123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403 |
- MODULE p4zfechem
- !!======================================================================
- !! *** MODULE p4zfechem ***
- !! TOP : PISCES Compute iron chemistry and scavenging
- !!======================================================================
- !! History : 3.5 ! 2012-07 (O. Aumont, A. Tagliabue, C. Ethe) Original code
- !!----------------------------------------------------------------------
- #if defined key_pisces
- !!----------------------------------------------------------------------
- !! 'key_top' and TOP models
- !! 'key_pisces' PISCES bio-model
- !!----------------------------------------------------------------------
- !! p4z_fechem : Compute remineralization/scavenging of iron
- !! p4z_fechem_init : Initialisation of parameters for remineralisation
- !! p4z_fechem_alloc : Allocate remineralisation variables
- !!----------------------------------------------------------------------
- USE oce_trc ! shared variables between ocean and passive tracers
- USE trc ! passive tracers common variables
- USE sms_pisces ! PISCES Source Minus Sink variables
- USE p4zopt ! optical model
- USE p4zche ! chemical model
- USE p4zsbc ! Boundary conditions from sediments
- USE prtctl_trc ! print control for debugging
- USE iom ! I/O manager
- IMPLICIT NONE
- PRIVATE
- PUBLIC p4z_fechem ! called in p4zbio.F90
- PUBLIC p4z_fechem_init ! called in trcsms_pisces.F90
- !! * Shared module variables
- LOGICAL :: ln_fechem !: boolean for complex iron chemistry following Tagliabue and voelker
- LOGICAL :: ln_ligvar !: boolean for variable ligand concentration following Tagliabue and voelker
- REAL(wp), PUBLIC :: xlam1 !: scavenging rate of Iron
- REAL(wp), PUBLIC :: xlamdust !: scavenging rate of Iron by dust
- REAL(wp), PUBLIC :: ligand !: ligand concentration in the ocean
- REAL(wp) :: kl1, kl2, kb1, kb2, ks, kpr, spd, con, kth
- !!* Substitution
- # include "top_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/TOP 3.3 , NEMO Consortium (2010)
- !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE p4z_fechem( kt, knt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE p4z_fechem ***
- !!
- !! ** Purpose : Compute remineralization/scavenging of iron
- !!
- !! ** Method : 2 different chemistry models are available for iron
- !! (1) The simple chemistry model of Aumont and Bopp (2006)
- !! based on one ligand and one inorganic form
- !! (2) The complex chemistry model of Tagliabue and
- !! Voelker (2009) based on 2 ligands, 2 inorganic forms
- !! and one particulate form (ln_fechem)
- !!---------------------------------------------------------------------
- !
- INTEGER, INTENT(in) :: kt, knt ! ocean time step
- !
- INTEGER :: ji, jj, jk, jic
- REAL(wp) :: zdep, zlam1a, zlam1b, zlamfac
- REAL(wp) :: zkeq, zfeequi, zfesatur, zfecoll
- REAL(wp) :: zdenom1, zscave, zaggdfea, zaggdfeb, zcoag
- REAL(wp) :: ztrc, zdust
- #if ! defined key_kriest
- REAL(wp) :: zdenom, zdenom2
- #endif
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zTL1, zFe3, ztotlig
- REAL(wp), POINTER, DIMENSION(:,:,:) :: zFeL1, zFeL2, zTL2, zFe2, zFeP
- REAL(wp) :: zkox, zkph1, zkph2, zph, zionic, ztligand
- REAL(wp) :: za, zb, zc, zkappa1, zkappa2, za0, za1, za2
- REAL(wp) :: zxs, zfunc, zp, zq, zd, zr, zphi, zfff, zp3, zq2
- REAL(wp) :: ztfe, zoxy
- REAL(wp) :: zstep
- CHARACTER (len=25) :: charout
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('p4z_fechem')
- !
- ! Allocate temporary workspace
- CALL wrk_alloc( jpi, jpj, jpk, zFe3, zFeL1, zTL1, ztotlig )
- zFe3 (:,:,:) = 0.
- zFeL1(:,:,:) = 0.
- zTL1 (:,:,:) = 0.
- IF( ln_fechem ) THEN
- CALL wrk_alloc( jpi, jpj, jpk, zFe2, zFeL2, zTL2, zFeP )
- zFe2 (:,:,:) = 0.
- zFeL2(:,:,:) = 0.
