12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742 |
- MODULE eosbn2
- !!==============================================================================
- !! *** MODULE eosbn2 ***
- !! Ocean diagnostic variable : equation of state - in situ and potential density
- !! - Brunt-Vaisala frequency
- !!==============================================================================
- !! History : OPA ! 1989-03 (O. Marti) Original code
- !! 6.0 ! 1994-07 (G. Madec, M. Imbard) add bn2
- !! 6.0 ! 1994-08 (G. Madec) Add Jackett & McDougall eos
- !! 7.0 ! 1996-01 (G. Madec) statement function for e3
- !! 8.1 ! 1997-07 (G. Madec) density instead of volumic mass
- !! - ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure gradient
- !! 8.2 ! 2001-09 (M. Ben Jelloul) bugfix on linear eos
- !! NEMO 1.0 ! 2002-10 (G. Madec) add eos_init
- !! - ! 2002-11 (G. Madec, A. Bozec) partial step, eos_insitu_2d
- !! - ! 2003-08 (G. Madec) F90, free form
- !! 3.0 ! 2006-08 (G. Madec) add tfreez function (now eos_fzp function)
- !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA
- !! - ! 2010-10 (G. Nurser, G. Madec) add alpha/beta used in ldfslp
- !! 3.7 ! 2012-03 (F. Roquet, G. Madec) add primitive of alpha and beta used in PE computation
- !! - ! 2012-05 (F. Roquet) add Vallis and original JM95 equation of state
- !! - ! 2013-04 (F. Roquet, G. Madec) add eos_rab, change bn2 computation and reorganize the module
- !! - ! 2014-09 (F. Roquet) add TEOS-10, S-EOS, and modify EOS-80
- !! - ! 2015-06 (P.A. Bouttier) eos_fzp functions changed to subroutines for AGRIF
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! eos : generic interface of the equation of state
- !! eos_insitu : Compute the in situ density
- !! eos_insitu_pot : Compute the insitu and surface referenced potential volumic mass
- !! eos_insitu_2d : Compute the in situ density for 2d fields
- !! bn2 : Compute the Brunt-Vaisala frequency
- !! eos_rab : generic interface of in situ thermal/haline expansion ratio
- !! eos_rab_3d : compute in situ thermal/haline expansion ratio
- !! eos_rab_2d : compute in situ thermal/haline expansion ratio for 2d fields
- !! eos_fzp_2d : freezing temperature for 2d fields
- !! eos_fzp_0d : freezing temperature for scalar
- !! eos_init : set eos parameters (namelist)
- !!----------------------------------------------------------------------
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- !
- USE in_out_manager ! I/O manager
- USE lib_mpp ! MPP library
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- USE prtctl ! Print control
- USE wrk_nemo ! Memory Allocation
- USE lbclnk ! ocean lateral boundary conditions
- USE timing ! Timing
- USE stopar ! Stochastic T/S fluctuations
- USE stopts ! Stochastic T/S fluctuations
- IMPLICIT NONE
- PRIVATE
- ! !! * Interface
- INTERFACE eos
- MODULE PROCEDURE eos_insitu, eos_insitu_pot, eos_insitu_2d
- END INTERFACE
- !
- INTERFACE eos_rab
- MODULE PROCEDURE rab_3d, rab_2d, rab_0d
- END INTERFACE
- !
- INTERFACE eos_fzp
- MODULE PROCEDURE eos_fzp_2d, eos_fzp_0d
- END INTERFACE
- !
- INTERFACE eos_pt_from_ct
- MODULE PROCEDURE eos_pt_from_ct_2d, eos_pt_from_ct_3d
- END INTERFACE
- !
- PUBLIC eos ! called by step, istate, tranpc and zpsgrd modules
- PUBLIC bn2 ! called by step module
- PUBLIC eos_rab ! called by ldfslp, zdfddm, trabbl
- PUBLIC eos_pt_from_ct ! called by sbcssm
- PUBLIC eos_fzp ! called by traadv_cen2 and sbcice_... modules
- PUBLIC eos_pen ! used for pe diagnostics in trdpen module
- PUBLIC eos_init ! called by istate module
- ! !!* Namelist (nameos) *
- INTEGER , PUBLIC :: nn_eos ! = 0/1/2 type of eq. of state and Brunt-Vaisala frequ.
- LOGICAL , PUBLIC :: ln_useCT ! determine if eos_pt_from_ct is used to compute sst_m
- ! !!! simplified eos coefficients
- ! default value: Vallis 2006
- REAL(wp) :: rn_a0 = 1.6550e-1_wp ! thermal expansion coeff.
- REAL(wp) :: rn_b0 = 7.6554e-1_wp ! saline expansion coeff.
- REAL(wp) :: rn_lambda1 = 5.9520e-2_wp ! cabbeling coeff. in T^2
- REAL(wp) :: rn_lambda2 = 5.4914e-4_wp ! cabbeling coeff. in S^2
- REAL(wp) :: rn_mu1 = 1.4970e-4_wp ! thermobaric coeff. in T
- REAL(wp) :: rn_mu2 = 1.1090e-5_wp ! thermobaric coeff. in S
- REAL(wp) :: rn_nu = 2.4341e-3_wp ! cabbeling coeff. in theta*salt
-
- ! TEOS10/EOS80 parameters
- REAL(wp) :: r1_S0, r1_T0, r1_Z0, rdeltaS
-
- ! EOS parameters
- REAL(wp) :: EOS000 , EOS100 , EOS200 , EOS300 , EOS400 , EOS500 , EOS600
- REAL(wp) :: EOS010 , EOS110 , EOS210 , EOS310 , EOS410 , EOS510
- REAL(wp) :: EOS020 , EOS120 , EOS220 , EOS320 , EOS420
- REAL(wp) :: EOS030 , EOS130 , EOS230 , EOS330
- REAL(wp) :: EOS040 , EOS140 , EOS240
- REAL(wp) :: EOS050 , EOS150
- REAL(wp) :: EOS060
- REAL(wp) :: EOS001 , EOS101 , EOS201 , EOS301 , EOS401
- REAL(wp) :: EOS011 , EOS111 , EOS211 , EOS311
- REAL(wp) :: EOS021 , EOS121 , EOS221
- REAL(wp) :: EOS031 , EOS131
- REAL(wp) :: EOS041
- REAL(wp) :: EOS002 , EOS102 , EOS202
- REAL(wp) :: EOS012 , EOS112
- REAL(wp) :: EOS022
- REAL(wp) :: EOS003 , EOS103
- REAL(wp) :: EOS013
-
- ! ALPHA parameters
- REAL(wp) :: ALP000 , ALP100 , ALP200 , ALP300 , ALP400 , ALP500
- REAL(wp) :: ALP010 , ALP110 , ALP210 , ALP310 , ALP410
- REAL(wp) :: ALP020 , ALP120 , ALP220 , ALP320
- REAL(wp) :: ALP030 , ALP130 , ALP230
- REAL(wp) :: ALP040 , ALP140
- REAL(wp) :: ALP050
- REAL(wp) :: ALP001 , ALP101 , ALP201 , ALP301
- REAL(wp) :: ALP011 , ALP111 , ALP211
- REAL(wp) :: ALP021 , ALP121
- REAL(wp) :: ALP031
- REAL(wp) :: ALP002 , ALP102
- REAL(wp) :: ALP012
- REAL(wp) :: ALP003
-
- ! BETA parameters
- REAL(wp) :: BET000 , BET100 , BET200 , BET300 , BET400 , BET500
- REAL(wp) :: BET010 , BET110 , BET210 , BET310 , BET410
- REAL(wp) :: BET020 , BET120 , BET220 , BET320
- REAL(wp) :: BET030 , BET130 , BET230
- REAL(wp) :: BET040 , BET140
- REAL(wp) :: BET050
- REAL(wp) :: BET001 , BET101 , BET201 , BET301
- REAL(wp) :: BET011 , BET111 , BET211
- REAL(wp) :: BET021 , BET121
- REAL(wp) :: BET031
- REAL(wp) :: BET002 , BET102
- REAL(wp) :: BET012
- REAL(wp) :: BET003
- ! PEN parameters
- REAL(wp) :: PEN000 , PEN100 , PEN200 , PEN300 , PEN400
- REAL(wp) :: PEN010 , PEN110 , PEN210 , PEN310
- REAL(wp) :: PEN020 , PEN120 , PEN220
- REAL(wp) :: PEN030 , PEN130
- REAL(wp) :: PEN040
- REAL(wp) :: PEN001 , PEN101 , PEN201
- REAL(wp) :: PEN011 , PEN111
- REAL(wp) :: PEN021
- REAL(wp) :: PEN002 , PEN102
- REAL(wp) :: PEN012
-
- ! ALPHA_PEN parameters
- REAL(wp) :: APE000 , APE100 , APE200 , APE300
- REAL(wp) :: APE010 , APE110 , APE210
- REAL(wp) :: APE020 , APE120
- REAL(wp) :: APE030
- REAL(wp) :: APE001 , APE101
- REAL(wp) :: APE011
- REAL(wp) :: APE002
- ! BETA_PEN parameters
- REAL(wp) :: BPE000 , BPE100 , BPE200 , BPE300
- REAL(wp) :: BPE010 , BPE110 , BPE210
- REAL(wp) :: BPE020 , BPE120
- REAL(wp) :: BPE030
- REAL(wp) :: BPE001 , BPE101
- REAL(wp) :: BPE011
- REAL(wp) :: BPE002
- !! * Substitutions
- # include "domzgr_substitute.h90"
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 3.7 , NEMO Consortium (2014)
- !! $Id: eosbn2.F90 8026 2017-05-15 15:54:57Z lovato $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE eos_insitu( pts, prd, pdep )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_insitu ***
- !!
