123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544 |
- MODULE p4zsed
- !!======================================================================
- !! *** MODULE p4sed ***
- !! TOP : PISCES Compute loss of organic matter in the sediments
- !!======================================================================
- !! History : 1.0 ! 2004-03 (O. Aumont) Original code
- !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
- !! 3.4 ! 2011-06 (C. Ethe) USE of fldread
- !! 3.5 ! 2012-07 (O. Aumont) improvment of river input of nutrients
- !!----------------------------------------------------------------------
- #if defined key_pisces
- !!----------------------------------------------------------------------
- !! 'key_pisces' PISCES bio-model
- !!----------------------------------------------------------------------
- !! p4z_sed : Compute loss of organic matter in the sediments
- !!----------------------------------------------------------------------
- USE oce_trc ! shared variables between ocean and passive tracers
- USE trc ! passive tracers common variables
- USE sms_pisces ! PISCES Source Minus Sink variables
- USE p4zsink ! vertical flux of particulate matter due to sinking
- USE p4zopt ! optical model
- USE p4zlim ! Co-limitations of differents nutrients
- USE p4zsbc ! External source of nutrients
- USE p4zint ! interpolation and computation of various fields
- USE iom ! I/O manager
- USE prtctl_trc ! print control for debugging
- IMPLICIT NONE
- PRIVATE
- PUBLIC p4z_sed
- PUBLIC p4z_sed_alloc
-
- !! * Module variables
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: nitrpot !: Nitrogen fixation
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,: ) :: sdenit !: Nitrate reduction in the sediments
- REAL(wp) :: r1_rday !: inverse of rday
- !!* Substitution
- # include "top_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/TOP 3.3 , NEMO Consortium (2010)
- !! $Id: p4zsed.F90 9241 2018-01-16 12:59:31Z cetlod $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE p4z_sed( kt, knt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE p4z_sed ***
- !!
- !! ** Purpose : Compute loss of organic matter in the sediments. This
- !! is by no way a sediment model. The loss is simply
- !! computed to balance the inout from rivers and dust
- !!
- !! ** Method : - ???
- !!---------------------------------------------------------------------
- !
- INTEGER, INTENT(in) :: kt, knt ! ocean time step
- INTEGER :: ji, jj, jk, ikt
- #if ! defined key_sed
- REAL(wp) :: zrivalk, zrivsil, zrivno3
- #endif
- REAL(wp) :: zwflux, zfminus, zfplus
- REAL(wp) :: zlim, zfact, zfactcal
- REAL(wp) :: zo2, zno3, zflx, zpdenit, z1pdenit, zolimit
- REAL(wp) :: zsiloss, zcaloss, zws3, zws4, zwsc, zdep, zwstpoc
- REAL(wp) :: ztrfer, ztrpo4, zwdust, zlight
- !
- CHARACTER (len=25) :: charout
- REAL(wp), POINTER, DIMENSION(:,: ) :: zpdep, zsidep, zwork
- REAL(wp), POINTER, DIMENSION(:,: ) :: zsedcal, zsedsi, zsedc
- REAL(wp), POINTER, DIMENSION(:,: ) :: zdenit2d, zironice, zbureff
- REAL(wp), POINTER, DIMENSION(:,: ) :: zwsbio3, zwsbio4, zwscal
- REAL(wp), POINTER, DIMENSION(:,: ) :: zfesupply, znsupply
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zirondep, zsoufer
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('p4z_sed')
- !
- IF( kt == nittrc000 .AND. knt == 1 ) r1_rday = 1. / rday
- !
- ! Allocate temporary workspace
- CALL wrk_alloc( jpi, jpj, zdenit2d, zbureff, zwork )
- CALL wrk_alloc( jpi, jpj, zsedcal, zsedsi, zsedc )
- CALL wrk_alloc( jpi, jpj, zwsbio3, zwsbio4, zwscal )
- CALL wrk_alloc( jpi, jpj, zfesupply, znsupply )
- CALL wrk_alloc( jpi, jpj, jpk, zsoufer )
- !