- zTL2 (:,:,:) = 0.
- zFeP (:,:,:) = 0.
- ENDIF
- !Initialization of zxs to zero to avoid SEG FAULT if it's not assigned any value at first time step - Raffa July 2018
- zxs = 0.
- !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- ! Total ligand concentration : Ligands can be chosen to be constant or variable
- ! Parameterization from Tagliabue and Voelker (2011)
- ! -------------------------------------------------
- IF( ln_ligvar ) THEN
- ztotlig(:,:,:) = 0.09 * trb(:,:,:,jpdoc) * 1E6 + ligand * 1E9
- ztotlig(:,:,:) = MIN( ztotlig(:,:,:), 10. )
- ELSE
- ztotlig(:,:,:) = ligand * 1E9
- ENDIF
- IF( ln_fechem ) THEN
- ! ------------------------------------------------------------
- ! NEW FE CHEMISTRY ROUTINE from Tagliabue and Volker (2009)
- ! This model is based on two ligands, Fe2+, Fe3+ and Fep
- ! Chemistry is supposed to be fast enough to be at equilibrium
- ! ------------------------------------------------------------
- !CDIR NOVERRCHK
- DO jk = 1, jpkm1
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ! Calculate ligand concentrations : assume 2/3rd of excess goes to
- ! strong ligands (L1) and 1/3rd to weak ligands (L2)
- ztligand = ztotlig(ji,jj,jk) - ligand * 1E9
- zTL1(ji,jj,jk) = 0.000001 + 0.67 * ztligand
- zTL2(ji,jj,jk) = ligand * 1E9 - 0.000001 + 0.33 * ztligand
- ! ionic strength from Millero et al. 1987
- zionic = 19.9201 * tsn(ji,jj,jk,jp_sal) / ( 1000. - 1.00488 * tsn(ji,jj,jk,jp_sal) + rtrn )
- zph = -LOG10( MAX( hi(ji,jj,jk), rtrn) )
- zoxy = trb(ji,jj,jk,jpoxy) * ( rhop(ji,jj,jk) / 1.e3 )
- ! Fe2+ oxydation rate from Santana-Casiano et al. (2005)
- zkox = 35.407 - 6.7109 * zph + 0.5342 * zph * zph - 5362.6 / ( tsn(ji,jj,jk,jp_tem) + 273.15 ) &
- & - 0.04406 * SQRT( tsn(ji,jj,jk,jp_sal) ) - 0.002847 * tsn(ji,jj,jk,jp_sal)
- zkox = ( 10.** zkox ) * spd
- zkox = zkox * MAX( 1.e-6, zoxy) / ( chemo2(ji,jj,jk) + rtrn )
- ! PHOTOREDUCTION of complexed iron : Tagliabue and Arrigo (2006)
- zkph2 = MAX( 0., 15. * etot(ji,jj,jk) / ( etot(ji,jj,jk) + 2. ) )
- zkph1 = zkph2 / 5.
- ! pass the dfe concentration from PISCES
- ztfe = trb(ji,jj,jk,jpfer) * 1e9
- ! ----------------------------------------------------------
- ! ANALYTICAL SOLUTION OF ROOTS OF THE FE3+ EQUATION
- ! As shown in Tagliabue and Voelker (2009), Fe3+ is the root of a 3rd order polynom.
- ! ----------------------------------------------------------
- ! calculate some parameters
- za = 1 + ks / kpr
- zb = 1 + ( zkph1 + kth ) / ( zkox + rtrn )
- zc = 1 + zkph2 / ( zkox + rtrn )
- zkappa1 = ( kb1 + zkph1 + kth ) / kl1
- zkappa2 = ( kb2 + zkph2 ) / kl2
- za2 = zTL1(ji,jj,jk) * zb / za + zTL2(ji,jj,jk) * zc / za + zkappa1 + zkappa2 - ztfe / za
- za1 = zkappa2 * zTL1(ji,jj,jk) * zb / za + zkappa1 * zTL2(ji,jj,jk) * zc / za &
- & + zkappa1 * zkappa2 - ( zkappa1 + zkappa2 ) * ztfe / za
- za0 = -zkappa1 * zkappa2 * ztfe / za
- zp = za1 - za2 * za2 / 3.
- zq = za2 * za2 * za2 * 2. / 27. - za2 * za1 / 3. + za0
- zp3 = zp / 3.
- zq2 = zq / 2.