- !! ** Purpose : Compute the in situ density (ratio rho/rau0) from
- !! potential temperature and salinity using an equation of state
- !! defined through the namelist parameter nn_eos.
- !!
- !! ** Method : prd(t,s,z) = ( rho(t,s,z) - rau0 ) / rau0
- !! with prd in situ density anomaly no units
- !! t TEOS10: CT or EOS80: PT Celsius
- !! s TEOS10: SA or EOS80: SP TEOS10: g/kg or EOS80: psu
- !! z depth meters
- !! rho in situ density kg/m^3
- !! rau0 reference density kg/m^3
- !!
- !! nn_eos = -1 : polynomial TEOS-10 equation of state is used for rho(t,s,z).
- !! Check value: rho = 1028.21993233072 kg/m^3 for z=3000 dbar, ct=3 Celcius, sa=35.5 g/kg
- !!
- !! nn_eos = 0 : polynomial EOS-80 equation of state is used for rho(t,s,z).
- !! Check value: rho = 1028.35011066567 kg/m^3 for z=3000 dbar, pt=3 Celcius, sp=35.5 psu
- !!
- !! nn_eos = 1 : simplified equation of state
- !! prd(t,s,z) = ( -a0*(1+lambda/2*(T-T0)+mu*z+nu*(S-S0))*(T-T0) + b0*(S-S0) ) / rau0
- !! linear case function of T only: rn_alpha<>0, other coefficients = 0
- !! linear eos function of T and S: rn_alpha and rn_beta<>0, other coefficients=0
- !! Vallis like equation: use default values of coefficients
- !!
- !! ** Action : compute prd , the in situ density (no units)
- !!
- !! References : Roquet et al, Ocean Modelling, in preparation (2014)
- !! Vallis, Atmospheric and Oceanic Fluid Dynamics, 2006
- !! TEOS-10 Manual, 2010
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius]
- ! ! 2 : salinity [psu]
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prd ! in situ density [-]
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pdep ! depth [m]
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zh , zs , ztm ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('eos-insitu')
- !
- SELECT CASE( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zh = pdep(ji,jj,jk) * r1_Z0 ! depth
- zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- ztm = tmask(ji,jj,jk) ! tmask
- !
- zn3 = EOS013*zt &
- & + EOS103*zs+EOS003
- !
- zn2 = (EOS022*zt &
- & + EOS112*zs+EOS012)*zt &
- & + (EOS202*zs+EOS102)*zs+EOS002
- !
- zn1 = (((EOS041*zt &
- & + EOS131*zs+EOS031)*zt &
- & + (EOS221*zs+EOS121)*zs+EOS021)*zt &
- & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
- & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
- !
- zn0 = (((((EOS060*zt &
- & + EOS150*zs+EOS050)*zt &
- & + (EOS240*zs+EOS140)*zs+EOS040)*zt &
- & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
- & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
- & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
- & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- prd(ji,jj,jk) = ( zn * r1_rau0 - 1._wp ) * ztm ! density anomaly (masked)
- !
- END DO
- END DO
- END DO
- !
- CASE( 1 ) !== simplified EOS ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zt = pts (ji,jj,jk,jp_tem) - 10._wp
- zs = pts (ji,jj,jk,jp_sal) - 35._wp
- zh = pdep (ji,jj,jk)
- ztm = tmask(ji,jj,jk)
- !
- zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt &
- & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs &
- & - rn_nu * zt * zs
- !
- prd(ji,jj,jk) = zn * r1_rau0 * ztm ! density anomaly (masked)
- END DO
- END DO
- END DO
- !
- END SELECT
- !
- IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-insitu : ', ovlap=1, kdim=jpk )
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos-insitu')
- !
- END SUBROUTINE eos_insitu
- SUBROUTINE eos_insitu_pot( pts, prd, prhop, pdep )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_insitu_pot ***
- !!
- !! ** Purpose : Compute the in situ density (ratio rho/rau0) and the
- !! potential volumic mass (Kg/m3) from potential temperature and
- !! salinity fields using an equation of state defined through the
- !! namelist parameter nn_eos.
- !!
- !! ** Action : - prd , the in situ density (no units)
- !! - prhop, the potential volumic mass (Kg/m3)
- !!
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius]
- ! ! 2 : salinity [psu]
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prd ! in situ density [-]
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prhop ! potential density (surface referenced)
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pdep ! depth [m]
- !
- INTEGER :: ji, jj, jk, jsmp ! dummy loop indices
- INTEGER :: jdof
- REAL(wp) :: zt , zh , zstemp, zs , ztm ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign ! local vectors
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('eos-pot')
- !
- SELECT CASE ( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- ! Stochastic equation of state
- IF ( ln_sto_eos ) THEN
- ALLOCATE(zn0_sto(1:2*nn_sto_eos))
- ALLOCATE(zn_sto(1:2*nn_sto_eos))
- ALLOCATE(zsign(1:2*nn_sto_eos))
- DO jsmp = 1, 2*nn_sto_eos, 2
- zsign(jsmp) = 1._wp
- zsign(jsmp+1) = -1._wp
- END DO
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- ! compute density (2*nn_sto_eos) times:
- ! (1) for t+dt, s+ds (with the random TS fluctutation computed in sto_pts)
- ! (2) for t-dt, s-ds (with the opposite fluctuation)
- DO jsmp = 1, nn_sto_eos*2
- jdof = (jsmp + 1) / 2
- zh = pdep(ji,jj,jk) * r1_Z0 ! depth
- zt = (pts (ji,jj,jk,jp_tem) + pts_ran(ji,jj,jk,jp_tem,jdof) * zsign(jsmp)) * r1_T0 ! temperature
- zstemp = pts (ji,jj,jk,jp_sal) + pts_ran(ji,jj,jk,jp_sal,jdof) * zsign(jsmp)
- zs = SQRT( ABS( zstemp + rdeltaS ) * r1_S0 ) ! square root salinity
- ztm = tmask(ji,jj,jk) ! tmask
- !
- zn3 = EOS013*zt &
- & + EOS103*zs+EOS003
- !
- zn2 = (EOS022*zt &
- & + EOS112*zs+EOS012)*zt &
- & + (EOS202*zs+EOS102)*zs+EOS002
- !
- zn1 = (((EOS041*zt &
- & + EOS131*zs+EOS031)*zt &
- & + (EOS221*zs+EOS121)*zs+EOS021)*zt &
- & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
- & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
- !
- zn0_sto(jsmp) = (((((EOS060*zt &
- & + EOS150*zs+EOS050)*zt &
- & + (EOS240*zs+EOS140)*zs+EOS040)*zt &
- & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
- & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
- & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
- & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
- !
- zn_sto(jsmp) = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0_sto(jsmp)
- END DO
- !
- ! compute stochastic density as the mean of the (2*nn_sto_eos) densities
- prhop(ji,jj,jk) = 0._wp ; prd(ji,jj,jk) = 0._wp
- DO jsmp = 1, nn_sto_eos*2
- prhop(ji,jj,jk) = prhop(ji,jj,jk) + zn0_sto(jsmp) ! potential density referenced at the surface
- !
- prd(ji,jj,jk) = prd(ji,jj,jk) + ( zn_sto(jsmp) * r1_rau0 - 1._wp ) ! density anomaly (masked)
- END DO
- prhop(ji,jj,jk) = 0.5_wp * prhop(ji,jj,jk) * ztm / nn_sto_eos
- prd (ji,jj,jk) = 0.5_wp * prd (ji,jj,jk) * ztm / nn_sto_eos
- END DO
- END DO
- END DO
- DEALLOCATE(zn0_sto,zn_sto,zsign)
- ! Non-stochastic equation of state
- ELSE
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zh = pdep(ji,jj,jk) * r1_Z0 ! depth
- zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- ztm = tmask(ji,jj,jk) ! tmask
- !