- zdenit2d (:,:) = 0._wp
- zbureff (:,:) = 0._wp
- zsedsi (:,:) = 0._wp
- zsedcal (:,:) = 0._wp
- zsedc (:,:) = 0._wp
- zwork (:,:) = 0._wp
-
- !!!!Begin EC-Earth modification for mass conservation of carbon. Author Raffaele Bernardello, January 2019
- !
- ! We don't get satisfying mass conservation for passive tracers in NEMO. Drift in total mass is of
- ! the order of a few thousandths/year. Over a long spinup (thousands of years) this results in a drift of
- ! several points %. After much researching and asking around it seems we are not the only ones with this problem
- ! however, we haven't been able to find the reason. We need a workaround in order to run the ocean spinup needed for
- ! CMIP6. Unlike other tracers, DIC does not have a total mass correction available in PISCES
- ! code. So we are creating one here. Other tracers (NO3, Alk, PO4) are periodically adjusted in total mass to conserve
- ! the initial amount. This can't be done with DIC because the spun-up state will be used to run transient simulations
- ! with increase of atmospheric CO2 and consequent ocean uptake. So, the ocean DIC needs to be trully equilibrated.
- !
- ! Here, we compute the total amount of C in the ocean at the beginning of the leg. Then we do the same at the end
- ! of the leg. Plus, we consider the accumulated air-sea co2 flux, sedimentation of C and Cal, and river input during the leg.
- ! The change in internal mass has to equal the sum of sink and sources. The residual is used to compute a homogeneous
- ! global correction to be applied uniformly everywhere to DIC.
- !
- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- !
- ! initialize cumulative sedimentation
- ! IF( kt == nittrc000 ) THEN
- ! zsedc_cum = 0._wp
- ! END IF !already initializes in p4zsms.F90
- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- ! Iron input/uptake due to sea ice : Crude parameterization based on Lancelot et al.
- ! ----------------------------------------------------
- IF( ln_ironice ) THEN
- !
- CALL wrk_alloc( jpi, jpj, zironice )
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- zdep = rfact2 / fse3t(ji,jj,1)
- zwflux = fmmflx(ji,jj) / 1000._wp
- zfminus = MIN( 0._wp, -zwflux ) * trb(ji,jj,1,jpfer) * zdep
- zfplus = MAX( 0._wp, -zwflux ) * icefeinput * zdep
- zironice(ji,jj) = zfplus + zfminus
- END DO
- END DO
- !
- tra(:,:,1,jpfer) = tra(:,:,1,jpfer) + zironice(:,:)
- !
- IF( lk_iomput ) THEN
- IF( knt == nrdttrc .AND. iom_use( "Ironice" ) ) THEN
- zwork(:,:) = zironice(:,:) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
- CALL iom_put( "Ironice", zwork(:,:) ) ! iron flux from ice
- ENDIF
- IF( iom_use( "IronSupply" ) ) THEN
- CALL wrk_alloc( jpi, jpj, zfesupply )
- zfesupply(:,:) = 0._wp
- zfesupply(:,:) = zfesupply(:,:) + zironice(:,:) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
- ENDIF
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, zironice )
- !
- ENDIF
- ! Add the external input of nutrients from dust deposition
- ! ----------------------------------------------------------
- IF( ln_dust ) THEN
- !
