p4zsed.F90 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. MODULE p4zsed
  2. !!======================================================================
  3. !! *** MODULE p4sed ***
  4. !! TOP : PISCES Compute loss of organic matter in the sediments
  5. !!======================================================================
  6. !! History : 1.0 ! 2004-03 (O. Aumont) Original code
  7. !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
  8. !! 3.4 ! 2011-06 (C. Ethe) USE of fldread
  9. !! 3.5 ! 2012-07 (O. Aumont) improvment of river input of nutrients
  10. !!----------------------------------------------------------------------
  11. #if defined key_pisces
  12. !!----------------------------------------------------------------------
  13. !! 'key_pisces' PISCES bio-model
  14. !!----------------------------------------------------------------------
  15. !! p4z_sed : Compute loss of organic matter in the sediments
  16. !!----------------------------------------------------------------------
  17. USE oce_trc ! shared variables between ocean and passive tracers
  18. USE trc ! passive tracers common variables
  19. USE sms_pisces ! PISCES Source Minus Sink variables
  20. USE p4zsink ! vertical flux of particulate matter due to sinking
  21. USE p4zopt ! optical model
  22. USE p4zlim ! Co-limitations of differents nutrients
  23. USE p4zsbc ! External source of nutrients
  24. USE p4zint ! interpolation and computation of various fields
  25. USE iom ! I/O manager
  26. USE prtctl_trc ! print control for debugging
  27. IMPLICIT NONE
  28. PRIVATE
  29. PUBLIC p4z_sed
  30. PUBLIC p4z_sed_alloc
  31. !! * Module variables
  32. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: nitrpot !: Nitrogen fixation
  33. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,: ) :: sdenit !: Nitrate reduction in the sediments
  34. REAL(wp) :: r1_rday !: inverse of rday
  35. !!* Substitution
  36. # include "top_substitute.h90"
  37. !!----------------------------------------------------------------------
  38. !! NEMO/TOP 3.3 , NEMO Consortium (2010)
  39. !! $Id: p4zsed.F90 9241 2018-01-16 12:59:31Z cetlod $
  40. !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
  41. !!----------------------------------------------------------------------
  42. CONTAINS
  43. SUBROUTINE p4z_sed( kt, knt )
  44. !!---------------------------------------------------------------------
  45. !! *** ROUTINE p4z_sed ***
  46. !!
  47. !! ** Purpose : Compute loss of organic matter in the sediments. This
  48. !! is by no way a sediment model. The loss is simply
  49. !! computed to balance the inout from rivers and dust
  50. !!
  51. !! ** Method : - ???
  52. !!---------------------------------------------------------------------
  53. !
  54. INTEGER, INTENT(in) :: kt, knt ! ocean time step
  55. INTEGER :: ji, jj, jk, ikt
  56. #if ! defined key_sed
  57. REAL(wp) :: zrivalk, zrivsil, zrivno3
  58. #endif
  59. REAL(wp) :: zwflux, zfminus, zfplus
  60. REAL(wp) :: zlim, zfact, zfactcal
  61. REAL(wp) :: zo2, zno3, zflx, zpdenit, z1pdenit, zolimit
  62. REAL(wp) :: zsiloss, zcaloss, zws3, zws4, zwsc, zdep, zwstpoc
  63. REAL(wp) :: ztrfer, ztrpo4, zwdust, zlight
  64. !
  65. CHARACTER (len=25) :: charout
  66. REAL(wp), POINTER, DIMENSION(:,: ) :: zpdep, zsidep, zwork
  67. REAL(wp), POINTER, DIMENSION(:,: ) :: zsedcal, zsedsi, zsedc
  68. REAL(wp), POINTER, DIMENSION(:,: ) :: zdenit2d, zironice, zbureff
  69. REAL(wp), POINTER, DIMENSION(:,: ) :: zwsbio3, zwsbio4, zwscal
  70. REAL(wp), POINTER, DIMENSION(:,: ) :: zfesupply, znsupply
  71. REAL(wp), POINTER, DIMENSION(:,:,:) :: zirondep, zsoufer
  72. !!---------------------------------------------------------------------
  73. !