- zn3 = EOS013*zt &
- & + EOS103*zs+EOS003
- !
- zn2 = (EOS022*zt &
- & + EOS112*zs+EOS012)*zt &
- & + (EOS202*zs+EOS102)*zs+EOS002
- !
- zn1 = (((EOS041*zt &
- & + EOS131*zs+EOS031)*zt &
- & + (EOS221*zs+EOS121)*zs+EOS021)*zt &
- & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
- & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
- !
- zn0 = (((((EOS060*zt &
- & + EOS150*zs+EOS050)*zt &
- & + (EOS240*zs+EOS140)*zs+EOS040)*zt &
- & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
- & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
- & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
- & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- prhop(ji,jj,jk) = zn0 * ztm ! potential density referenced at the surface
- !
- prd(ji,jj,jk) = ( zn * r1_rau0 - 1._wp ) * ztm ! density anomaly (masked)
- END DO
- END DO
- END DO
- ENDIF
-
- CASE( 1 ) !== simplified EOS ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zt = pts (ji,jj,jk,jp_tem) - 10._wp
- zs = pts (ji,jj,jk,jp_sal) - 35._wp
- zh = pdep (ji,jj,jk)
- ztm = tmask(ji,jj,jk)
- ! ! potential density referenced at the surface
- zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt &
- & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs &
- & - rn_nu * zt * zs
- prhop(ji,jj,jk) = ( rau0 + zn ) * ztm
- ! ! density anomaly (masked)
- zn = zn - ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zh
- prd(ji,jj,jk) = zn * r1_rau0 * ztm
- !
- END DO
- END DO
- END DO
- !
- END SELECT
- !
- IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-pot: ', tab3d_2=prhop, clinfo2=' pot : ', ovlap=1, kdim=jpk )
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos-pot')
- !
- END SUBROUTINE eos_insitu_pot
- SUBROUTINE eos_insitu_2d( pts, pdep, prd )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_insitu_2d ***
- !!
- !! ** Purpose : Compute the in situ density (ratio rho/rau0) from
- !! potential temperature and salinity using an equation of state
- !! defined through the namelist parameter nn_eos. * 2D field case
- !!
- !! ** Action : - prd , the in situ density (no units) (unmasked)
- !!
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius]
- ! ! 2 : salinity [psu]
- REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pdep ! depth [m]
- REAL(wp), DIMENSION(jpi,jpj) , INTENT( out) :: prd ! in situ density
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zh , zs ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('eos2d')
- !
- prd(:,:) = 0._wp
- !
- SELECT CASE( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- !
- zh = pdep(ji,jj) * r1_Z0 ! depth
- zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- !
- zn3 = EOS013*zt &
- & + EOS103*zs+EOS003
- !
- zn2 = (EOS022*zt &
- & + EOS112*zs+EOS012)*zt &
- & + (EOS202*zs+EOS102)*zs+EOS002
- !
- zn1 = (((EOS041*zt &
- & + EOS131*zs+EOS031)*zt &
- & + (EOS221*zs+EOS121)*zs+EOS021)*zt &
- & + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
- & + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
- !
- zn0 = (((((EOS060*zt &
- & + EOS150*zs+EOS050)*zt &
- & + (EOS240*zs+EOS140)*zs+EOS040)*zt &
- & + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
- & + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
- & + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
- & + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- prd(ji,jj) = zn * r1_rau0 - 1._wp ! unmasked in situ density anomaly
- !
- END DO
- END DO
- !
- CALL lbc_lnk( prd, 'T', 1. ) ! Lateral boundary conditions
- !
- CASE( 1 ) !== simplified EOS ==!
- !
- DO jj = 1, jpjm1
- DO ji = 1, fs_jpim1 ! vector opt.
- !
- zt = pts (ji,jj,jp_tem) - 10._wp
- zs = pts (ji,jj,jp_sal) - 35._wp
- zh = pdep (ji,jj) ! depth at the partial step level
- !
- zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt &
- & + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs &
- & - rn_nu * zt * zs
- !
- prd(ji,jj) = zn * r1_rau0 ! unmasked in situ density anomaly
- !
- END DO
- END DO
- !
- CALL lbc_lnk( prd, 'T', 1. ) ! Lateral boundary conditions
- !
- END SELECT
- !
- IF(ln_ctl) CALL prt_ctl( tab2d_1=prd, clinfo1=' eos2d: ' )
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos2d')
- !
- END SUBROUTINE eos_insitu_2d
- SUBROUTINE rab_3d( pts, pab )
- !!----------------------------------------------------------------------
- !! *** ROUTINE rab_3d ***
- !!
- !! ** Purpose : Calculates thermal/haline expansion ratio at T-points
- !!
- !! ** Method : calculates alpha / beta at T-points
- !!
- !! ** Action : - pab : thermal/haline expansion ratio at T-points
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT( out) :: pab ! thermal/haline expansion ratio
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zh , zs , ztm ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('rab_3d')
- !
- SELECT CASE ( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zh = fsdept(ji,jj,jk) * r1_Z0 ! depth
- zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- ztm = tmask(ji,jj,jk) ! tmask
- !
- ! alpha
- zn3 = ALP003
- !
- zn2 = ALP012*zt + ALP102*zs+ALP002
- !
- zn1 = ((ALP031*zt &
- & + ALP121*zs+ALP021)*zt &
- & + (ALP211*zs+ALP111)*zs+ALP011)*zt &
- & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
- !
- zn0 = ((((ALP050*zt &
- & + ALP140*zs+ALP040)*zt &
- & + (ALP230*zs+ALP130)*zs+ALP030)*zt &
- & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
- & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
- & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(ji,jj,jk,jp_tem) = zn * r1_rau0 * ztm
- !
- ! beta
- zn3 = BET003
- !
- zn2 = BET012*zt + BET102*zs+BET002
- !
- zn1 = ((BET031*zt &
- & + BET121*zs+BET021)*zt &
- & + (BET211*zs+BET111)*zs+BET011)*zt &
- & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
- !
- zn0 = ((((BET050*zt &
- & + BET140*zs+BET040)*zt &
- & + (BET230*zs+BET130)*zs+BET030)*zt &
- & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
- & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
- & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(ji,jj,jk,jp_sal) = zn / zs * r1_rau0 * ztm
- !
- END DO
- END DO
- END DO
- !
- CASE( 1 ) !== simplified EOS ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zt = pts (ji,jj,jk,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
- zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
- zh = fsdept(ji,jj,jk) ! depth in meters at t-point
- ztm = tmask(ji,jj,jk) ! land/sea bottom mask = surf. mask
- !
- zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
- pab(ji,jj,jk,jp_tem) = zn * r1_rau0 * ztm ! alpha
- !
- zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
- pab(ji,jj,jk,jp_sal) = zn * r1_rau0 * ztm ! beta
- !
- END DO
- END DO
- END DO
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- IF(ln_ctl) CALL prt_ctl( tab3d_1=pab(:,:,:,jp_tem), clinfo1=' rab_3d_t: ', &
- & tab3d_2=pab(:,:,:,jp_sal), clinfo2=' rab_3d_s : ', ovlap=1, kdim=jpk )
- !
- IF( nn_timing == 1 ) CALL timing_stop('rab_3d')
- !
- END SUBROUTINE rab_3d
- SUBROUTINE rab_2d( pts, pdep, pab )
- !!----------------------------------------------------------------------
- !! *** ROUTINE rab_2d ***
- !!
- !! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked)
- !!
- !! ** Action : - pab : thermal/haline expansion ratio at T-points
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpts) , INTENT(in ) :: pts ! pot. temperature & salinity
- REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pdep ! depth [m]
- REAL(wp), DIMENSION(jpi,jpj,jpts) , INTENT( out) :: pab ! thermal/haline expansion ratio
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zh , zs ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('rab_2d')
- !
- pab(:,:,:) = 0._wp
- !
- SELECT CASE ( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zh = pdep(ji,jj) * r1_Z0 ! depth
- zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- !
- ! alpha
- zn3 = ALP003
- !
- zn2 = ALP012*zt + ALP102*zs+ALP002
- !
- zn1 = ((ALP031*zt &
- & + ALP121*zs+ALP021)*zt &
- & + (ALP211*zs+ALP111)*zs+ALP011)*zt &
- & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
- !
- zn0 = ((((ALP050*zt &
- & + ALP140*zs+ALP040)*zt &
- & + (ALP230*zs+ALP130)*zs+ALP030)*zt &
- & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
- & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
- & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(ji,jj,jp_tem) = zn * r1_rau0
- !
- ! beta
- zn3 = BET003
- !
- zn2 = BET012*zt + BET102*zs+BET002
- !
- zn1 = ((BET031*zt &
- & + BET121*zs+BET021)*zt &
- & + (BET211*zs+BET111)*zs+BET011)*zt &
- & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
- !