- CALL wrk_alloc( jpi, jpj, zpdep, zsidep )
- CALL wrk_alloc( jpi, jpj, jpk, zirondep )
- ! ! Iron and Si deposition at the surface
- IF( ln_solub ) THEN
- zirondep(:,:,1) = solub(:,:) * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 55.85 + 3.e-10 * r1_ryyss
- ELSE
- zirondep(:,:,1) = dustsolub * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 55.85 + 3.e-10 * r1_ryyss
- ENDIF
- zsidep(:,:) = 8.8 * 0.075 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 28.1
- zpdep (:,:) = 0.1 * 0.021 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 31. / po4r
- ! ! Iron solubilization of particles in the water column
- ! ! dust in kg/m2/s ---> 1/55.85 to put in mol/Fe ; wdust in m/j
- zwdust = 0.03 * rday / ( wdust * 55.85 ) / ( 270. * rday )
- DO jk = 2, jpkm1
- zirondep(:,:,jk) = dust(:,:) * mfrac * zwdust * rfact2 * EXP( -fsdept(:,:,jk) / 540. )
- END DO
- ! ! Iron solubilization of particles in the water column
- tra(:,:,1,jppo4) = tra(:,:,1,jppo4) + zpdep (:,:)
- tra(:,:,1,jpsil) = tra(:,:,1,jpsil) + zsidep (:,:)
- tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + zirondep(:,:,:)
- !
- IF( lk_iomput ) THEN
- IF( knt == nrdttrc ) THEN
- IF( iom_use( "Irondep" ) ) THEN
- zwork(:,:) = zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
- CALL iom_put( "Irondep", zwork(:,:) ) ! surface downward dust depo of iron
- ENDIF
- IF( iom_use( "pdust" ) ) THEN
- zwork(:,:) = dust(:,:) / ( wdust * rday ) * tmask(:,:,1)
- CALL iom_put( "pdust" , zwork(:,:) ) ! dust concentration at surface
- ENDIF
- ENDIF
- IF( iom_use("IronSupply" ) ) &
- & zfesupply(:,:) = zfesupply(:,:) + zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
- ELSE
- IF( ln_diatrc ) &
- & trc2d(:,:,jp_pcs0_2d + 11) = zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, zpdep, zsidep )
- CALL wrk_dealloc( jpi, jpj, jpk, zirondep )
- !
- ENDIF
-
- ! Add the external input of nutrients from river
- ! ----------------------------------------------------------
- IF( ln_river ) THEN
- DO jj = 1, jpj
- DO ji = 1, jpi
- DO jk = 1, nk_rnf(ji,jj)
- tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + rivdip(ji,jj) * rfact2
- tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) + rivdin(ji,jj) * rfact2
- tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + rivdic(ji,jj) * 5.e-5 * rfact2
- tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) + rivdsi(ji,jj) * rfact2
- tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + rivdic(ji,jj) * rfact2
- tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + ( rivalk(ji,jj) - rno3 * rivdin(ji,jj) ) * rfact2
- ENDDO
- ENDDO
- ENDDO
- !
- IF( lk_iomput ) THEN
- !
- IF( iom_use("IronSupply" ) ) &
- & zfesupply(:,:) = zfesupply(:,:) + rivdic(:,:) * 5.e-5 * rfact2 * tmask(:,:,1)
- !
- IF( iom_use("NitrSupply" ) ) THEN
- CALL wrk_alloc( jpi, jpj, znsupply )
- znsupply(:,:) = 0._wp
- znsupply(:,:) = znsupply(:,:) + rivdin(:,:) * rfact2 * tmask(:,:,1)
- ENDIF
- !
- IF( knt == nrdttrc ) THEN
- IF( iom_use( "rivDIC" ) ) CALL iom_put( "rivDIC" , rivdic(:,:) * tmask(:,:,1) )
- IF( iom_use( "rivTAlk" ) ) CALL iom_put( "rivTAlk", rivalk(:,:) * tmask(:,:,1) )
- IF( iom_use( "rivNO3" ) ) CALL iom_put( "rivNO3" , rivdin(:,:) * tmask(:,:,1) )
- IF( iom_use( "rivPO4" ) ) CALL iom_put( "rivPO4" , rivdip(:,:) * tmask(:,:,1) )
- IF( iom_use( "rivIron" ) ) CALL iom_put( "rivIron", rivdic(:,:) * 5.e-5 * tmask(:,:,1) )
- IF( iom_use( "rivSi" ) ) CALL iom_put( "rivSi" , rivdsi(:,:) * tmask(:,:,1) )
- ENDIF
- ENDIF
- !