- zd = zp3 * zp3 * zp3 + zq2 * zq2
- zr = zq / ABS( zq ) * SQRT( ABS( zp ) / 3. )
- ! compute the roots
- IF( zp > 0.) THEN
- ! zphi = ASINH( zq / ( 2. * zr * zr * zr ) )
- zphi = zq / ( 2. * zr * zr * zr )
- zphi = LOG( zphi + SQRT( zphi * zphi + 1 ) ) ! asinh(x) = log(x + sqrt(x^2+1))
- zxs = -2. * zr * SINH( zphi / 3. ) - za1 / 3.
- ELSE
- IF( zd > 0. ) THEN
- zfff = MAX( 1., zq / ( 2. * zr * zr * zr ) )
- ! zphi = ACOSH( zfff )
- zphi = LOG( zfff + SQRT( zfff * zfff - 1 ) ) ! acosh(x) = log(x + sqrt(x^2-1))
- zxs = -2. * zr * COSH( zphi / 3. ) - za1 / 3.
- ELSE
- zfff = MIN( 1., zq / ( 2. * zr * zr * zr ) )
- zphi = ACOS( zfff )
- DO jic = 1, 3
- zfunc = -2 * zr * COS( zphi / 3. + 2. * FLOAT( jic - 1 ) * rpi / 3. ) - za2 / 3.
- IF( zfunc > 0. .AND. zfunc <= ztfe) zxs = zfunc
- END DO
- ENDIF
- ENDIF
- ! solve for the other Fe species
- zFe3(ji,jj,jk) = MAX( 0., zxs )
- zFep(ji,jj,jk) = MAX( 0., ( ks * zFe3(ji,jj,jk) / kpr ) )
- zkappa2 = ( kb2 + zkph2 ) / kl2
- zFeL2(ji,jj,jk) = MAX( 0., ( zFe3(ji,jj,jk) * zTL2(ji,jj,jk) ) / ( zkappa2 + zFe3(ji,jj,jk) ) )
- zFeL1(ji,jj,jk) = MAX( 0., ( ztfe / zb - za / zb * zFe3(ji,jj,jk) - zc / zb * zFeL2(ji,jj,jk) ) )
- zFe2 (ji,jj,jk) = MAX( 0., ( ( zkph1 * zFeL1(ji,jj,jk) + zkph2 * zFeL2(ji,jj,jk) ) / zkox ) )
- END DO
- END DO
- END DO
- ELSE
- ! ------------------------------------------------------------
- ! OLD FE CHEMISTRY ROUTINE from Aumont and Bopp (2006)
- ! This model is based on one ligand and Fe'
- ! Chemistry is supposed to be fast enough to be at equilibrium
- ! ------------------------------------------------------------
- !CDIR NOVERRCHK
- DO jk = 1, jpkm1
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zTL1(ji,jj,jk) = ztotlig(ji,jj,jk)
- zkeq = fekeq(ji,jj,jk)
- zfesatur = zTL1(ji,jj,jk) * 1E-9
- ztfe = trb(ji,jj,jk,jpfer)
- ! Fe' is the root of a 2nd order polynom
- zFe3 (ji,jj,jk) = ( -( 1. + zfesatur * zkeq - zkeq * ztfe ) &
- & + SQRT( ( 1. + zfesatur * zkeq - zkeq * ztfe )**2 &
- & + 4. * ztfe * zkeq) ) / ( 2. * zkeq )
- zFe3 (ji,jj,jk) = zFe3(ji,jj,jk) * 1E9
- zFeL1(ji,jj,jk) = MAX( 0., trb(ji,jj,jk,jpfer) * 1E9 - zFe3(ji,jj,jk) )
- END DO
- END DO
- END DO
- !
- ENDIF
- zdust = 0. ! if no dust available
- !CDIR NOVERRCHK
- DO jk = 1, jpkm1
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zstep = xstep
- # if defined key_degrad
- zstep = zstep * facvol(ji,jj,jk)
- # endif
- ! Scavenging rate of iron. This scavenging rate depends on the load of particles of sea water.
- ! This parameterization assumes a simple second order kinetics (k[Particles][Fe]).
- ! Scavenging onto dust is also included as evidenced from the DUNE experiments.