- zn0 = ((((BET050*zt &
- & + BET140*zs+BET040)*zt &
- & + (BET230*zs+BET130)*zs+BET030)*zt &
- & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
- & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
- & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(ji,jj,jp_sal) = zn / zs * r1_rau0
- !
- !
- END DO
- END DO
- !
- CASE( 1 ) !== simplified EOS ==!
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zt = pts (ji,jj,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
- zs = pts (ji,jj,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
- zh = pdep (ji,jj) ! depth at the partial step level
- !
- zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
- pab(ji,jj,jp_tem) = zn * r1_rau0 ! alpha
- !
- zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
- pab(ji,jj,jp_sal) = zn * r1_rau0 ! beta
- !
- END DO
- END DO
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- IF(ln_ctl) CALL prt_ctl( tab2d_1=pab(:,:,jp_tem), clinfo1=' rab_2d_t: ', &
- & tab2d_2=pab(:,:,jp_sal), clinfo2=' rab_2d_s : ' )
- !
- IF( nn_timing == 1 ) CALL timing_stop('rab_2d')
- !
- END SUBROUTINE rab_2d
- SUBROUTINE rab_0d( pts, pdep, pab )
- !!----------------------------------------------------------------------
- !! *** ROUTINE rab_0d ***
- !!
- !! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked)
- !!
- !! ** Action : - pab : thermal/haline expansion ratio at T-points
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpts) , INTENT(in ) :: pts ! pot. temperature & salinity
- REAL(wp), INTENT(in ) :: pdep ! depth [m]
- REAL(wp), DIMENSION(jpts) , INTENT( out) :: pab ! thermal/haline expansion ratio
- !
- REAL(wp) :: zt , zh , zs ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('rab_2d')
- !
- pab(:) = 0._wp
- !
- SELECT CASE ( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- !
- zh = pdep * r1_Z0 ! depth
- zt = pts (jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- !
- ! alpha
- zn3 = ALP003
- !
- zn2 = ALP012*zt + ALP102*zs+ALP002
- !
- zn1 = ((ALP031*zt &
- & + ALP121*zs+ALP021)*zt &
- & + (ALP211*zs+ALP111)*zs+ALP011)*zt &
- & + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
- !
- zn0 = ((((ALP050*zt &
- & + ALP140*zs+ALP040)*zt &
- & + (ALP230*zs+ALP130)*zs+ALP030)*zt &
- & + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
- & + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
- & + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(jp_tem) = zn * r1_rau0
- !
- ! beta
- zn3 = BET003
- !
- zn2 = BET012*zt + BET102*zs+BET002
- !
- zn1 = ((BET031*zt &
- & + BET121*zs+BET021)*zt &
- & + (BET211*zs+BET111)*zs+BET011)*zt &
- & + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
- !
- zn0 = ((((BET050*zt &
- & + BET140*zs+BET040)*zt &
- & + (BET230*zs+BET130)*zs+BET030)*zt &
- & + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
- & + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
- & + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
- !
- zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
- !
- pab(jp_sal) = zn / zs * r1_rau0
- !
- !
- !
- CASE( 1 ) !== simplified EOS ==!
- !
- zt = pts(jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
- zs = pts(jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
- zh = pdep ! depth at the partial step level
- !
- zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
- pab(jp_tem) = zn * r1_rau0 ! alpha
- !
- zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
- pab(jp_sal) = zn * r1_rau0 ! beta
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- IF( nn_timing == 1 ) CALL timing_stop('rab_2d')
- !
- END SUBROUTINE rab_0d
- SUBROUTINE bn2( pts, pab, pn2 )
- !!----------------------------------------------------------------------
- !! *** ROUTINE bn2 ***
- !!
- !! ** Purpose : Compute the local Brunt-Vaisala frequency at the
- !! time-step of the input arguments
- !!
- !! ** Method : pn2 = grav * (alpha dk[T] + beta dk[S] ) / e3w
- !! where alpha and beta are given in pab, and computed on T-points.
- !! N.B. N^2 is set one for all to zero at jk=1 in istate module.
- !!
- !! ** Action : pn2 : square of the brunt-vaisala frequency at w-point
- !!
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature and salinity [Celcius,psu]
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pab ! thermal/haline expansion coef. [Celcius-1,psu-1]
- REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: pn2 ! Brunt-Vaisala frequency squared [1/s^2]
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zaw, zbw, zrw ! local scalars
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('bn2')
- !
- DO jk = 2, jpkm1 ! interior points only (2=< jk =< jpkm1 )
- DO jj = 1, jpj ! surface and bottom value set to zero one for all in istate.F90
- DO ji = 1, jpi
- zrw = ( fsdepw(ji,jj,jk ) - fsdept(ji,jj,jk) ) &
- & / ( fsdept(ji,jj,jk-1) - fsdept(ji,jj,jk) )
- !
- zaw = pab(ji,jj,jk,jp_tem) * (1. - zrw) + pab(ji,jj,jk-1,jp_tem) * zrw
- zbw = pab(ji,jj,jk,jp_sal) * (1. - zrw) + pab(ji,jj,jk-1,jp_sal) * zrw
- !
- pn2(ji,jj,jk) = grav * ( zaw * ( pts(ji,jj,jk-1,jp_tem) - pts(ji,jj,jk,jp_tem) ) &
- & - zbw * ( pts(ji,jj,jk-1,jp_sal) - pts(ji,jj,jk,jp_sal) ) ) &
- & / fse3w(ji,jj,jk) * tmask(ji,jj,jk)
- END DO
- END DO
- END DO
- !
- IF(ln_ctl) CALL prt_ctl( tab3d_1=pn2, clinfo1=' bn2 : ', ovlap=1, kdim=jpk )
- !
- IF( nn_timing == 1 ) CALL timing_stop('bn2')
- !
- END SUBROUTINE bn2
- FUNCTION eos_pt_from_ct_2d( ctmp, psal ) RESULT( ptmp )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_pt_from_ct ***
- !!
- !! ** Purpose : Compute pot.temp. from cons. temp. [Celcius]
- !!
- !! ** Method : rational approximation (5/3th order) of TEOS-10 algorithm
- !! checkvalue: pt=20.02391895 Celsius for sa=35.7g/kg, ct=20degC
- !!
- !! Reference : TEOS-10, UNESCO
- !! Rational approximation to TEOS10 algorithm (rms error on WOA13 values: 4.0e-5 degC)
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ctmp ! Cons. Temp [Celcius]
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu]
- ! Leave result array automatic rather than making explicitly allocated
- REAL(wp), DIMENSION(jpi,jpj) :: ptmp ! potential temperature [Celcius]
- !
- INTEGER :: ji, jj ! dummy loop indices
- REAL(wp) :: zt , zs , ztm ! local scalars
- REAL(wp) :: zn , zd ! local scalars
- REAL(wp) :: zdeltaS , z1_S0 , z1_T0
- !!----------------------------------------------------------------------
- !
- IF ( nn_timing == 1 ) CALL timing_start('eos_pt_from_ct_2d')
- !
- zdeltaS = 5._wp
- z1_S0 = 0.875_wp/35.16504_wp
- z1_T0 = 1._wp/40._wp
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zt = ctmp (ji,jj) * z1_T0
- zs = SQRT( ABS( psal(ji,jj) + zdeltaS ) * r1_S0 )
- ztm = tmask(ji,jj,1)
- !
- zn = ((((-2.1385727895e-01_wp*zt &
- & - 2.7674419971e-01_wp*zs+1.0728094330_wp)*zt &
- & + (2.6366564313_wp*zs+3.3546960647_wp)*zs-7.8012209473_wp)*zt &
- & + ((1.8835586562_wp*zs+7.3949191679_wp)*zs-3.3937395875_wp)*zs-5.6414948432_wp)*zt &
- & + (((3.5737370589_wp*zs-1.5512427389e+01_wp)*zs+2.4625741105e+01_wp)*zs &
- & +1.9912291000e+01_wp)*zs-3.2191146312e+01_wp)*zt &
- & + ((((5.7153204649e-01_wp*zs-3.0943149543_wp)*zs+9.3052495181_wp)*zs &
- & -9.4528934807_wp)*zs+3.1066408996_wp)*zs-4.3504021262e-01_wp
- !
- zd = (2.0035003456_wp*zt &
- & -3.4570358592e-01_wp*zs+5.6471810638_wp)*zt &
- & + (1.5393993508_wp*zs-6.9394762624_wp)*zs+1.2750522650e+01_wp
- !
- ptmp(ji,jj) = ( zt / z1_T0 + zn / zd ) * ztm
- !
- END DO
- END DO
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos_pt_from_ct_2d')
- !
