sbcssr.F90 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. MODULE sbcssr
  2. !!======================================================================
  3. !! *** MODULE sbcssr ***
  4. !! Surface module : heat and fresh water fluxes a restoring term toward observed SST/SSS
  5. !!======================================================================
  6. !! History : 3.0 ! 2006-06 (G. Madec) Original code
  7. !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put
  8. !!----------------------------------------------------------------------
  9. !!----------------------------------------------------------------------
  10. !! sbc_ssr : add to sbc a restoring term toward SST/SSS climatology
  11. !! sbc_ssr_init : initialisation of surface restoring
  12. !!----------------------------------------------------------------------
  13. USE oce ! ocean dynamics and tracers
  14. USE dom_oce ! ocean space and time domain
  15. USE sbc_oce ! surface boundary condition
  16. USE phycst ! physical constants
  17. USE sbcrnf ! surface boundary condition : runoffs
  18. !
  19. USE fldread ! read input fields
  20. USE iom ! I/O manager
  21. USE in_out_manager ! I/O manager
  22. USE lib_mpp ! distribued memory computing library
  23. USE lbclnk ! ocean lateral boundary conditions (or mpp link)
  24. USE timing ! Timing
  25. USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
  26. IMPLICIT NONE
  27. PRIVATE
  28. PUBLIC sbc_ssr ! routine called in sbcmod
  29. PUBLIC sbc_ssr_init ! routine called in sbcmod
  30. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: erp !: evaporation damping [kg/m2/s]
  31. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qrp !: heat flux damping [w/m2]
  32. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: coefice !: under ice relaxation coefficient
  33. ! !!* Namelist namsbc_ssr *
  34. INTEGER, PUBLIC :: nn_sstr ! SST/SSS restoring indicator
  35. INTEGER, PUBLIC :: nn_sssr ! SST/SSS restoring indicator
  36. REAL(wp) :: rn_dqdt ! restoring factor on SST and SSS
  37. REAL(wp) :: rn_deds ! restoring factor on SST and SSS
  38. LOGICAL :: ln_sssr_bnd ! flag to bound erp term
  39. REAL(wp) :: rn_sssr_bnd ! ABS(Max./Min.) value of erp term [mm/day]
  40. LOGICAL :: ln_sssd_bnd ! flag to bound S-S* term
  41. REAL(wp) :: rn_sssd_bnd ! ABS(Max./Min.) value of S-S* term [psu]
  42. INTEGER :: nn_icedmp ! Control of restoring under ice
  43. REAL(wp) , ALLOCATABLE, DIMENSION(:) :: buffer ! Temporary buffer for exchange
  44. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sst ! structure of input SST (file informations, fields read)
  45. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sss ! structure of input SSS (file informations, fields read)
  46. !! * Substitutions
  47. # include "domzgr_substitute.h90"
  48. !!----------------------------------------------------------------------
  49. !! NEMO/OPA 4.0 , NEMO Consortium (2011)
  50. !! $Id: sbcssr.F90 4990 2014-12-15 16:42:49Z timgraham $
  51. !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
  52. !!----------------------------------------------------------------------
  53. CONTAINS
  54. SUBROUTINE sbc_ssr( kt )
  55. !!---------------------------------------------------------------------
  56. !! *** ROUTINE sbc_ssr ***
  57. !!
  58. !! ** Purpose : Add to heat and/or freshwater fluxes a damping term
  59. !! toward observed SST and/or SSS.
  60. !!
  61. !! ** Method : - Read namelist namsbc_ssr
  62. !! - Read observed SST and/or SSS
  63. !! - at each nscb time step
  64. !! add a retroaction term on qns (nn_sstr = 1)
  65. !! add a damping term on sfx (nn_sssr = 1)
  66. !! add a damping term on emp (nn_sssr = 2)
  67. !!---------------------------------------------------------------------
  68. INTEGER, INTENT(in ) :: kt ! ocean time step
  69. !!
  70. INTEGER :: ji, jj ! dummy loop indices
  71. REAL(wp) :: zerp ! local scalar for evaporation damping
  72. REAL(wp) :: zsdif ! local scalar for salinity difference from climatology
  73. REAL(wp) :: zqrp ! local scalar for heat flux damping
  74. REAL(wp) :: zsrp ! local scalar for unit conversion of rn_deds factor
  75. REAL(wp) :: zerp_bnd ! local scalar for unit conversion of rn_epr_max factor
  76. INTEGER :: ierror ! return error code
  77. !!
  78. CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
  79. TYPE(FLD_N) :: sn_sst, sn_sss ! informations about the fields to be read
  80. !!----------------------------------------------------------------------
  81. !
  82. IF( nn_timing == 1 ) CALL timing_start('sbc_ssr')
  83. !
  84. IF( nn_sstr + nn_sssr /= 0 ) THEN
  85. !
  86. IF( nn_sstr == 1) CALL fld_read( kt, nn_fsbc, sf_sst ) ! Read SST data and provides it at kt
  87. IF( nn_sssr >= 1) CALL fld_read( kt, nn_fsbc, sf_sss ) ! Read SSS data and provides it at kt
  88. !