- ! --------------------------------------------------------------------------------------
- IF( ln_fechem ) THEN
- zfeequi = ( zFe3(ji,jj,jk) + zFe2(ji,jj,jk) + zFeP(ji,jj,jk) ) * 1E-9
- zfecoll = ( 0.3 * zFeL1(ji,jj,jk) + 0.5 * zFeL2(ji,jj,jk) ) * 1E-9
- ELSE
- zfeequi = zFe3(ji,jj,jk) * 1E-9
- zfecoll = 0.5 * zFeL1(ji,jj,jk) * 1E-9
- ENDIF
- #if defined key_kriest
- ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6
- #else
- ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpgoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6
- #endif
- IF( ln_dust ) zdust = dust(ji,jj) / ( wdust / rday ) * tmask(ji,jj,jk) ! dust in kg/m2/s
- zlam1b = 3.e-5 + xlamdust * zdust + xlam1 * ztrc
- zscave = zfeequi * zlam1b * zstep
- ! Compute the different ratios for scavenging of iron
- ! to later allocate scavenged iron to the different organic pools
- ! ---------------------------------------------------------
- zdenom1 = xlam1 * trb(ji,jj,jk,jppoc) / zlam1b
- #if ! defined key_kriest
- zdenom2 = xlam1 * trb(ji,jj,jk,jpgoc) / zlam1b
- #endif
- ! Increased scavenging for very high iron concentrations found near the coasts
- ! due to increased lithogenic particles and let say it is unknown processes (precipitation, ...)
- ! -----------------------------------------------------------
- zlamfac = MAX( 0.e0, ( gphit(ji,jj) + 55.) / 30. )
- zlamfac = MIN( 1. , zlamfac )
- zdep = MIN( 1., 1000. / fsdept(ji,jj,jk) )
- zlam1b = xlam1 * MAX( 0.e0, ( trb(ji,jj,jk,jpfer) * 1.e9 - ztotlig(ji,jj,jk) ) )
- zcoag = zfeequi * zlam1b * zstep + 1E-4 * ( 1. - zlamfac ) * zdep * zstep * trb(ji,jj,jk,jpfer)
- ! Compute the coagulation of colloidal iron. This parameterization
- ! could be thought as an equivalent of colloidal pumping.
- ! It requires certainly some more work as it is very poorly constrained.
- ! ----------------------------------------------------------------
- zlam1a = ( 0.369 * 0.3 * trb(ji,jj,jk,jpdoc) + 102.4 * trb(ji,jj,jk,jppoc) ) * xdiss(ji,jj,jk) &
- & + ( 114. * 0.3 * trb(ji,jj,jk,jpdoc) + 5.09E3 * trb(ji,jj,jk,jppoc) )
- zaggdfea = zlam1a * zstep * zfecoll
- #if defined key_kriest
- zaggdfeb = 0.
- !
- tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zscave - zaggdfea - zaggdfeb - zcoag
- tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zscave * zdenom1 + zaggdfea + zaggdfeb
- #else
- zlam1b = 3.53E3 * trb(ji,jj,jk,jpgoc) * xdiss(ji,jj,jk)
- zaggdfeb = zlam1b * zstep * zfecoll
- !
- tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zscave - zaggdfea - zaggdfeb - zcoag
- tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zscave * zdenom1 + zaggdfea
- tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zscave * zdenom2 + zaggdfeb
- #endif
- END DO
- END DO
- END DO
- !
- ! Define the bioavailable fraction of iron
- ! ----------------------------------------
- IF( ln_fechem ) THEN
- biron(:,:,:) = MAX( 0., trb(:,:,:,jpfer) - zFeP(:,:,:) * 1E-9 )
- ELSE
- biron(:,:,:) = trb(:,:,:,jpfer)
- ENDIF
- ! Output of some diagnostics variables
- ! ---------------------------------
- IF( lk_iomput .AND. knt == nrdttrc ) THEN
- IF( iom_use("Fe3") ) CALL iom_put("Fe3" , zFe3 (:,:,:) * tmask(:,:,:) ) ! Fe3+
- IF( iom_use("FeL1") ) CALL iom_put("FeL1" , zFeL1 (:,:,:) * tmask(:,:,:) ) ! FeL1
- IF( iom_use("TL1") ) CALL iom_put("TL1" , zTL1 (:,:,:) * tmask(:,:,:) ) ! TL1
- IF( iom_use("Totlig") ) CALL iom_put("Totlig" , ztotlig(:,:,:) * tmask(:,:,:) ) ! TL
- IF( iom_use("Biron") ) CALL iom_put("Biron" , biron (:,:,:) * 1e9 * tmask(:,:,:) ) ! biron
- IF( ln_fechem ) THEN
- IF( iom_use("Fe2") ) CALL iom_put("Fe2" , zFe2 (:,:,:) * tmask(:,:,:) ) ! Fe2+
- IF( iom_use("FeL2") ) CALL iom_put("FeL2" , zFeL2 (:,:,:) * tmask(:,:,:) ) ! FeL2
- IF( iom_use("FeP") ) CALL iom_put("FeP" , zFeP (:,:,:) * tmask(:,:,:) ) ! FeP
- IF( iom_use("TL2") ) CALL iom_put("TL2" , zTL2 (:,:,:) * tmask(:,:,:) ) ! TL2
- ENDIF
- ENDIF
- IF(ln_ctl) THEN ! print mean trends (used for debugging)
- WRITE(charout, FMT="('fechem')")
- CALL prt_ctl_trc_info(charout)
- CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm)
- ENDIF
- !