  74. IF( nn_timing == 1 ) CALL timing_start('p4z_sed')
  75. !
  76. IF( kt == nittrc000 .AND. knt == 1 ) r1_rday = 1. / rday
  77. !
  78. ! Allocate temporary workspace
  79. CALL wrk_alloc( jpi, jpj, zdenit2d, zbureff, zwork )
  80. CALL wrk_alloc( jpi, jpj, zsedcal, zsedsi, zsedc )
  81. CALL wrk_alloc( jpi, jpj, zwsbio3, zwsbio4, zwscal )
  82. CALL wrk_alloc( jpi, jpj, zfesupply, znsupply )
  83. CALL wrk_alloc( jpi, jpj, jpk, zsoufer )
  84. !
  85. zdenit2d (:,:) = 0._wp
  86. zbureff (:,:) = 0._wp
  87. zsedsi (:,:) = 0._wp
  88. zsedcal (:,:) = 0._wp
  89. zsedc (:,:) = 0._wp
  90. zwork (:,:) = 0._wp
  91. ! Iron input/uptake due to sea ice : Crude parameterization based on Lancelot et al.
  92. ! ----------------------------------------------------
  93. IF( ln_ironice ) THEN
  94. !
  95. CALL wrk_alloc( jpi, jpj, zironice )
  96. !
  97. DO jj = 1, jpj
  98. DO ji = 1, jpi
  99. zdep = rfact2 / fse3t(ji,jj,1)
  100. zwflux = fmmflx(ji,jj) / 1000._wp
  101. zfminus = MIN( 0._wp, -zwflux ) * trb(ji,jj,1,jpfer) * zdep
  102. zfplus = MAX( 0._wp, -zwflux ) * icefeinput * zdep
  103. zironice(ji,jj) = zfplus + zfminus
  104. END DO
  105. END DO
  106. !
  107. tra(:,:,1,jpfer) = tra(:,:,1,jpfer) + zironice(:,:)
  108. !
  109. IF( lk_iomput ) THEN
  110. IF( knt == nrdttrc .AND. iom_use( "Ironice" ) ) THEN
  111. zwork(:,:) = zironice(:,:) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
  112. CALL iom_put( "Ironice", zwork(:,:) ) ! iron flux from ice
  113. ENDIF
  114. IF( iom_use( "IronSupply" ) ) THEN
  115. CALL wrk_alloc( jpi, jpj, zfesupply )
  116. zfesupply(:,:) = 0._wp
  117. zfesupply(:,:) = zfesupply(:,:) + zironice(:,:) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
  118. ENDIF
  119. ENDIF
  120. !
  121. CALL wrk_dealloc( jpi, jpj, zironice )
  122. !
  123. ENDIF
  124. ! Add the external input of nutrients from dust deposition
  125. ! ----------------------------------------------------------
  126. IF( ln_dust ) THEN
  127. !
  128. CALL wrk_alloc( jpi, jpj, zpdep, zsidep )
  129. CALL wrk_alloc( jpi, jpj, jpk, zirondep )
  130. ! ! Iron and Si deposition at the surface
  131. IF( ln_solub ) THEN
  132. zirondep(:,:,1) = solub(:,:) * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 55.85 + 3.e-10 * r1_ryyss
  133. ELSE
  134. zirondep(:,:,1) = dustsolub * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 55.85 + 3.e-10 * r1_ryyss
  135. ENDIF
  136. zsidep(:,:) = 8.8 * 0.075 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 28.1
  137. zpdep (:,:) = 0.1 * 0.021 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / 31. / po4r
  138. ! ! Iron solubilization of particles in the water column
  139. ! ! dust in kg/m2/s ---> 1/55.85 to put in mol/Fe ; wdust in m/j
  140. zwdust = 0.03 * rday / ( wdust * 55.85 ) / ( 270. * rday )
  141. DO jk = 2, jpkm1
  142. zirondep(:,:,jk) = dust(:,:) * mfrac * zwdust * rfact2 * EXP( -fsdept(:,:,jk) / 540. )
  143. END DO
  144. ! ! Iron solubilization of particles in the water column
  145. tra(:,:,1,jppo4) = tra(:,:,1,jppo4) + zpdep (:,:)
  146. tra(:,:,1,jpsil) = tra(:,:,1,jpsil) + zsidep (:,:)
  147. tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + zirondep(:,:,:)
  148. !