  89. ! ! ========================= !
  90. IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! Add restoring term !
  91. ! ! ========================= !
  92. !
  93. IF( nn_sstr == 1 ) THEN !* Temperature restoring term
  94. DO jj = 1, jpj
  95. DO ji = 1, jpi
  96. zqrp = rn_dqdt * ( sst_m(ji,jj) - sf_sst(1)%fnow(ji,jj,1) )
  97. qns(ji,jj) = qns(ji,jj) + zqrp
  98. qrp(ji,jj) = zqrp
  99. END DO
  100. END DO
  101. CALL iom_put( "qrp", qrp ) ! heat flux damping
  102. ENDIF
  103. !
  104. IF( nn_sssr /= 0 .AND. nn_icedmp /= 1 ) THEN
  105. ! use fraction of ice ( fr_i ) to adjust relaxation under ice if nn_icedmp .ne. 1
  106. ! n.b. coefice is initialised and fixed to 1._wp if nn_icedmp = 1
  107. DO jj = 1, jpj
  108. DO ji = 1, jpi
  109. SELECT CASE ( nn_icedmp )
  110. CASE ( 0 ) ; coefice(ji,jj) = 1._wp - fr_i(ji,jj) ! no/reduced damping under ice
  111. CASE DEFAULT ; coefice(ji,jj) = 1._wp +(nn_icedmp-1)*fr_i(ji,jj) ! reinforced damping (x nn_icedmp) under ice )
  112. END SELECT
  113. END DO
  114. END DO
  115. ENDIF
  116. IF( nn_sssr == 1 ) THEN !* Salinity damping term (salt flux only (sfx))
  117. zsrp = rn_deds / rday ! from [mm/day] to [kg/m2/s]
  118. !CDIR COLLAPSE
  119. DO jj = 1, jpj
  120. DO ji = 1, jpi
  121. zerp = zsrp * ( 1. - 2.*rnfmsk(ji,jj) ) & ! No damping in vicinity of river mouths
  122. & * coefice(ji,jj) & ! Optional control of damping under sea-ice
  123. & * ( sss_m(ji,jj) - sf_sss(1)%fnow(ji,jj,1) )
  124. sfx(ji,jj) = sfx(ji,jj) + zerp ! salt flux
  125. erp(ji,jj) = zerp / MAX( sss_m(ji,jj), 1.e-20 ) ! converted into an equivalent volume flux (diagnostic only)
  126. END DO
  127. END DO
  128. CALL iom_put( "erp", erp ) ! freshwater flux damping
  129. !
  130. ELSEIF( nn_sssr == 2 ) THEN !* Salinity damping term (volume flux (emp) and associated heat flux (qns)
  131. zsrp = rn_deds / rday ! from [mm/day] to [kg/m2/s]
  132. zerp_bnd = rn_sssr_bnd / rday ! - -
  133. !CDIR COLLAPSE
  134. DO jj = 1, jpj
  135. DO ji = 1, jpi
  136. zsdif = sss_m(ji,jj) - sf_sss(1)%fnow(ji,jj,1) ! Difference between actual and relaxation SSS
  137. IF( ln_sssd_bnd ) zsdif = SIGN( MIN( ABS( zsdif ) , rn_sssd_bnd ) , zsdif ) ! Optional bound on salinity difference
  138. zerp = zsrp * ( 1. - 2.*rnfmsk(ji,jj) ) & ! No damping in vicinity of river mouths
  139. & * coefice(ji,jj) & ! Optional control of damping under sea-ice
  140. & * zsdif / MAX( sss_m(ji,jj), 1.e-20 )
  141. IF( ln_sssr_bnd ) zerp = SIGN( 1., zerp ) * MIN( zerp_bnd, ABS(zerp) )
  142. emp(ji,jj) = emp (ji,jj) + zerp
  143. qns(ji,jj) = qns(ji,jj) - zerp * rcp * sst_m(ji,jj)
  144. erp(ji,jj) = zerp
  145. END DO
  146. END DO
  147. CALL iom_put( "erp", erp ) ! freshwater flux damping
  148. ENDIF
  149. !
  150. ENDIF
  151. !
  152. ENDIF
  153. !
  154. IF( nn_timing == 1 ) CALL timing_stop('sbc_ssr')
  155. !
  156. END SUBROUTINE sbc_ssr
  157. SUBROUTINE sbc_ssr_init
  158. !!---------------------------------------------------------------------
  159. !! *** ROUTINE sbc_ssr_init ***
  160. !!
  161. !! ** Purpose : initialisation of surface damping term
  162. !!
  163. !! ** Method : - Read namelist namsbc_ssr
  164. !! - Read observed SST and/or SSS if required
  165. !!---------------------------------------------------------------------
  166. INTEGER :: ji, jj ! dummy loop indices
  167. INTEGER :: ierror ! return error code
  168. !!