- CALL wrk_dealloc( jpi, jpj, jpk, zFe3, zFeL1, zTL1, ztotlig )
- IF( ln_fechem ) CALL wrk_dealloc( jpi, jpj, jpk, zFe2, zFeL2, zTL2, zFeP )
- !
- IF( nn_timing == 1 ) CALL timing_stop('p4z_fechem')
- !
- END SUBROUTINE p4z_fechem
- SUBROUTINE p4z_fechem_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE p4z_fechem_init ***
- !!
- !! ** Purpose : Initialization of iron chemistry parameters
- !!
- !! ** Method : Read the nampisfer namelist and check the parameters
- !! called at the first timestep
- !!
- !! ** input : Namelist nampisfer
- !!
- !!----------------------------------------------------------------------
- NAMELIST/nampisfer/ ln_fechem, ln_ligvar, xlam1, xlamdust, ligand
- INTEGER :: ios ! Local integer output status for namelist read
- REWIND( numnatp_ref ) ! Namelist nampisfer in reference namelist : Pisces iron chemistry
- READ ( numnatp_ref, nampisfer, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in reference namelist', lwp )
- REWIND( numnatp_cfg ) ! Namelist nampisfer in configuration namelist : Pisces iron chemistry
- READ ( numnatp_cfg, nampisfer, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in configuration namelist', lwp )
- IF(lwm) WRITE ( numonp, nampisfer )
- IF(lwp) THEN ! control print
- WRITE(numout,*) ' '
- WRITE(numout,*) ' Namelist parameters for Iron chemistry, nampisfer'
- WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
- WRITE(numout,*) ' enable complex iron chemistry scheme ln_fechem =', ln_fechem
- WRITE(numout,*) ' variable concentration of ligand ln_ligvar =', ln_ligvar
- WRITE(numout,*) ' scavenging rate of Iron xlam1 =', xlam1
- WRITE(numout,*) ' scavenging rate of Iron by dust xlamdust =', xlamdust
- WRITE(numout,*) ' ligand concentration in the ocean ligand =', ligand
- ENDIF
- !
- IF( ln_fechem ) THEN
- ! initialization of some constants used by the complexe chemistry scheme
- ! ----------------------------------------------------------------------
- spd = 3600. * 24.
- con = 1.E9
- ! LIGAND KINETICS (values from Witter et al. 2000)
- ! Weak (L2) ligands
- ! Phaeophytin
- kl2 = 12.2E5 * spd / con
- kb2 = 12.3E-6 * spd
- ! Strong (L1) ligands
- ! Saccharides
- ! kl1 = 12.2E5 * spd / con
- ! kb1 = 12.3E-6 * spd
- ! DFOB-
- kl1 = 19.6e5 * spd / con
- kb1 = 1.5e-6 * spd
- ! pcp and remin of Fe3p
- ks = 0.075
- kpr = 0.05
- ! thermal reduction of Fe3
- kth = 0.0048 * 24.
- !
- ENDIF
- !
- END SUBROUTINE p4z_fechem_init
- #else
- !!======================================================================
- !! Dummy module : No PISCES bio-model
- !!======================================================================
- CONTAINS
- SUBROUTINE p4z_fechem ! Empty routine
- END SUBROUTINE p4z_fechem
- #endif
- !!======================================================================
- END MODULE p4zfechem
|