  149. IF( lk_iomput ) THEN
  150. IF( knt == nrdttrc ) THEN
  151. IF( iom_use( "Irondep" ) ) THEN
  152. zwork(:,:) = zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
  153. CALL iom_put( "Irondep", zwork(:,:) ) ! surface downward dust depo of iron
  154. ENDIF
  155. IF( iom_use( "pdust" ) ) THEN
  156. zwork(:,:) = dust(:,:) / ( wdust * rday ) * tmask(:,:,1)
  157. CALL iom_put( "pdust" , zwork(:,:) ) ! dust concentration at surface
  158. ENDIF
  159. ENDIF
  160. IF( iom_use("IronSupply" ) ) &
  161. & zfesupply(:,:) = zfesupply(:,:) + zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
  162. ELSE
  163. IF( ln_diatrc ) &
  164. & trc2d(:,:,jp_pcs0_2d + 11) = zirondep(:,:,1) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1)
  165. ENDIF
  166. !
  167. CALL wrk_dealloc( jpi, jpj, zpdep, zsidep )
  168. CALL wrk_dealloc( jpi, jpj, jpk, zirondep )
  169. !
  170. ENDIF
  171. ! Add the external input of nutrients from river
  172. ! ----------------------------------------------------------
  173. IF( ln_river ) THEN
  174. DO jj = 1, jpj
  175. DO ji = 1, jpi
  176. DO jk = 1, nk_rnf(ji,jj)
  177. tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + rivdip(ji,jj) * rfact2
  178. tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) + rivdin(ji,jj) * rfact2
  179. tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + rivdic(ji,jj) * 5.e-5 * rfact2
  180. tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) + rivdsi(ji,jj) * rfact2
  181. tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + rivdic(ji,jj) * rfact2
  182. tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + ( rivalk(ji,jj) - rno3 * rivdin(ji,jj) ) * rfact2
  183. ENDDO
  184. ENDDO
  185. ENDDO
  186. !
  187. IF( lk_iomput ) THEN
  188. !
  189. IF( iom_use("IronSupply" ) ) &
  190. & zfesupply(:,:) = zfesupply(:,:) + rivdic(:,:) * 5.e-5 * rfact2 * tmask(:,:,1)
  191. !
  192. IF( iom_use("NitrSupply" ) ) THEN
  193. CALL wrk_alloc( jpi, jpj, znsupply )
  194. znsupply(:,:) = 0._wp
  195. znsupply(:,:) = znsupply(:,:) + rivdin(:,:) * rfact2 * tmask(:,:,1)
  196. ENDIF
  197. !
  198. IF( knt == nrdttrc ) THEN
  199. IF( iom_use( "rivDIC" ) ) CALL iom_put( "rivDIC" , rivdic(:,:) * tmask(:,:,1) )
  200. IF( iom_use( "rivTAlk" ) ) CALL iom_put( "rivTAlk", rivalk(:,:) * tmask(:,:,1) )
  201. IF( iom_use( "rivNO3" ) ) CALL iom_put( "rivNO3" , rivdin(:,:) * tmask(:,:,1) )
  202. IF( iom_use( "rivPO4" ) ) CALL iom_put( "rivPO4" , rivdip(:,:) * tmask(:,:,1) )
  203. IF( iom_use( "rivIron" ) ) CALL iom_put( "rivIron", rivdic(:,:) * 5.e-5 * tmask(:,:,1) )
  204. IF( iom_use( "rivSi" ) ) CALL iom_put( "rivSi" , rivdsi(:,:) * tmask(:,:,1) )
  205. ENDIF
  206. ENDIF
  207. !
  208. ENDIF
  209. ! Add the external input of nutrients from nitrogen deposition
  210. ! ----------------------------------------------------------
  211. IF( ln_ndepo ) THEN
  212. tra(:,:,1,jpno3) = tra(:,:,1,jpno3) + nitdep(:,:) * rfact2
  213. tra(:,:,1,jptal) = tra(:,:,1,jptal) - rno3 * nitdep(:,:) * rfact2
  214. !