  169. CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
  170. TYPE(FLD_N) :: sn_sst, sn_sss ! informations about the fields to be read
  171. NAMELIST/namsbc_ssr/ cn_dir, nn_sstr, nn_sssr, rn_dqdt, rn_deds, sn_sst, sn_sss, ln_sssr_bnd, rn_sssr_bnd, &
  172. & ln_sssd_bnd, rn_sssd_bnd, nn_icedmp
  173. INTEGER :: ios
  174. !!----------------------------------------------------------------------
  175. !
  176. REWIND( numnam_ref ) ! Namelist namsbc_ssr in reference namelist :
  177. READ ( numnam_ref, namsbc_ssr, IOSTAT = ios, ERR = 901)
  178. 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_ssr in reference namelist', lwp )
  179. REWIND( numnam_cfg ) ! Namelist namsbc_ssr in configuration namelist :
  180. READ ( numnam_cfg, namsbc_ssr, IOSTAT = ios, ERR = 902 )
  181. 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_ssr in configuration namelist', lwp )
  182. IF(lwm) WRITE ( numond, namsbc_ssr )
  183. IF(lwp) THEN !* control print
  184. WRITE(numout,*)
  185. WRITE(numout,*) 'sbc_ssr : SST and/or SSS damping term '
  186. WRITE(numout,*) '~~~~~~~ '
  187. WRITE(numout,*) ' Namelist namsbc_ssr :'
  188. WRITE(numout,*) ' SST restoring term (Yes=1) nn_sstr = ', nn_sstr
  189. WRITE(numout,*) ' SSS damping term (Yes=1, salt flux) nn_sssr = ', nn_sssr
  190. WRITE(numout,*) ' (Yes=2, volume flux) '
  191. WRITE(numout,*) ' dQ/dT (restoring magnitude on SST) rn_dqdt = ', rn_dqdt, ' W/m2/K'
  192. WRITE(numout,*) ' dE/dS (restoring magnitude on SST) rn_deds = ', rn_deds, ' mm/day'
  193. WRITE(numout,*) ' flag to bound erp term ln_sssr_bnd = ', ln_sssr_bnd
  194. WRITE(numout,*) ' ABS(Max./Min.) erp threshold rn_sssr_bnd = ', rn_sssr_bnd, ' mm/day'
  195. WRITE(numout,*) ' flag to bound S-S* ln_sssd_bnd = ', ln_sssd_bnd
  196. WRITE(numout,*) ' ABS(Max./Min.) S-S* threshold rn_sssd_bnd = ', rn_sssd_bnd, ' psu'
  197. WRITE(numout,*) ' Cntrl of surface restoration under ice nn_icedmp = ', nn_icedmp
  198. WRITE(numout,*) ' ( 0 = no restoration under ice)'
  199. WRITE(numout,*) ' ( 1 = restoration everywhere )'
  200. WRITE(numout,*) ' (>1 = enhanced restoration under ice )'
  201. ENDIF
  202. !
  203. ! !* Allocate erp and qrp array
  204. ALLOCATE( qrp(jpi,jpj), erp(jpi,jpj), coefice(jpi,jpj), STAT=ierror )
  205. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate erp and qrp array' )
  206. !
  207. IF( nn_sstr == 1 ) THEN !* set sf_sst structure & allocate arrays
  208. !
  209. ALLOCATE( sf_sst(1), STAT=ierror )
  210. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst structure' )
  211. ALLOCATE( sf_sst(1)%fnow(jpi,jpj,1), STAT=ierror )
  212. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst now array' )
  213. !
  214. ! fill sf_sst with sn_sst and control print
  215. CALL fld_fill( sf_sst, (/ sn_sst /), cn_dir, 'sbc_ssr', 'SST restoring term toward SST data', 'namsbc_ssr' )
  216. IF( sf_sst(1)%ln_tint ) ALLOCATE( sf_sst(1)%fdta(jpi,jpj,1,2), STAT=ierror )
  217. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst data array' )
  218. !
  219. ENDIF
  220. !
  221. IF( nn_sssr >= 1 ) THEN !* set sf_sss structure & allocate arrays
  222. !
  223. ALLOCATE( sf_sss(1), STAT=ierror )
  224. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss structure' )
  225. ALLOCATE( sf_sss(1)%fnow(jpi,jpj,1), STAT=ierror )
  226. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss now array' )
  227. !
  228. ! fill sf_sss with sn_sss and control print
  229. CALL fld_fill( sf_sss, (/ sn_sss /), cn_dir, 'sbc_ssr', 'SSS restoring term toward SSS data', 'namsbc_ssr' )
  230. IF( sf_sss(1)%ln_tint ) ALLOCATE( sf_sss(1)%fdta(jpi,jpj,1,2), STAT=ierror )
  231. IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss data array' )
  232. !
  233. ENDIF
  234. !
  235. coefice(:,:) = 1._wp ! Initialise coefice to 1._wp ; will not need to be changed if nn_icedmp=1
  236. ! !* Initialize qrp and erp if no restoring
  237. IF( nn_sstr /= 1 ) qrp(:,:) = 0._wp
  238. IF( nn_sssr /= 1 .OR. nn_sssr /= 2 ) erp(:,:) = 0._wp
  239. !
  240. END SUBROUTINE sbc_ssr_init
  241. !!======================================================================
  242. END MODULE sbcssr