- END FUNCTION eos_pt_from_ct_2d
- FUNCTION eos_pt_from_ct_3d( ctmp, psal ) RESULT( ptmp )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_pt_from_ct ***
- !!
- !! ** Purpose : Compute pot.temp. from cons. temp. [Celcius]
- !!
- !! ** Method : rational approximation (5/3th order) of TEOS-10 algorithm
- !! checkvalue: pt=20.02391895 Celsius for sa=35.7g/kg, ct=20degC
- !!
- !! Reference : TEOS-10, UNESCO
- !! Rational approximation to TEOS10 algorithm (rms error on WOA13 values: 4.0e-5 degC)
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in) :: ctmp ! Cons. Temp [Celcius]
- REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in) :: psal ! salinity [psu]
- ! Leave result array automatic rather than making explicitly allocated
- REAL(wp), DIMENSION(jpi,jpj,jpk) :: ptmp ! potential temperature [Celcius]
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zs , ztm ! local scalars
- REAL(wp) :: zn , zd ! local scalars
- REAL(wp) :: zdeltaS , z1_S0 , z1_T0
- !!----------------------------------------------------------------------
- !
- IF ( nn_timing == 1 ) CALL timing_start('eos_pt_from_ct_3d')
- !
- zdeltaS = 5._wp
- z1_S0 = 0.875_wp/35.16504_wp
- z1_T0 = 1._wp/40._wp
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zt = ctmp (ji,jj,jk) * z1_T0
- zs = SQRT( ABS( psal(ji,jj,jk) + zdeltaS ) * r1_S0 )
- ztm = tmask(ji,jj,jk)
- !
- zn = ((((-2.1385727895e-01_wp*zt &
- & - 2.7674419971e-01_wp*zs+1.0728094330_wp)*zt &
- & + (2.6366564313_wp*zs+3.3546960647_wp)*zs-7.8012209473_wp)*zt &
- & + ((1.8835586562_wp*zs+7.3949191679_wp)*zs-3.3937395875_wp)*zs-5.6414948432_wp)*zt &
- & + (((3.5737370589_wp*zs-1.5512427389e+01_wp)*zs+2.4625741105e+01_wp)*zs &
- & +1.9912291000e+01_wp)*zs-3.2191146312e+01_wp)*zt &
- & + ((((5.7153204649e-01_wp*zs-3.0943149543_wp)*zs+9.3052495181_wp)*zs &
- & -9.4528934807_wp)*zs+3.1066408996_wp)*zs-4.3504021262e-01_wp
- !
- zd = (2.0035003456_wp*zt &
- & -3.4570358592e-01_wp*zs+5.6471810638_wp)*zt &
- & + (1.5393993508_wp*zs-6.9394762624_wp)*zs+1.2750522650e+01_wp
- !
- ptmp(ji,jj,jk) = ( zt / z1_T0 + zn / zd ) * ztm
- !
- END DO
- END DO
- END DO
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos_pt_from_ct_3d')
- !
- END FUNCTION eos_pt_from_ct_3d
- SUBROUTINE eos_fzp_2d( psal, ptf, pdep )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_fzp ***
- !!
- !! ** Purpose : Compute the freezing point temperature [Celcius]
- !!
- !! ** Method : UNESCO freezing point (ptf) in Celcius is given by
- !! ptf(t,z) = (-.0575+1.710523e-3*sqrt(abs(s))-2.154996e-4*s)*s - 7.53e-4*z
- !! checkvalue: tf=-2.588567 Celsius for s=40psu, z=500m
- !!
- !! Reference : UNESCO tech. papers in the marine science no. 28. 1978
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu]
- REAL(wp), DIMENSION(jpi,jpj), INTENT(in ), OPTIONAL :: pdep ! depth [m]
- REAL(wp), DIMENSION(jpi,jpj), INTENT(out ) :: ptf ! freezing temperature [Celcius]
- !
- INTEGER :: ji, jj ! dummy loop indices
- REAL(wp) :: zt, zs ! local scalars
- !!----------------------------------------------------------------------
- !
- SELECT CASE ( nn_eos )
- !
- CASE ( -1, 1 ) !== CT,SA (TEOS-10 formulation) ==!
- !
- DO jj = 1, jpj
- DO ji = 1, jpi
- zs= SQRT( ABS( psal(ji,jj) ) / 35.16504_wp ) ! square root salinity
- ptf(ji,jj) = ((((1.46873e-03_wp*zs-9.64972e-03_wp)*zs+2.28348e-02_wp)*zs &
- & - 3.12775e-02_wp)*zs+2.07679e-02_wp)*zs-5.87701e-02_wp
- END DO
- END DO
- ptf(:,:) = ptf(:,:) * psal(:,:)
- !
- IF( PRESENT( pdep ) ) ptf(:,:) = ptf(:,:) - 7.53e-4 * pdep(:,:)
- !
- CASE ( 0 ) !== PT,SP (UNESCO formulation) ==!
- !
- ptf(:,:) = ( - 0.0575_wp + 1.710523e-3_wp * SQRT( psal(:,:) ) &
- & - 2.154996e-4_wp * psal(:,:) ) * psal(:,:)
- !
- IF( PRESENT( pdep ) ) ptf(:,:) = ptf(:,:) - 7.53e-4 * pdep(:,:)
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- END SUBROUTINE eos_fzp_2d
- SUBROUTINE eos_fzp_0d( psal, ptf, pdep )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_fzp ***
- !!
- !! ** Purpose : Compute the freezing point temperature [Celcius]
- !!
- !! ** Method : UNESCO freezing point (ptf) in Celcius is given by
- !! ptf(t,z) = (-.0575+1.710523e-3*sqrt(abs(s))-2.154996e-4*s)*s - 7.53e-4*z
- !! checkvalue: tf=-2.588567 Celsius for s=40psu, z=500m
- !!
- !! Reference : UNESCO tech. papers in the marine science no. 28. 1978
- !!----------------------------------------------------------------------
- REAL(wp), INTENT(in ) :: psal ! salinity [psu]
- REAL(wp), INTENT(in ), OPTIONAL :: pdep ! depth [m]
- REAL(wp), INTENT(out) :: ptf ! freezing temperature [Celcius]
- !
- REAL(wp) :: zs ! local scalars
- !!----------------------------------------------------------------------
- !
- SELECT CASE ( nn_eos )
- !
- CASE ( -1, 1 ) !== CT,SA (TEOS-10 formulation) ==!
- !
- zs = SQRT( ABS( psal ) / 35.16504_wp ) ! square root salinity
- ptf = ((((1.46873e-03_wp*zs-9.64972e-03_wp)*zs+2.28348e-02_wp)*zs &
- & - 3.12775e-02_wp)*zs+2.07679e-02_wp)*zs-5.87701e-02_wp
- ptf = ptf * psal
- !
- IF( PRESENT( pdep ) ) ptf = ptf - 7.53e-4 * pdep
- !
- CASE ( 0 ) !== PT,SP (UNESCO formulation) ==!
- !
- ptf = ( - 0.0575_wp + 1.710523e-3_wp * SQRT( psal ) &
- & - 2.154996e-4_wp * psal ) * psal
- !
- IF( PRESENT( pdep ) ) ptf = ptf - 7.53e-4 * pdep
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- END SUBROUTINE eos_fzp_0d
- SUBROUTINE eos_pen( pts, pab_pe, ppen )
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_pen ***
- !!
- !! ** Purpose : Calculates nonlinear anomalies of alpha_PE, beta_PE and PE at T-points
- !!
- !! ** Method : PE is defined analytically as the vertical
- !! primitive of EOS times -g integrated between 0 and z>0.
- !! pen is the nonlinear bsq-PE anomaly: pen = ( PE - rau0 gz ) / rau0 gz - rd
- !! = 1/z * /int_0^z rd dz - rd
- !! where rd is the density anomaly (see eos_rhd function)
- !! ab_pe are partial derivatives of PE anomaly with respect to T and S:
- !! ab_pe(1) = - 1/(rau0 gz) * dPE/dT + drd/dT = - d(pen)/dT
- !! ab_pe(2) = 1/(rau0 gz) * dPE/dS + drd/dS = d(pen)/dS
- !!
- !! ** Action : - pen : PE anomaly given at T-points
- !! : - pab_pe : given at T-points
- !! pab_pe(:,:,:,jp_tem) is alpha_pe
- !! pab_pe(:,:,:,jp_sal) is beta_pe
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity
- REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT( out) :: pab_pe ! alpha_pe and beta_pe
- REAL(wp), DIMENSION(jpi,jpj,jpk) , INTENT( out) :: ppen ! potential energy anomaly
- !
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zt , zh , zs , ztm ! local scalars
- REAL(wp) :: zn , zn0, zn1, zn2 ! - -
- !!----------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('eos_pen')
- !