  215. IF( iom_use( "NitrSupply" ) ) &
  216. & znsupply(:,:) = znsupply(:,:) + nitdep(:,:) * rfact2
  217. !
  218. ENDIF
  219. ! Add the external input of iron from sediment mobilization
  220. ! ------------------------------------------------------
  221. IF( ln_ironsed ) THEN
  222. tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + ironsed(:,:,:) * rfact2
  223. !
  224. IF( lk_iomput .AND. knt == nrdttrc .AND. iom_use( "Ironsed" ) ) &
  225. & CALL iom_put( "Ironsed", ironsed(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! iron inputs from sediments
  226. !
  227. IF( iom_use( "IronSupply" ) ) THEN
  228. DO jk = 1, jpkm1
  229. zfesupply(:,:) = zfesupply(:,:) + ironsed(:,:,jk) * 1.e+3 * tmask(:,:,jk) * fse3t(:,:,jk)
  230. ENDDO
  231. ENDIF
  232. !
  233. ENDIF
  234. ! Add the external input of iron from hydrothermal vents
  235. ! ------------------------------------------------------
  236. IF( ln_hydrofe ) THEN
  237. tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + hydrofe(:,:,:) * rfact2
  238. !
  239. IF( lk_iomput .AND. knt == nrdttrc .AND. iom_use( "HYDR" ) ) &
  240. & CALL iom_put( "HYDR", hydrofe(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! hydrothermal iron input
  241. !
  242. IF( iom_use( "IronSupply" ) ) THEN
  243. DO jk = 1, jpkm1
  244. zfesupply(:,:) = zfesupply(:,:) + hydrofe(:,:,jk) * 1.e+3 * tmask(:,:,jk) * fse3t(:,:,jk)
  245. ENDDO
  246. ENDIF
  247. !
  248. ENDIF
  249. ! OA: Warning, the following part is necessary, especially with Kriest
  250. ! to avoid CFL problems above the sediments
  251. ! --------------------------------------------------------------------
  252. DO jj = 1, jpj
  253. DO ji = 1, jpi
  254. ikt = mbkt(ji,jj)
  255. zdep = fse3t(ji,jj,ikt) / xstep
  256. zwsbio4(ji,jj) = MIN( 0.99 * zdep, wsbio4(ji,jj,ikt) )
  257. zwscal (ji,jj) = MIN( 0.99 * zdep, wscal (ji,jj,ikt) )
  258. zwsbio3(ji,jj) = MIN( 0.99 * zdep, wsbio3(ji,jj,ikt) )
  259. END DO
  260. END DO
  261. #if ! defined key_sed
  262. ! Computation of the sediment denitrification proportion: The metamodel from midlleburg (2006) is being used
  263. ! Computation of the fraction of organic matter that is permanently buried from Dunne's model
  264. ! -------------------------------------------------------
  265. DO jj = 1, jpj
  266. DO ji = 1, jpi
  267. IF( tmask(ji,jj,1) == 1 ) THEN
  268. ikt = mbkt(ji,jj)
  269. # if defined key_kriest
  270. zflx = trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) * 1E3 * 1E6 / 1E4
  271. # else
  272. zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) &
  273. & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E3 * 1E6 / 1E4
  274. #endif
  275. zflx = LOG10( MAX( 1E-3, zflx ) )
  276. zo2 = LOG10( MAX( 10. , trb(ji,jj,ikt,jpoxy) * 1E6 ) )
  277. zno3 = LOG10( MAX( 1. , trb(ji,jj,ikt,jpno3) * 1E6 * rno3 ) )
  278. zdep = LOG10( fsdepw(ji,jj,ikt+1) )
  279. zdenit2d(ji,jj) = -2.2567 - 1.185 * zflx - 0.221 * zflx**2 - 0.3995 * zno3 * zo2 + 1.25 * zno3 &
  280. & + 0.4721 * zo2 - 0.0996 * zdep + 0.4256 * zflx * zo2
  281. zdenit2d(ji,jj) = 10.0**( zdenit2d(ji,jj) )
  282. !