- ENDIF
-
- !!!!Begin EC-Earth modification for mass conservation of carbon. Author Raffaele Bernardello, April 2019
- !
- !keep track of actual amount of dic coming from rivers
- riverdicsum=riverdicsum+glob_sum(rivdic(:,:)*e1e2t(:,:)*h_rnf(:,:))*1.E3*rfact2
- !!!!End of EC-Earth modification
- ! Add the external input of nutrients from nitrogen deposition
- ! ----------------------------------------------------------
- IF( ln_ndepo ) THEN
- tra(:,:,1,jpno3) = tra(:,:,1,jpno3) + nitdep(:,:) * rfact2
- tra(:,:,1,jptal) = tra(:,:,1,jptal) - rno3 * nitdep(:,:) * rfact2
- !
- IF( iom_use( "NitrSupply" ) ) &
- & znsupply(:,:) = znsupply(:,:) + nitdep(:,:) * rfact2
- !
- ENDIF
- ! Add the external input of iron from sediment mobilization
- ! ------------------------------------------------------
- IF( ln_ironsed ) THEN
- tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + ironsed(:,:,:) * rfact2
- !
- IF( lk_iomput .AND. knt == nrdttrc .AND. iom_use( "Ironsed" ) ) &
- & CALL iom_put( "Ironsed", ironsed(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! iron inputs from sediments
- !
- IF( iom_use( "IronSupply" ) ) THEN
- DO jk = 1, jpkm1
- zfesupply(:,:) = zfesupply(:,:) + ironsed(:,:,jk) * 1.e+3 * tmask(:,:,jk) * fse3t(:,:,jk)
- ENDDO
- ENDIF
- !
- ENDIF
- ! Add the external input of iron from hydrothermal vents
- ! ------------------------------------------------------
- IF( ln_hydrofe ) THEN
- tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + hydrofe(:,:,:) * rfact2
- !
- IF( lk_iomput .AND. knt == nrdttrc .AND. iom_use( "HYDR" ) ) &
- & CALL iom_put( "HYDR", hydrofe(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! hydrothermal iron input
- !
- IF( iom_use( "IronSupply" ) ) THEN
- DO jk = 1, jpkm1
- zfesupply(:,:) = zfesupply(:,:) + hydrofe(:,:,jk) * 1.e+3 * tmask(:,:,jk) * fse3t(:,:,jk)
- ENDDO
- ENDIF
- !
- ENDIF
- ! OA: Warning, the following part is necessary, especially with Kriest
- ! to avoid CFL problems above the sediments
- ! --------------------------------------------------------------------
- DO jj = 1, jpj
- DO ji = 1, jpi
- ikt = mbkt(ji,jj)
- zdep = fse3t(ji,jj,ikt) / xstep
- zwsbio4(ji,jj) = MIN( 0.99 * zdep, wsbio4(ji,jj,ikt) )
- zwscal (ji,jj) = MIN( 0.99 * zdep, wscal (ji,jj,ikt) )
- zwsbio3(ji,jj) = MIN( 0.99 * zdep, wsbio3(ji,jj,ikt) )
- END DO
- END DO
- #if ! defined key_sed
- ! Computation of the sediment denitrification proportion: The metamodel from midlleburg (2006) is being used
- ! Computation of the fraction of organic matter that is permanently buried from Dunne's model
- ! -------------------------------------------------------
- DO jj = 1, jpj
- DO ji = 1, jpi
- IF( tmask(ji,jj,1) == 1 ) THEN
- ikt = mbkt(ji,jj)
- # if defined key_kriest
- zflx = trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) * 1E3 * 1E6 / 1E4
- # else
- zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) &
- & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E3 * 1E6 / 1E4
- #endif
- zflx = LOG10( MAX( 1E-3, zflx ) )
- zo2 = LOG10( MAX( 10. , trb(ji,jj,ikt,jpoxy) * 1E6 ) )
- zno3 = LOG10( MAX( 1. , trb(ji,jj,ikt,jpno3) * 1E6 * rno3 ) )
- zdep = LOG10( fsdepw(ji,jj,ikt+1) )
- zdenit2d(ji,jj) = -2.2567 - 1.185 * zflx - 0.221 * zflx**2 - 0.3995 * zno3 * zo2 + 1.25 * zno3 &
- & + 0.4721 * zo2 - 0.0996 * zdep + 0.4256 * zflx * zo2
- zdenit2d(ji,jj) = 10.0**( zdenit2d(ji,jj) )
- !
- zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) &
- & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E6
- zbureff(ji,jj) = 0.013 + 0.53 * zflx**2 / ( 7.0 + zflx )**2
- ENDIF
- END DO
- END DO
- #endif
- ! This loss is scaled at each bottom grid cell for equilibrating the total budget of silica in the ocean.
- ! Thus, the amount of silica lost in the sediments equal the supply at the surface (dust+rivers)
- ! ------------------------------------------------------
- #if ! defined key_sed
- zrivsil = 1._wp - sedsilfrac
- #endif
- DO jj = 1, jpj
- DO ji = 1, jpi
- ikt = mbkt(ji,jj)
- zdep = xstep / fse3t(ji,jj,ikt)
- zws4 = zwsbio4(ji,jj) * zdep
- zwsc = zwscal (ji,jj) * zdep
- # if defined key_kriest
- zsiloss = trb(ji,jj,ikt,jpgsi) * zws4
- # else
- zsiloss = trb(ji,jj,ikt,jpgsi) * zwsc
- # endif
- zcaloss = trb(ji,jj,ikt,jpcal) * zwsc
- !
- tra(ji,jj,ikt,jpgsi) = tra(ji,jj,ikt,jpgsi) - zsiloss
- tra(ji,jj,ikt,jpcal) = tra(ji,jj,ikt,jpcal) - zcaloss
- #if ! defined key_sed
- tra(ji,jj,ikt,jpsil) = tra(ji,jj,ikt,jpsil) + zsiloss * zrivsil
- ! Loss of biogenic silicon, Caco3 organic carbon in the sediments.
- ! The factor for calcite comes from the alkalinity effect
- ! -------------------------------------------------------------
- zfactcal = MIN( excess(ji,jj,ikt), 0.2 )
- zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) )
- zrivalk = sedcalfrac * zfactcal
- tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + zcaloss * zrivalk * 2.0
- tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zcaloss * zrivalk
- zsedcal(ji,jj) = (1.0 - zrivalk) * zcaloss * fse3t(ji,jj,ikt)
- zsedsi (ji,jj) = (1.0 - zrivsil) * zsiloss * fse3t(ji,jj,ikt)
- #endif
- END DO
- END DO
- DO jj = 1, jpj
- DO ji = 1, jpi
- ikt = mbkt(ji,jj)
- zdep = xstep / fse3t(ji,jj,ikt)
- zws4 = zwsbio4(ji,jj) * zdep
- zws3 = zwsbio3(ji,jj) * zdep
- zrivno3 = 1. - zbureff(ji,jj)
- # if ! defined key_kriest
- tra(ji,jj,ikt,jpgoc) = tra(ji,jj,ikt,jpgoc) - trb(ji,jj,ikt,jpgoc) * zws4
- tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,ikt,jppoc) * zws3
- tra(ji,jj,ikt,jpbfe) = tra(ji,jj,ikt,jpbfe) - trb(ji,jj,ikt,jpbfe) * zws4
- tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,ikt,jpsfe) * zws3
- zwstpoc = trb(ji,jj,ikt,jpgoc) * zws4 + trb(ji,jj,ikt,jppoc) * zws3
- # else
- tra(ji,jj,ikt,jpnum) = tra(ji,jj,ikt,jpnum) - trb(ji,jj,ikt,jpnum) * zws4
- tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,ikt,jppoc) * zws3
- tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,ikt,jpsfe) * zws3
- zwstpoc = trb(ji,jj,ikt,jppoc) * zws3
- # endif
- #if ! defined key_sed
- ! The 0.5 factor in zpdenit is to avoid negative NO3 concentration after
- ! denitrification in the sediments. Not very clever, but simpliest option.