- SELECT CASE ( nn_eos )
- !
- CASE( -1, 0 ) !== polynomial TEOS-10 / EOS-80 ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- !
- zh = fsdept(ji,jj,jk) * r1_Z0 ! depth
- zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
- zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
- ztm = tmask(ji,jj,jk) ! tmask
- !
- ! potential energy non-linear anomaly
- zn2 = (PEN012)*zt &
- & + PEN102*zs+PEN002
- !
- zn1 = ((PEN021)*zt &
- & + PEN111*zs+PEN011)*zt &
- & + (PEN201*zs+PEN101)*zs+PEN001
- !
- zn0 = ((((PEN040)*zt &
- & + PEN130*zs+PEN030)*zt &
- & + (PEN220*zs+PEN120)*zs+PEN020)*zt &
- & + ((PEN310*zs+PEN210)*zs+PEN110)*zs+PEN010)*zt &
- & + (((PEN400*zs+PEN300)*zs+PEN200)*zs+PEN100)*zs+PEN000
- !
- zn = ( zn2 * zh + zn1 ) * zh + zn0
- !
- ppen(ji,jj,jk) = zn * zh * r1_rau0 * ztm
- !
- ! alphaPE non-linear anomaly
- zn2 = APE002
- !
- zn1 = (APE011)*zt &
- & + APE101*zs+APE001
- !
- zn0 = (((APE030)*zt &
- & + APE120*zs+APE020)*zt &
- & + (APE210*zs+APE110)*zs+APE010)*zt &
- & + ((APE300*zs+APE200)*zs+APE100)*zs+APE000
- !
- zn = ( zn2 * zh + zn1 ) * zh + zn0
- !
- pab_pe(ji,jj,jk,jp_tem) = zn * zh * r1_rau0 * ztm
- !
- ! betaPE non-linear anomaly
- zn2 = BPE002
- !
- zn1 = (BPE011)*zt &
- & + BPE101*zs+BPE001
- !
- zn0 = (((BPE030)*zt &
- & + BPE120*zs+BPE020)*zt &
- & + (BPE210*zs+BPE110)*zs+BPE010)*zt &
- & + ((BPE300*zs+BPE200)*zs+BPE100)*zs+BPE000
- !
- zn = ( zn2 * zh + zn1 ) * zh + zn0
- !
- pab_pe(ji,jj,jk,jp_sal) = zn / zs * zh * r1_rau0 * ztm
- !
- END DO
- END DO
- END DO
- !
- CASE( 1 ) !== Vallis (2006) simplified EOS ==!
- !
- DO jk = 1, jpkm1
- DO jj = 1, jpj
- DO ji = 1, jpi
- zt = pts(ji,jj,jk,jp_tem) - 10._wp ! temperature anomaly (t-T0)
- zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
- zh = fsdept(ji,jj,jk) ! depth in meters at t-point
- ztm = tmask(ji,jj,jk) ! tmask
- zn = 0.5_wp * zh * r1_rau0 * ztm
- ! ! Potential Energy
- ppen(ji,jj,jk) = ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zn
- ! ! alphaPE
- pab_pe(ji,jj,jk,jp_tem) = - rn_a0 * rn_mu1 * zn
- pab_pe(ji,jj,jk,jp_sal) = rn_b0 * rn_mu2 * zn
- !
- END DO
- END DO
- END DO
- !
- CASE DEFAULT
- IF(lwp) WRITE(numout,cform_err)
- IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos
- nstop = nstop + 1
- !
- END SELECT
- !
- IF( nn_timing == 1 ) CALL timing_stop('eos_pen')
- !
- END SUBROUTINE eos_pen
- SUBROUTINE eos_init
- !!----------------------------------------------------------------------
- !! *** ROUTINE eos_init ***
- !!
- !! ** Purpose : initializations for the equation of state
- !!
- !! ** Method : Read the namelist nameos and control the parameters
- !!----------------------------------------------------------------------
- INTEGER :: ios ! local integer
- !!
- NAMELIST/nameos/ nn_eos, ln_useCT, rn_a0, rn_b0, rn_lambda1, rn_mu1, &
- & rn_lambda2, rn_mu2, rn_nu
- !!----------------------------------------------------------------------
- !
- REWIND( numnam_ref ) ! Namelist nameos in reference namelist : equation of state
- READ ( numnam_ref, nameos, IOSTAT = ios, ERR = 901 )
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nameos in reference namelist', lwp )
- !
- REWIND( numnam_cfg ) ! Namelist nameos in configuration namelist : equation of state
- READ ( numnam_cfg, nameos, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nameos in configuration namelist', lwp )
- IF(lwm) WRITE( numond, nameos )
- !
- rau0 = 1026._wp !: volumic mass of reference [kg/m3]
- rcp = 3991.86795711963_wp !: heat capacity [J/K]
- !
- IF(lwp) THEN ! Control print
- WRITE(numout,*)
- WRITE(numout,*) 'eos_init : equation of state'
- WRITE(numout,*) '~~~~~~~~'
- WRITE(numout,*) ' Namelist nameos : set eos parameters'
- WRITE(numout,*) ' flag for eq. of state and N^2 nn_eos = ', nn_eos
- IF( ln_useCT ) THEN
- WRITE(numout,*) ' model uses Conservative Temperature'
- WRITE(numout,*) ' Important: model must be initialized with CT and SA fields'
- ELSE
- WRITE(numout,*) ' model does not use Conservative Temperature'
- ENDIF
- ENDIF
- !
- ! Consistency check on ln_useCT and nn_eos
- IF ((nn_eos .EQ. -1) .AND. (.NOT. ln_useCT)) THEN
- CALL ctl_stop("ln_useCT should be set to True if using TEOS-10 (nn_eos=-1)")
- ELSE IF ((nn_eos .NE. -1) .AND. (ln_useCT)) THEN
- CALL ctl_stop("ln_useCT should be set to False if using TEOS-80 or simplified equation of state (nn_eos=0 or nn_eos=1)")
- ENDIF
- !
- SELECT CASE( nn_eos ) ! check option
- !
- CASE( -1 ) !== polynomial TEOS-10 ==!
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' use of TEOS-10 equation of state (cons. temp. and abs. salinity)'
- !
- rdeltaS = 32._wp
- r1_S0 = 0.875_wp/35.16504_wp
- r1_T0 = 1._wp/40._wp
- r1_Z0 = 1.e-4_wp
- !
- EOS000 = 8.0189615746e+02_wp
- EOS100 = 8.6672408165e+02_wp
- EOS200 = -1.7864682637e+03_wp
- EOS300 = 2.0375295546e+03_wp
- EOS400 = -1.2849161071e+03_wp
- EOS500 = 4.3227585684e+02_wp
- EOS600 = -6.0579916612e+01_wp
- EOS010 = 2.6010145068e+01_wp
- EOS110 = -6.5281885265e+01_wp
- EOS210 = 8.1770425108e+01_wp
- EOS310 = -5.6888046321e+01_wp
- EOS410 = 1.7681814114e+01_wp
- EOS510 = -1.9193502195_wp
- EOS020 = -3.7074170417e+01_wp
- EOS120 = 6.1548258127e+01_wp
- EOS220 = -6.0362551501e+01_wp
- EOS320 = 2.9130021253e+01_wp
- EOS420 = -5.4723692739_wp
- EOS030 = 2.1661789529e+01_wp
- EOS130 = -3.3449108469e+01_wp
- EOS230 = 1.9717078466e+01_wp
- EOS330 = -3.1742946532_wp
- EOS040 = -8.3627885467_wp
- EOS140 = 1.1311538584e+01_wp
- EOS240 = -5.3563304045_wp
- EOS050 = 5.4048723791e-01_wp
- EOS150 = 4.8169980163e-01_wp
- EOS060 = -1.9083568888e-01_wp
- EOS001 = 1.9681925209e+01_wp
- EOS101 = -4.2549998214e+01_wp
- EOS201 = 5.0774768218e+01_wp
- EOS301 = -3.0938076334e+01_wp
- EOS401 = 6.6051753097_wp
- EOS011 = -1.3336301113e+01_wp
- EOS111 = -4.4870114575_wp
- EOS211 = 5.0042598061_wp
- EOS311 = -6.5399043664e-01_wp
- EOS021 = 6.7080479603_wp
- EOS121 = 3.5063081279_wp
- EOS221 = -1.8795372996_wp
- EOS031 = -2.4649669534_wp
- EOS131 = -5.5077101279e-01_wp
- EOS041 = 5.5927935970e-01_wp
- EOS002 = 2.0660924175_wp
- EOS102 = -4.9527603989_wp
- EOS202 = 2.5019633244_wp
- EOS012 = 2.0564311499_wp
- EOS112 = -2.1311365518e-01_wp
- EOS022 = -1.2419983026_wp
- EOS003 = -2.3342758797e-02_wp
- EOS103 = -1.8507636718e-02_wp
- EOS013 = 3.7969820455e-01_wp
- !