  283. zflx = ( trb(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) &
  284. & + trb(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E6
  285. zbureff(ji,jj) = 0.013 + 0.53 * zflx**2 / ( 7.0 + zflx )**2
  286. ENDIF
  287. END DO
  288. END DO
  289. #endif
  290. ! This loss is scaled at each bottom grid cell for equilibrating the total budget of silica in the ocean.
  291. ! Thus, the amount of silica lost in the sediments equal the supply at the surface (dust+rivers)
  292. ! ------------------------------------------------------
  293. #if ! defined key_sed
  294. zrivsil = 1._wp - sedsilfrac
  295. #endif
  296. DO jj = 1, jpj
  297. DO ji = 1, jpi
  298. ikt = mbkt(ji,jj)
  299. zdep = xstep / fse3t(ji,jj,ikt)
  300. zws4 = zwsbio4(ji,jj) * zdep
  301. zwsc = zwscal (ji,jj) * zdep
  302. # if defined key_kriest
  303. zsiloss = trb(ji,jj,ikt,jpgsi) * zws4
  304. # else
  305. zsiloss = trb(ji,jj,ikt,jpgsi) * zwsc
  306. # endif
  307. zcaloss = trb(ji,jj,ikt,jpcal) * zwsc
  308. !
  309. tra(ji,jj,ikt,jpgsi) = tra(ji,jj,ikt,jpgsi) - zsiloss
  310. tra(ji,jj,ikt,jpcal) = tra(ji,jj,ikt,jpcal) - zcaloss
  311. #if ! defined key_sed
  312. tra(ji,jj,ikt,jpsil) = tra(ji,jj,ikt,jpsil) + zsiloss * zrivsil
  313. ! Loss of biogenic silicon, Caco3 organic carbon in the sediments.
  314. ! The factor for calcite comes from the alkalinity effect
  315. ! -------------------------------------------------------------
  316. zfactcal = MIN( excess(ji,jj,ikt), 0.2 )
  317. zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) )
  318. zrivalk = sedcalfrac * zfactcal
  319. tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + zcaloss * zrivalk * 2.0
  320. tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zcaloss * zrivalk
  321. zsedcal(ji,jj) = (1.0 - zrivalk) * zcaloss * fse3t(ji,jj,ikt)
  322. zsedsi (ji,jj) = (1.0 - zrivsil) * zsiloss * fse3t(ji,jj,ikt)
  323. #endif
  324. END DO
  325. END DO
  326. DO jj = 1, jpj
  327. DO ji = 1, jpi
  328. ikt = mbkt(ji,jj)
  329. zdep = xstep / fse3t(ji,jj,ikt)
  330. zws4 = zwsbio4(ji,jj) * zdep
  331. zws3 = zwsbio3(ji,jj) * zdep
  332. zrivno3 = 1. - zbureff(ji,jj)
  333. # if ! defined key_kriest
  334. tra(ji,jj,ikt,jpgoc) = tra(ji,jj,ikt,jpgoc) - trb(ji,jj,ikt,jpgoc) * zws4
  335. tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,ikt,jppoc) * zws3
  336. tra(ji,jj,ikt,jpbfe) = tra(ji,jj,ikt,jpbfe) - trb(ji,jj,ikt,jpbfe) * zws4
  337. tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,ikt,jpsfe) * zws3
  338. zwstpoc = trb(ji,jj,ikt,jpgoc) * zws4 + trb(ji,jj,ikt,jppoc) * zws3
  339. # else
  340. tra(ji,jj,ikt,jpnum) = tra(ji,jj,ikt,jpnum) - trb(ji,jj,ikt,jpnum) * zws4
  341. tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,ikt,jppoc) * zws3
  342. tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,ikt,jpsfe) * zws3
  343. zwstpoc = trb(ji,jj,ikt,jppoc) * zws3
  344. # endif
  345. #if ! defined key_sed
  346. ! The 0.5 factor in zpdenit is to avoid negative NO3 concentration after
  347. ! denitrification in the sediments. Not very clever, but simpliest option.