- zpdenit = MIN( 0.5 * ( trb(ji,jj,ikt,jpno3) - rtrn ) / rdenit, &
- zdenit2d(ji,jj) * zwstpoc * zrivno3 )
- z1pdenit = zwstpoc * zrivno3 - zpdenit
- zolimit = MIN( ( trb(ji,jj,ikt,jpoxy) - rtrn ) / o2ut, z1pdenit * ( 1.- nitrfac(ji,jj,ikt) ) )
- tra(ji,jj,ikt,jpdoc) = tra(ji,jj,ikt,jpdoc) + z1pdenit - zolimit
- tra(ji,jj,ikt,jppo4) = tra(ji,jj,ikt,jppo4) + zpdenit + zolimit
- tra(ji,jj,ikt,jpnh4) = tra(ji,jj,ikt,jpnh4) + zpdenit + zolimit
- tra(ji,jj,ikt,jpno3) = tra(ji,jj,ikt,jpno3) - rdenit * zpdenit
- tra(ji,jj,ikt,jpoxy) = tra(ji,jj,ikt,jpoxy) - zolimit * o2ut
- tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + rno3 * (zolimit + (1.+rdenit) * zpdenit )
- tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zpdenit + zolimit
- sdenit(ji,jj) = rdenit * zpdenit * fse3t(ji,jj,ikt)
- zsedc(ji,jj) = (1. - zrivno3) * zwstpoc * fse3t(ji,jj,ikt)
- #endif
- END DO
- END DO
- ! EC-Earth C mass conservation correction
- ! cumulate sedimentation
- zsedc_cum = zsedc_cum + glob_sum( (zsedc(:,:) + zsedcal(:,:) ) * 1.E3 * e1e2t(:,:) * tmask(:,:,ikt) ) ! mol C
- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- ! Nitrogen fixation process
- ! Small source iron from particulate inorganic iron
- !-----------------------------------
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- ! ! Potential nitrogen fixation dependant on temperature and iron
- zlim = ( 1.- xnanono3(ji,jj,jk) - xnanonh4(ji,jj,jk) )
- IF( zlim <= 0.2 ) zlim = 0.01
- #if defined key_degrad
- zfact = zlim * rfact2 * facvol(ji,jj,jk)
- #else
- zfact = zlim * rfact2
- #endif
- ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) )
- ztrpo4 = trb (ji,jj,jk,jppo4) / ( concnnh4 + trb (ji,jj,jk,jppo4) )
- zlight = ( 1.- EXP( -etot_ndcy(ji,jj,jk) / diazolight ) )
- nitrpot(ji,jj,jk) = MAX( 0.e0, ( 0.6 * tgfunc(ji,jj,jk) - 2.15 ) * r1_rday ) &
- & * zfact * MIN( ztrfer, ztrpo4 ) * zlight
- zsoufer(ji,jj,jk) = zlight * 2E-11 / (2E-11 + biron(ji,jj,jk))
- END DO
- END DO
- END DO
- ! Nitrogen change due to nitrogen fixation
- ! ----------------------------------------
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zfact = nitrpot(ji,jj,jk) * nitrfix
- tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact
- tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact
- tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2nit * zfact
- tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + concdnh4 / ( concdnh4 + trb(ji,jj,jk,jppo4) ) &
- & * 0.002 * trb(ji,jj,jk,jpdoc) * xstep
- tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * xstep
- END DO
- END DO
- END DO
- IF( iom_use( "IronSupply" ) ) THEN
- DO jk = 1, jpkm1
- zfesupply(:,:) = zfesupply(:,:) + 0.002 * 4E-10 * zsoufer(:,:,jk) * xstep * fse3t(:,:,jk)
- ENDDO
- ENDIF
- IF( lk_iomput ) THEN
- IF( knt == nrdttrc ) THEN
- zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molC/m3/s
- IF( iom_use("Nfix" ) ) &
- & CALL iom_put( "Nfix", nitrpot(:,:,:) * nitrfix * rno3 * zfact * tmask(:,:,:) ) ! nitrogen fixation
- !
