j1-1 )
-
- i_jpj = jpj
- DO WHILE ( i_jpj >= 1 .AND. zind(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 )
- i_jpj = i_jpj - 1
- END DO
- i_jpj = MIN( jpj, i_jpj+2 )
- !
- IF( lk_lim2_vp ) THEN ! VP rheology
- i_jpj = MIN( jpj, i_jpj+2 )
- CALL lim_rhg_2( i_j1, i_jpj ) ! VP rheology
- ELSE ! EVP rheology
- i_j1 = MAX( 1 , i_j1-2 )
- i_jpj = MIN( jpj, i_jpj+1 )
- CALL lim_rhg ( i_j1, i_jpj ) ! EVP rheology
- ENDIF
- IF(ln_ctl) WRITE(numout,*) 'lim_dyn : one hemisphere: i_j1 = ', i_j1, ' ij_jpj = ', i_jpj
- !
- ENDIF
- !
- ENDIF
- IF(ln_ctl) CALL prt_ctl(tab2d_1=u_ice , clinfo1=' lim_dyn : u_ice :', tab2d_2=v_ice , clinfo2=' v_ice :')
-
- ! computation of friction velocity
- ! --------------------------------
- SELECT CASE( cp_ice_msh ) ! ice-ocean relative velocity at u- & v-pts
- CASE( 'C' ) ! EVP : C-grid ice dynamics
- zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) ! ice-ocean & ice velocity at ocean velocity points
- zv_io(:,:) = v_ice(:,:) - ssv_m(:,:)
- CASE( 'I' ) ! VP : B-grid ice dynamics (I-point)
- DO jj = 1, jpjm1 ! u_ice v_ice at I-point ; ssu_m, ssv_m at U- & V-points
- DO ji = 1, jpim1 ! NO vector opt. !
- zu_io(ji,jj) = 0.5_wp * ( u_ice(ji+1,jj+1) + u_ice(ji+1,jj ) ) - ssu_m(ji,jj)
- zv_io(ji,jj) = 0.5_wp * ( v_ice(ji+1,jj+1) + v_ice(ji ,jj+1) ) - ssv_m(ji,jj)
- END DO
- END DO
- END SELECT
- ! frictional velocity at T-point
- zcoef = 0.5_wp * cw
- DO jj = 2, jpjm1
- DO ji = 2, jpim1 ! NO vector opt. because of zu_io
- ust2s(ji,jj) = zcoef * ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) &
- & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) * tms(ji,jj)
- END DO
- END DO
- !
- ELSE ! no ice dynamics : transmit directly the atmospheric stress to the ocean
- !
- zcoef = SQRT( 0.5 ) / rau0
- DO jj = 2, jpjm1
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ust2s(ji,jj) = zcoef * SQRT( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) &
- & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) * tms(ji,jj)
- END DO
- END DO
- !
- ENDIF
- !
- CALL lbc_lnk( ust2s, 'T', 1. ) ! T-point
- !
- IF(ln_ctl) CALL prt_ctl(tab2d_1=ust2s , clinfo1=' lim_dyn : ust2s :')
- !
- CALL wrk_dealloc( jpi, jpj, zu_io, zv_io )
- CALL wrk_dealloc( jpj, zind , zmsk )
- !
- END SUBROUTINE lim_dyn_2
- SUBROUTINE lim_dyn_init_2
- !!-------------------------------------------------------------------
- !! *** ROUTINE lim_dyn_init_2 ***
- !!
- !! ** Purpose : Physical constants and parameters linked to the ice
- !! dynamics
- !!
- !! ** Method : Read the namicedyn namelist and check the ice-dynamic
- !! parameter values
- !!
- !! ** input : Namelist namicedyn
- !!-------------------------------------------------------------------
- INTEGER :: ios ! Local integer output status for namelist read
- NAMELIST/namicedyn/ epsd, alpha, &
- & dm, nbiter, nbitdr, om, resl, cw, angvg, pstar, &
- & c_rhg, etamn, rn_creepl, rn_ecc, ahi0, &
- & nn_nevp, telast, alphaevp
- !!-------------------------------------------------------------------
-
- REWIND( numnam_ice_ref ) ! Namelist namicedyn in reference namelist : Ice dynamics
- READ ( numnam_ice_ref, namicedyn, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicedyn in reference namelist', lwp )
- REWIND( numnam_ice_cfg ) ! Namelist namicedyn in configuration namelist : Ice dynamics
- READ ( numnam_ice_cfg, namicedyn, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicedyn in configuration namelist', lwp )
- IF(lwm) WRITE ( numoni, namicedyn )
- IF(lwp) THEN ! Control print
- WRITE(numout,*)
- WRITE(numout,*) 'lim_dyn_init_2: ice parameters for ice dynamics '
- WRITE(numout,*) '~~~~~~~~~~~~~~'
- WRITE(numout,*) ' tolerance parameter epsd = ', epsd
- WRITE(numout,*) ' coefficient for semi-implicit coriolis alpha = ', alpha
- WRITE(numout,*) ' diffusion constant for dynamics dm = ', dm
- WRITE(numout,*) ' number of sub-time steps for relaxation nbiter = ', nbiter
- WRITE(numout,*) ' maximum number of iterations for relaxation nbitdr = ', nbitdr
- WRITE(numout,*) ' relaxation constant om = ', om
- WRITE(numout,*) ' maximum value for the residual of relaxation resl = ', resl
- WRITE(numout,*) ' drag coefficient for oceanic stress cw = ', cw
- WRITE(numout,*) ' turning angle for oceanic stress angvg = ', angvg, ' degrees'
- WRITE(numout,*) ' first bulk-rheology parameter pstar = ', pstar
- WRITE(numout,*) ' second bulk-rhelogy parameter c_rhg = ', c_rhg
- WRITE(numout,*) ' minimun value for viscosity etamn = ', etamn
- WRITE(numout,*) ' creep limit rn_creepl = ', rn_creepl
- WRITE(numout,*) ' eccentricity of the elliptical yield curve rn_ecc = ', rn_ecc
- WRITE(numout,*) ' horizontal diffusivity coeff. for sea-ice ahi0 = ', ahi0
- WRITE(numout,*) ' number of iterations for subcycling nn_nevp= ', nn_nevp
- WRITE(numout,*) ' timescale for elastic waves telast = ', telast
- WRITE(numout,*) ' coefficient for the solution of int. stresses alphaevp = ', alphaevp
- ENDIF
- !
- IF( angvg /= 0._wp .AND. .NOT.lk_lim2_vp ) THEN
- CALL ctl_warn( 'lim_dyn_init_2: turning angle for oceanic stress not properly coded for EVP ', &
- & '(see limsbc_2 module). We force angvg = 0._wp' )
- angvg = 0._wp
- ENDIF
- ! Initialization
- usecc2 = 1.0 / ( rn_ecc * rn_ecc )
- rhoco = rau0 * cw
- angvg = angvg * rad ! convert angvg from degree to radian
- sangvg = SIN( angvg )
- cangvg = COS( angvg )
- pstarh = pstar / 2.0
- !
- ahiu(:,:) = ahi0 * umask(:,:,1) ! Ice eddy Diffusivity coefficients.
- ahiv(:,:) = ahi0 * vmask(:,:,1)
- !
- END SUBROUTINE lim_dyn_init_2
- #else
- !!----------------------------------------------------------------------
- !! Default option Empty module NO LIM 2.0 sea-ice model
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE lim_dyn_2 ! Empty routine
- END SUBROUTINE lim_dyn_2
- #endif
- !!======================================================================
- END MODULE limdyn_2
|