- ALP000 = -6.5025362670e-01_wp
- ALP100 = 1.6320471316_wp
- ALP200 = -2.0442606277_wp
- ALP300 = 1.4222011580_wp
- ALP400 = -4.4204535284e-01_wp
- ALP500 = 4.7983755487e-02_wp
- ALP010 = 1.8537085209_wp
- ALP110 = -3.0774129064_wp
- ALP210 = 3.0181275751_wp
- ALP310 = -1.4565010626_wp
- ALP410 = 2.7361846370e-01_wp
- ALP020 = -1.6246342147_wp
- ALP120 = 2.5086831352_wp
- ALP220 = -1.4787808849_wp
- ALP320 = 2.3807209899e-01_wp
- ALP030 = 8.3627885467e-01_wp
- ALP130 = -1.1311538584_wp
- ALP230 = 5.3563304045e-01_wp
- ALP040 = -6.7560904739e-02_wp
- ALP140 = -6.0212475204e-02_wp
- ALP050 = 2.8625353333e-02_wp
- ALP001 = 3.3340752782e-01_wp
- ALP101 = 1.1217528644e-01_wp
- ALP201 = -1.2510649515e-01_wp
- ALP301 = 1.6349760916e-02_wp
- ALP011 = -3.3540239802e-01_wp
- ALP111 = -1.7531540640e-01_wp
- ALP211 = 9.3976864981e-02_wp
- ALP021 = 1.8487252150e-01_wp
- ALP121 = 4.1307825959e-02_wp
- ALP031 = -5.5927935970e-02_wp
- ALP002 = -5.1410778748e-02_wp
- ALP102 = 5.3278413794e-03_wp
- ALP012 = 6.2099915132e-02_wp
- ALP003 = -9.4924551138e-03_wp
- !
- BET000 = 1.0783203594e+01_wp
- BET100 = -4.4452095908e+01_wp
- BET200 = 7.6048755820e+01_wp
- BET300 = -6.3944280668e+01_wp
- BET400 = 2.6890441098e+01_wp
- BET500 = -4.5221697773_wp
- BET010 = -8.1219372432e-01_wp
- BET110 = 2.0346663041_wp
- BET210 = -2.1232895170_wp
- BET310 = 8.7994140485e-01_wp
- BET410 = -1.1939638360e-01_wp
- BET020 = 7.6574242289e-01_wp
- BET120 = -1.5019813020_wp
- BET220 = 1.0872489522_wp
- BET320 = -2.7233429080e-01_wp
- BET030 = -4.1615152308e-01_wp
- BET130 = 4.9061350869e-01_wp
- BET230 = -1.1847737788e-01_wp
- BET040 = 1.4073062708e-01_wp
- BET140 = -1.3327978879e-01_wp
- BET050 = 5.9929880134e-03_wp
- BET001 = -5.2937873009e-01_wp
- BET101 = 1.2634116779_wp
- BET201 = -1.1547328025_wp
- BET301 = 3.2870876279e-01_wp
- BET011 = -5.5824407214e-02_wp
- BET111 = 1.2451933313e-01_wp
- BET211 = -2.4409539932e-02_wp
- BET021 = 4.3623149752e-02_wp
- BET121 = -4.6767901790e-02_wp
- BET031 = -6.8523260060e-03_wp
- BET002 = -6.1618945251e-02_wp
- BET102 = 6.2255521644e-02_wp
- BET012 = -2.6514181169e-03_wp
- BET003 = -2.3025968587e-04_wp
- !
- PEN000 = -9.8409626043_wp
- PEN100 = 2.1274999107e+01_wp
- PEN200 = -2.5387384109e+01_wp
- PEN300 = 1.5469038167e+01_wp
- PEN400 = -3.3025876549_wp
- PEN010 = 6.6681505563_wp
- PEN110 = 2.2435057288_wp
- PEN210 = -2.5021299030_wp
- PEN310 = 3.2699521832e-01_wp
- PEN020 = -3.3540239802_wp
- PEN120 = -1.7531540640_wp
- PEN220 = 9.3976864981e-01_wp
- PEN030 = 1.2324834767_wp
- PEN130 = 2.7538550639e-01_wp
- PEN040 = -2.7963967985e-01_wp
- PEN001 = -1.3773949450_wp
- PEN101 = 3.3018402659_wp
- PEN201 = -1.6679755496_wp
- PEN011 = -1.3709540999_wp
- PEN111 = 1.4207577012e-01_wp
- PEN021 = 8.2799886843e-01_wp
- PEN002 = 1.7507069098e-02_wp
- PEN102 = 1.3880727538e-02_wp
- PEN012 = -2.8477365341e-01_wp
- !
- APE000 = -1.6670376391e-01_wp
- APE100 = -5.6087643219e-02_wp
- APE200 = 6.2553247576e-02_wp
- APE300 = -8.1748804580e-03_wp
- APE010 = 1.6770119901e-01_wp
- APE110 = 8.7657703198e-02_wp
- APE210 = -4.6988432490e-02_wp
- APE020 = -9.2436260751e-02_wp
- APE120 = -2.0653912979e-02_wp
- APE030 = 2.7963967985e-02_wp
- APE001 = 3.4273852498e-02_wp
- APE101 = -3.5518942529e-03_wp
- APE011 = -4.1399943421e-02_wp
- APE002 = 7.1193413354e-03_wp
- !
- BPE000 = 2.6468936504e-01_wp
- BPE100 = -6.3170583896e-01_wp
- BPE200 = 5.7736640125e-01_wp
- BPE300 = -1.6435438140e-01_wp
- BPE010 = 2.7912203607e-02_wp
- BPE110 = -6.2259666565e-02_wp
- BPE210 = 1.2204769966e-02_wp
- BPE020 = -2.1811574876e-02_wp
- BPE120 = 2.3383950895e-02_wp
- BPE030 = 3.4261630030e-03_wp
- BPE001 = 4.1079296834e-02_wp
- BPE101 = -4.1503681096e-02_wp
- BPE011 = 1.7676120780e-03_wp
- BPE002 = 1.7269476440e-04_wp
- !
- CASE( 0 ) !== polynomial EOS-80 formulation ==!
- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' use of EOS-80 equation of state (pot. temp. and pract. salinity)'
- !
- rdeltaS = 20._wp
- r1_S0 = 1._wp/40._wp
- r1_T0 = 1._wp/40._wp
- r1_Z0 = 1.e-4_wp
- !
- EOS000 = 9.5356891948e+02_wp
- EOS100 = 1.7136499189e+02_wp
- EOS200 = -3.7501039454e+02_wp
- EOS300 = 5.1856810420e+02_wp
- EOS400 = -3.7264470465e+02_wp
- EOS500 = 1.4302533998e+02_wp
- EOS600 = -2.2856621162e+01_wp
- EOS010 = 1.0087518651e+01_wp
- EOS110 = -1.3647741861e+01_wp
- EOS210 = 8.8478359933_wp
- EOS310 = -7.2329388377_wp
- EOS410 = 1.4774410611_wp
- EOS510 = 2.0036720553e-01_wp
- EOS020 = -2.5579830599e+01_wp
- EOS120 = 2.4043512327e+01_wp
- EOS220 = -1.6807503990e+01_wp
- EOS320 = 8.3811577084_wp
- EOS420 = -1.9771060192_wp
- EOS030 = 1.6846451198e+01_wp
- EOS130 = -2.1482926901e+01_wp
- EOS230 = 1.0108954054e+01_wp
- EOS330 = -6.2675951440e-01_wp
- EOS040 = -8.0812310102_wp
- EOS140 = 1.0102374985e+01_wp
- EOS240 = -4.8340368631_wp
- EOS050 = 1.2079167803_wp
- EOS150 = 1.1515380987e-01_wp
- EOS060 = -2.4520288837e-01_wp
- EOS001 = 1.0748601068e+01_wp
- EOS101 = -1.7817043500e+01_wp
- EOS201 = 2.2181366768e+01_wp
- EOS301 = -1.6750916338e+01_wp
- EOS401 = 4.1202230403_wp
- EOS011 = -1.5852644587e+01_wp
- EOS111 = -7.6639383522e-01_wp
- EOS211 = 4.1144627302_wp
- EOS311 = -6.6955877448e-01_wp
- EOS021 = 9.9994861860_wp
- EOS121 = -1.9467067787e-01_wp
- EOS221 = -1.2177554330_wp
- EOS031 = -3.4866102017_wp
- EOS131 = 2.2229155620e-01_wp
- EOS041 = 5.9503008642e-01_wp
- EOS002 = 1.0375676547_wp
- EOS102 = -3.4249470629_wp
- EOS202 = 2.0542026429_wp
- EOS012 = 2.1836324814_wp
- EOS112 = -3.4453674320e-01_wp
- EOS022 = -1.2548163097_wp
- EOS003 = 1.8729078427e-02_wp
- EOS103 = -5.7238495240e-02_wp
- EOS013 = 3.8306136687e-01_wp
- !
