namelist.nemo-ORCA025L75-coupled.cfg.sh 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. # namelist.nemo-ORCA1L46.cfg.sh writes the NEMO namelist for ORCA1L46 in
  2. # coupled mode to standard output. This namelist will overwrite the reference
  3. # namelist (namelist.nemo.ref.sh). Hence, only parameters specific to the
  4. # ORCA1L46/coupled configuration should be specified here.
  5. cat << EOF
  6. !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  7. !! NEMO/OPA Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_ref
  8. !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  9. !!======================================================================
  10. !! *** Run management namelists ***
  11. !!======================================================================
  12. !! namrun parameters of the run
  13. !!======================================================================
  14. !
  15. !-----------------------------------------------------------------------
  16. &namrun ! parameters of the run
  17. !-----------------------------------------------------------------------
  18. nn_leapy = 1 ! Leap year calendar (1) or not (0)
  19. /
  20. !
  21. !!======================================================================
  22. !! *** Domain namelists ***
  23. !!======================================================================
  24. !! namcfg parameters of the configuration
  25. !! namzgr vertical coordinate
  26. !! namzgr_sco s-coordinate or hybrid z-s-coordinate
  27. !! namdom space and time domain (bathymetry, mesh, timestep)
  28. !! namtsd data: temperature & salinity
  29. !!======================================================================
  30. !
  31. !-----------------------------------------------------------------------
  32. &namcfg ! parameters of the configuration
  33. !-----------------------------------------------------------------------
  34. cp_cfg = "orca" ! name of the configuration
  35. jp_cfg = 025 ! resolution of the configuration
  36. jpidta = 1442 ! 1st lateral dimension ( >= jpi )
  37. jpjdta = 1050 ! 2nd " " ( >= jpj )
  38. jpkdta = 75 ! number of levels ( >= jpk )
  39. jpiglo = 1442 ! 1st dimension of global domain --> i =jpidta
  40. jpjglo = 1050 ! 2nd - - --> j =jpjdta
  41. jperio = 4 ! lateral cond. type (between 0 and 6)
  42. ! = 0 closed ; = 1 cyclic East-West
  43. ! = 2 equatorial symmetric ; = 3 North fold T-point pivot
  44. ! = 4 cyclic East-West AND North fold T-point pivot
  45. ! = 5 North fold F-point pivot
  46. ! = 6 cyclic East-West AND North fold F-point pivot
  47. /
  48. !-----------------------------------------------------------------------
  49. &namzgr ! vertical coordinate
  50. !-----------------------------------------------------------------------
  51. ln_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined)
  52. ln_zps = .true. ! z-coordinate - partial steps (T/F)
  53. ln_sco = .false. ! s- or hybrid z-s-coordinate (T/F)
  54. ln_isfcav = .false. ! ice shelf cavity (T/F)
  55. /
  56. !-----------------------------------------------------------------------
  57. &namzgr_sco ! s-coordinate or hybrid z-s-coordinate
  58. !-----------------------------------------------------------------------
  59. ln_s_sh94 = .true. ! Song & Haidvogel 1994 hybrid S-sigma (T)|
  60. ln_s_sf12 = .false. ! Siddorn & Furner 2012 hybrid S-z-sigma (T)| if both are false the NEMO tanh stretching is applied
  61. ln_sigcrit = .false. ! use sigma coordinates below critical depth (T) or Z coordinates (F) for Siddorn & Furner stretch
  62. ! stretching coefficients for all functions
  63. rn_sbot_min = 10.0 ! minimum depth of s-bottom surface (>0) (m)
  64. rn_sbot_max = 7000.0 ! maximum depth of s-bottom surface (= ocean depth) (>0) (m)
  65. rn_hc = 150.0 ! critical depth for transition to stretched coordinates
  66. !!!!!!! Envelop bathymetry
  67. rn_rmax = 0.3 ! maximum cut-off r-value allowed (0<r_max<1)
  68. !!!!!!! SH94 stretching coefficients (ln_s_sh94 = .true.)
  69. rn_theta = 6.0 ! surface control parameter (0<=theta<=20)
  70. rn_bb = 0.8 ! stretching with SH94 s-sigma
  71. !!!!!!! SF12 stretching coefficient (ln_s_sf12 = .true.)
  72. rn_alpha = 4.4 ! stretching with SF12 s-sigma
  73. rn_efold = 0.0 ! efold length scale for transition to stretched coord
  74. rn_zs = 1.0 ! depth of surface grid box
  75. ! bottom cell depth (Zb) is a linear function of water depth Zb = H*a + b
  76. rn_zb_a = 0.024 ! bathymetry scaling factor for calculating Zb
  77. rn_zb_b = -0.2 ! offset for calculating Zb
  78. !!!!!!!! Other stretching (not SH94 or SF12) [also uses rn_theta above]
  79. rn_thetb = 1.0 ! bottom control parameter (0<=thetb<= 1)
  80. /
  81. !-----------------------------------------------------------------------
  82. &namdom ! space and time domain (bathymetry, mesh, timestep)
  83. !-----------------------------------------------------------------------
  84. rn_hmin = 10. ! min depth of the ocean (>0) or min number of ocean level (<0)
  85. rn_e3zps_min= 25. ! partial step thickness is set larger than the minimum of
  86. rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1
  87. !