  348. zpdenit = MIN( 0.5 * ( trb(ji,jj,ikt,jpno3) - rtrn ) / rdenit, &
  349. zdenit2d(ji,jj) * zwstpoc * zrivno3 * (1. - nitrfac2(ji,jj,ikt) ) )
  350. z1pdenit = zwstpoc * zrivno3 - zpdenit
  351. zolimit = MIN( ( trb(ji,jj,ikt,jpoxy) - rtrn ) / o2ut, z1pdenit * ( 1.- nitrfac(ji,jj,ikt) ) )
  352. tra(ji,jj,ikt,jpdoc) = tra(ji,jj,ikt,jpdoc) + z1pdenit - zolimit
  353. tra(ji,jj,ikt,jppo4) = tra(ji,jj,ikt,jppo4) + zpdenit + zolimit
  354. tra(ji,jj,ikt,jpnh4) = tra(ji,jj,ikt,jpnh4) + zpdenit + zolimit
  355. tra(ji,jj,ikt,jpno3) = tra(ji,jj,ikt,jpno3) - rdenit * zpdenit
  356. tra(ji,jj,ikt,jpoxy) = tra(ji,jj,ikt,jpoxy) - zolimit * o2ut
  357. tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + rno3 * (zolimit + (1.+rdenit) * zpdenit )
  358. tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zpdenit + zolimit
  359. sdenit(ji,jj) = rdenit * zpdenit * fse3t(ji,jj,ikt)
  360. zsedc(ji,jj) = (1. - zrivno3) * zwstpoc * fse3t(ji,jj,ikt)
  361. #endif
  362. END DO
  363. END DO
  364. ! Nitrogen fixation process
  365. ! Small source iron from particulate inorganic iron
  366. !-----------------------------------
  367. DO jk = 1, jpkm1
  368. DO jj = 1, jpj
  369. DO ji = 1, jpi
  370. ! ! Potential nitrogen fixation dependant on temperature and iron
  371. zlim = ( 1.- xnanono3(ji,jj,jk) - xnanonh4(ji,jj,jk) )
  372. IF( zlim <= 0.2 ) zlim = 0.01
  373. #if defined key_degrad
  374. zfact = zlim * rfact2 * facvol(ji,jj,jk)
  375. #else
  376. zfact = zlim * rfact2
  377. #endif
  378. ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) )
  379. ztrpo4 = trb (ji,jj,jk,jppo4) / ( concnnh4 + trb (ji,jj,jk,jppo4) )
  380. zlight = ( 1.- EXP( -etot_ndcy(ji,jj,jk) / diazolight ) )
  381. nitrpot(ji,jj,jk) = MAX( 0.e0, ( 0.6 * tgfunc(ji,jj,jk) - 2.15 ) * r1_rday ) &
  382. & * zfact * MIN( ztrfer, ztrpo4 ) * zlight
  383. zsoufer(ji,jj,jk) = zlight * 2E-11 / (2E-11 + biron(ji,jj,jk))
  384. END DO
  385. END DO
  386. END DO
  387. ! Nitrogen change due to nitrogen fixation
  388. ! ----------------------------------------
  389. DO jk = 1, jpkm1
  390. DO jj = 1, jpj
  391. DO ji = 1, jpi
  392. zfact = nitrpot(ji,jj,jk) * nitrfix
  393. tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact
  394. tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact
  395. tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2nit * zfact
  396. tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + concdnh4 / ( concdnh4 + trb(ji,jj,jk,jppo4) ) &
  397. & * 0.002 * trb(ji,jj,jk,jpdoc) * xstep
  398. tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * xstep
  399. END DO
  400. END DO
  401. END DO
  402. IF( iom_use( "IronSupply" ) ) THEN
  403. DO jk = 1, jpkm1
  404. zfesupply(:,:) = zfesupply(:,:) + 0.002 * 4E-10 * zsoufer(:,:,jk) * xstep * fse3t(:,:,jk)
  405. ENDDO
  406. ENDIF
  407. IF( lk_iomput ) THEN
  408. IF( knt == nrdttrc ) THEN
  409. zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molC/m3/s
  410. IF( iom_use("Nfix" ) ) &
  411. & CALL iom_put( "Nfix", nitrpot(:,:,:) * nitrfix * rno3 * zfact * tmask(:,:,:) ) ! nitrogen fixation
  412. !