- ALP000 = -2.5218796628e-01_wp
- ALP100 = 3.4119354654e-01_wp
- ALP200 = -2.2119589983e-01_wp
- ALP300 = 1.8082347094e-01_wp
- ALP400 = -3.6936026529e-02_wp
- ALP500 = -5.0091801383e-03_wp
- ALP010 = 1.2789915300_wp
- ALP110 = -1.2021756164_wp
- ALP210 = 8.4037519952e-01_wp
- ALP310 = -4.1905788542e-01_wp
- ALP410 = 9.8855300959e-02_wp
- ALP020 = -1.2634838399_wp
- ALP120 = 1.6112195176_wp
- ALP220 = -7.5817155402e-01_wp
- ALP320 = 4.7006963580e-02_wp
- ALP030 = 8.0812310102e-01_wp
- ALP130 = -1.0102374985_wp
- ALP230 = 4.8340368631e-01_wp
- ALP040 = -1.5098959754e-01_wp
- ALP140 = -1.4394226233e-02_wp
- ALP050 = 3.6780433255e-02_wp
- ALP001 = 3.9631611467e-01_wp
- ALP101 = 1.9159845880e-02_wp
- ALP201 = -1.0286156825e-01_wp
- ALP301 = 1.6738969362e-02_wp
- ALP011 = -4.9997430930e-01_wp
- ALP111 = 9.7335338937e-03_wp
- ALP211 = 6.0887771651e-02_wp
- ALP021 = 2.6149576513e-01_wp
- ALP121 = -1.6671866715e-02_wp
- ALP031 = -5.9503008642e-02_wp
- ALP002 = -5.4590812035e-02_wp
- ALP102 = 8.6134185799e-03_wp
- ALP012 = 6.2740815484e-02_wp
- ALP003 = -9.5765341718e-03_wp
- !
- BET000 = 2.1420623987_wp
- BET100 = -9.3752598635_wp
- BET200 = 1.9446303907e+01_wp
- BET300 = -1.8632235232e+01_wp
- BET400 = 8.9390837485_wp
- BET500 = -1.7142465871_wp
- BET010 = -1.7059677327e-01_wp
- BET110 = 2.2119589983e-01_wp
- BET210 = -2.7123520642e-01_wp
- BET310 = 7.3872053057e-02_wp
- BET410 = 1.2522950346e-02_wp
- BET020 = 3.0054390409e-01_wp
- BET120 = -4.2018759976e-01_wp
- BET220 = 3.1429341406e-01_wp
- BET320 = -9.8855300959e-02_wp
- BET030 = -2.6853658626e-01_wp
- BET130 = 2.5272385134e-01_wp
- BET230 = -2.3503481790e-02_wp
- BET040 = 1.2627968731e-01_wp
- BET140 = -1.2085092158e-01_wp
- BET050 = 1.4394226233e-03_wp
- BET001 = -2.2271304375e-01_wp
- BET101 = 5.5453416919e-01_wp
- BET201 = -6.2815936268e-01_wp
- BET301 = 2.0601115202e-01_wp
- BET011 = -9.5799229402e-03_wp
- BET111 = 1.0286156825e-01_wp
- BET211 = -2.5108454043e-02_wp
- BET021 = -2.4333834734e-03_wp
- BET121 = -3.0443885826e-02_wp
- BET031 = 2.7786444526e-03_wp
- BET002 = -4.2811838287e-02_wp
- BET102 = 5.1355066072e-02_wp
- BET012 = -4.3067092900e-03_wp
- BET003 = -7.1548119050e-04_wp
- !
- PEN000 = -5.3743005340_wp
- PEN100 = 8.9085217499_wp
- PEN200 = -1.1090683384e+01_wp
- PEN300 = 8.3754581690_wp
- PEN400 = -2.0601115202_wp
- PEN010 = 7.9263222935_wp
- PEN110 = 3.8319691761e-01_wp
- PEN210 = -2.0572313651_wp
- PEN310 = 3.3477938724e-01_wp
- PEN020 = -4.9997430930_wp
- PEN120 = 9.7335338937e-02_wp
- PEN220 = 6.0887771651e-01_wp
- PEN030 = 1.7433051009_wp
- PEN130 = -1.1114577810e-01_wp
- PEN040 = -2.9751504321e-01_wp
- PEN001 = -6.9171176978e-01_wp
- PEN101 = 2.2832980419_wp
- PEN201 = -1.3694684286_wp
- PEN011 = -1.4557549876_wp
- PEN111 = 2.2969116213e-01_wp
- PEN021 = 8.3654420645e-01_wp
- PEN002 = -1.4046808820e-02_wp
- PEN102 = 4.2928871430e-02_wp
- PEN012 = -2.8729602515e-01_wp
- !
- APE000 = -1.9815805734e-01_wp
- APE100 = -9.5799229402e-03_wp
- APE200 = 5.1430784127e-02_wp
- APE300 = -8.3694846809e-03_wp
- APE010 = 2.4998715465e-01_wp
- APE110 = -4.8667669469e-03_wp
- APE210 = -3.0443885826e-02_wp
- APE020 = -1.3074788257e-01_wp
- APE120 = 8.3359333577e-03_wp
- APE030 = 2.9751504321e-02_wp
- APE001 = 3.6393874690e-02_wp
- APE101 = -5.7422790533e-03_wp
- APE011 = -4.1827210323e-02_wp
- APE002 = 7.1824006288e-03_wp
- !
- BPE000 = 1.1135652187e-01_wp
- BPE100 = -2.7726708459e-01_wp
- BPE200 = 3.1407968134e-01_wp
- BPE300 = -1.0300557601e-01_wp
- BPE010 = 4.7899614701e-03_wp
- BPE110 = -5.1430784127e-02_wp
- BPE210 = 1.2554227021e-02_wp
- BPE020 = 1.2166917367e-03_wp
- BPE120 = 1.5221942913e-02_wp
- BPE030 = -1.3893222263e-03_wp
- BPE001 = 2.8541225524e-02_wp
- BPE101 = -3.4236710714e-02_wp
- BPE011 = 2.8711395266e-03_wp
- BPE002 = 5.3661089288e-04_wp
- !
- CASE( 1 ) !== Simplified EOS ==!
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) ' use of simplified eos: rhd(dT=T-10,dS=S-35,Z) = '
- WRITE(numout,*) ' [-a0*(1+lambda1/2*dT+mu1*Z)*dT + b0*(1+lambda2/2*dT+mu2*Z)*dS - nu*dT*dS]/rau0'
- WRITE(numout,*)
- WRITE(numout,*) ' thermal exp. coef. rn_a0 = ', rn_a0
- WRITE(numout,*) ' saline cont. coef. rn_b0 = ', rn_b0
- WRITE(numout,*) ' cabbeling coef. rn_lambda1 = ', rn_lambda1
- WRITE(numout,*) ' cabbeling coef. rn_lambda2 = ', rn_lambda2
- WRITE(numout,*) ' thermobar. coef. rn_mu1 = ', rn_mu1
- WRITE(numout,*) ' thermobar. coef. rn_mu2 = ', rn_mu2
- WRITE(numout,*) ' 2nd cabbel. coef. rn_nu = ', rn_nu
- WRITE(numout,*) ' Caution: rn_beta0=0 incompatible with ddm parameterization '
- ENDIF
- !
- CASE DEFAULT !== ERROR in nn_eos ==!
- WRITE(ctmp1,*) ' bad flag value for nn_eos = ', nn_eos
- CALL ctl_stop( ctmp1 )
- !
- END SELECT
- !
- rau0_rcp = rau0 * rcp
- r1_rau0 = 1._wp / rau0
- r1_rcp = 1._wp / rcp
- r1_rau0_rcp = 1._wp / rau0_rcp
- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' volumic mass of reference rau0 = ', rau0 , ' kg/m^3'
- IF(lwp) WRITE(numout,*) ' 1. / rau0 r1_rau0 = ', r1_rau0, ' m^3/kg'
- IF(lwp) WRITE(numout,*) ' ocean specific heat rcp = ', rcp , ' J/Kelvin'
- IF(lwp) WRITE(numout,*) ' rau0 * rcp rau0_rcp = ', rau0_rcp
- IF(lwp) WRITE(numout,*) ' 1. / ( rau0 * rcp ) r1_rau0_rcp = ', r1_rau0_rcp
- !
- END SUBROUTINE eos_init
- !!======================================================================
- END MODULE eosbn2
|