- IF( iom_use("INTNFIX") ) THEN ! nitrogen fixation rate in ocean ( vertically integrated )
- zwork(:,:) = 0.
- DO jk = 1, jpkm1
- zwork(:,:) = zwork(:,:) + nitrpot(:,:,jk) * nitrfix * rno3 * zfact * fse3t(:,:,jk) * tmask(:,:,jk)
- ENDDO
- CALL iom_put( "INTNFIX", zwork )
- ENDIF
- !
- IF( iom_use("NitrSupply") ) THEN ! nitrogen fixation rate in ocean ( vertically integrated )
- DO jk = 1, jpkm1
- znsupply(:,:) = znsupply(:,:) + nitrpot(:,:,jk) * nitrfix * rno3 * zfact * fse3t(:,:,jk) * tmask(:,:,jk)
- ENDDO
- CALL iom_put( "NitrSupply", znsupply(:,:) )
- CALL wrk_dealloc( jpi, jpj, znsupply )
- ENDIF
- IF( iom_use( "IronSupply" ) ) THEN
- CALL iom_put( "IronSupply", zfesupply(:,:) )
- CALL wrk_dealloc( jpi, jpj, zfesupply )
- ENDIF
- IF( iom_use( "SedCal" ) ) CALL iom_put( "SedCal" , zsedcal(:,:) * zfact )
- IF( iom_use( "SedSi" ) ) CALL iom_put( "SedSi" , zsedsi (:,:) * zfact )
- IF( iom_use( "SedC" ) ) CALL iom_put( "SedC" , zsedc (:,:) * zfact )
- IF( iom_use( "Sdenit" ) ) CALL iom_put( "Sdenit" , sdenit (:,:) * rno3 * zfact )
- ENDIF
- ELSE
- IF( ln_diatrc ) THEN
- zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molC/m3/s
- trc2d(:,:,jp_pcs0_2d + 12) = nitrpot(:,:,1) * nitrfix * rno3 * zfact * fse3t(:,:,1) * tmask(:,:,1)
- ENDIF
- ENDIF
- !
- IF(ln_ctl) THEN ! print mean trends (USEd for debugging)
- WRITE(charout, fmt="('sed ')")
- CALL prt_ctl_trc_info(charout)
- CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm)
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, zdenit2d, zbureff, zwork )
- CALL wrk_dealloc( jpi, jpj, zsedcal , zsedsi , zsedc )
- CALL wrk_dealloc( jpi, jpj, zwsbio3 , zwsbio4, zwscal )
- CALL wrk_dealloc( jpi, jpj, jpk, zsoufer )
- !
- IF( nn_timing == 1 ) CALL timing_stop('p4z_sed')
- !
- 9100 FORMAT(i8,3f10.5)
- !
- END SUBROUTINE p4z_sed
- INTEGER FUNCTION p4z_sed_alloc()
- !!----------------------------------------------------------------------
- !! *** ROUTINE p4z_sed_alloc ***
- !!----------------------------------------------------------------------
- ALLOCATE( nitrpot(jpi,jpj,jpk), sdenit(jpi,jpj), STAT=p4z_sed_alloc )
- !
- IF( p4z_sed_alloc /= 0 ) CALL ctl_warn('p4z_sed_alloc: failed to allocate arrays')
- !
- END FUNCTION p4z_sed_alloc
- #else
- !!======================================================================
- !! Dummy module : No PISCES bio-model
- !!======================================================================
- CONTAINS
- SUBROUTINE p4z_sed ! Empty routine
- END SUBROUTINE p4z_sed
- #endif
- !!======================================================================
- END MODULE p4zsed
|