  413. IF( iom_use("INTNFIX") ) THEN ! nitrogen fixation rate in ocean ( vertically integrated )
  414. zwork(:,:) = 0.
  415. DO jk = 1, jpkm1
  416. zwork(:,:) = zwork(:,:) + nitrpot(:,:,jk) * nitrfix * rno3 * zfact * fse3t(:,:,jk) * tmask(:,:,jk)
  417. ENDDO
  418. CALL iom_put( "INTNFIX", zwork )
  419. ENDIF
  420. !
  421. IF( iom_use("NitrSupply") ) THEN ! nitrogen fixation rate in ocean ( vertically integrated )
  422. DO jk = 1, jpkm1
  423. znsupply(:,:) = znsupply(:,:) + nitrpot(:,:,jk) * nitrfix * rno3 * zfact * fse3t(:,:,jk) * tmask(:,:,jk)
  424. ENDDO
  425. CALL iom_put( "NitrSupply", znsupply(:,:) )
  426. CALL wrk_dealloc( jpi, jpj, znsupply )
  427. ENDIF
  428. IF( iom_use( "IronSupply" ) ) THEN
  429. CALL iom_put( "IronSupply", zfesupply(:,:) )
  430. CALL wrk_dealloc( jpi, jpj, zfesupply )
  431. ENDIF
  432. IF( iom_use( "SedCal" ) ) CALL iom_put( "SedCal" , zsedcal(:,:) * zfact )
  433. IF( iom_use( "SedSi" ) ) CALL iom_put( "SedSi" , zsedsi (:,:) * zfact )
  434. IF( iom_use( "SedC" ) ) CALL iom_put( "SedC" , zsedc (:,:) * zfact )
  435. IF( iom_use( "Sdenit" ) ) CALL iom_put( "Sdenit" , sdenit (:,:) * rno3 * zfact )
  436. ENDIF
  437. ELSE
  438. IF( ln_diatrc ) THEN
  439. zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molC/m3/s
  440. trc2d(:,:,jp_pcs0_2d + 12) = nitrpot(:,:,1) * nitrfix * rno3 * zfact * fse3t(:,:,1) * tmask(:,:,1)
  441. ENDIF
  442. ENDIF
  443. !
  444. IF(ln_ctl) THEN ! print mean trends (USEd for debugging)
  445. WRITE(charout, fmt="('sed ')")
  446. CALL prt_ctl_trc_info(charout)
  447. CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm)
  448. ENDIF
  449. !
  450. CALL wrk_dealloc( jpi, jpj, zdenit2d, zbureff, zwork )
  451. CALL wrk_dealloc( jpi, jpj, zsedcal , zsedsi , zsedc )
  452. CALL wrk_dealloc( jpi, jpj, zwsbio3 , zwsbio4, zwscal )
  453. CALL wrk_dealloc( jpi, jpj, jpk, zsoufer )
  454. !
  455. IF( nn_timing == 1 ) CALL timing_stop('p4z_sed')
  456. !
  457. 9100 FORMAT(i8,3f10.5)
  458. !
  459. END SUBROUTINE p4z_sed
  460. INTEGER FUNCTION p4z_sed_alloc()
  461. !!----------------------------------------------------------------------
  462. !! *** ROUTINE p4z_sed_alloc ***
  463. !!----------------------------------------------------------------------
  464. ALLOCATE( nitrpot(jpi,jpj,jpk), sdenit(jpi,jpj), STAT=p4z_sed_alloc )
  465. !
  466. IF( p4z_sed_alloc /= 0 ) CALL ctl_warn('p4z_sed_alloc: failed to allocate arrays')
  467. !
  468. END FUNCTION p4z_sed_alloc
  469. #else
  470. !!======================================================================
  471. !! Dummy module : No PISCES bio-model
  472. !!======================================================================
  473. CONTAINS
  474. SUBROUTINE p4z_sed ! Empty routine
  475. END SUBROUTINE p4z_sed
  476. #endif
  477. !!======================================================================
  478. END MODULE p4zsed