  88. rn_rdt = ${nem_time_step_sec} ! time step for the dynamics (and tracer if nn_acc=0)
  89. rn_atfp = 0.1 ! asselin time filter parameter
  90. nn_acc = 0 ! acceleration of convergence : =1 used, rdt < rdttra(k)
  91. ! =0, not used, rdt = rdttra
  92. rn_rdtmin = 28800. ! minimum time step on tracers (used if nn_acc=1)
  93. rn_rdtmax = 28800. ! maximum time step on tracers (used if nn_acc=1)
  94. rn_rdth = 800. ! depth variation of tracer time step (used if nn_acc=1)
  95. ln_crs = .false. ! Logical switch for coarsening module
  96. jphgr_msh = 0 ! type of horizontal mesh
  97. ! = 0 curvilinear coordinate on the sphere read in coordinate.nc
  98. ! = 1 geographical mesh on the sphere with regular grid-spacing
  99. ! = 2 f-plane with regular grid-spacing
  100. ! = 3 beta-plane with regular grid-spacing
  101. ! = 4 Mercator grid with T/U point at the equator
  102. ppglam0 = 999999.0 ! longitude of first raw and column T-point (jphgr_msh = 1)
  103. ppgphi0 = 999999.0 ! latitude of first raw and column T-point (jphgr_msh = 1)
  104. ppe1_deg = 999999.0 ! zonal grid-spacing (degrees)
  105. ppe2_deg = 999999.0 ! meridional grid-spacing (degrees)
  106. ppe1_m = 999999.0 ! zonal grid-spacing (degrees)
  107. ppe2_m = 999999.0 ! meridional grid-spacing (degrees)
  108. ppsur = -3958.951371276829 ! ORCA r4, r2 and r05 coefficients
  109. ppa0 = 103.9530096000000 ! (default coefficients)
  110. ppa1 = 2.415951269000000 !
  111. ppkth = 15.35101370000000 !
  112. ppacr = 7.0 !
  113. ppdzmin = 999999.0 ! Minimum vertical spacing
  114. pphmax = 999999.0 ! Maximum depth
  115. ldbletanh = .TRUE. ! Use/do not use double tanf function for vertical coordinates
  116. ppa2 = 100.760928500000 ! Double tanh function parameters
  117. ppkth2 = 48.029893720000 !
  118. ppacr2 = 13.000000000000 !
  119. /
  120. !-----------------------------------------------------------------------
  121. &namsplit ! time splitting parameters ("key_dynspg_ts")
  122. !-----------------------------------------------------------------------
  123. ln_bt_fw = .TRUE. ! Forward integration of barotropic equations
  124. ln_bt_av = .TRUE. ! Time filtering of barotropic variables
  125. ln_bt_nn_auto = .TRUE. ! Set nn_baro automatically to be just below
  126. ! a user defined maximum courant number (rn_bt_cmax)
  127. nn_baro = 80 ! Number of iterations of barotropic mode
  128. ! during rn_rdt seconds. Only used if ln_bt_nn_auto=F
  129. rn_bt_cmax = 0.7 ! Maximum courant number allowed if ln_bt_nn_auto=T
  130. nn_bt_flt = 1 ! Time filter choice
  131. ! = 0 None
  132. ! = 1 Boxcar over nn_baro barotropic steps
  133. ! = 2 Boxcar over 2*nn_baro " "
  134. /
  135. !-----------------------------------------------------------------------
  136. &namcrs ! Grid coarsening for dynamics output and/or
  137. ! passive tracer coarsened online simulations
  138. !-----------------------------------------------------------------------
  139. /
  140. !-----------------------------------------------------------------------
  141. &namtsd ! data : Temperature & Salinity
  142. !-----------------------------------------------------------------------
  143. ! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
  144. ! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
  145. sn_tem = 'conservative_temperature_WOA13_decav_Reg1L75_clim', -1 ,'votemper' , .true. , .true. , 'yearly' , 'weights_WOA13d1_2_orca025_bilinear.nc' , '' , ''
  146. sn_sal = 'absolute_salinity_WOA13_decav_Reg1L75_clim' , -1 ,'vosaline' , .true. , .true. , 'yearly' , 'weights_WOA13d1_2_orca025_bilinear.nc' , '' , ''
  147. ln_tsd_tradmp = ${ln_tsd_tradmp} ! damping of ocean T & S toward T &S input data (T) or not (F)
  148. /
  149. !-----------------------------------------------------------------------
  150. &namsbc ! Surface Boundary Condition (surface module)
  151. !-----------------------------------------------------------------------
  152. nn_fsbc = $(( lim_time_step_sec / nem_time_step_sec )) ! frequency of surface boundary condition computation
  153. ! (also = the frequency of sea-ice model call)
  154. ln_blk_core = .false. ! CORE bulk formulation (T => fill namsbc_core)
  155. ln_cpl = .true. ! Coupled formulation (T => fill namsbc_cpl )
  156. nn_ice_embd = 1 ! =0 levitating ice (no mass exchange, concentration/dilution effect)
  157. ! =1 levitating ice with mass and salt exchange but no presure effect
  158. ! =2 embedded sea-ice (full salt and mass exchanges and pressure)
  159. ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
  160. ln_rnf = .true. ! runoffs (T => fill namsbc_rnf)
  161. nn_isf = 0 ! ice shelf melting/freezing (/=0 => fill namsbc_isf)
  162. ! 0 =no isf 1 = presence of ISF
  163. ! 2 = bg03 parametrisation 3 = rnf file for isf
  164. ! 4 = ISF fwf specified
  165. ! option 1 and 4 need ln_isfcav = .true. (domzgr)
  166. ln_ssr = ${ln_ssr} ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
  167. nn_fwb = 0 ! FreshWater Budget: =0 unchecked
  168. ! =1 global mean of e-p-r set to zero at each time step
  169. ! =2 annual global mean of e-p-r set to zero
  170. nn_limflx = 2 ! LIM3 Multi-category heat flux formulation (use -1 if LIM3 is not used)
  171. ! =-1 Use per-category fluxes, bypass redistributor, forced mode only, not yet implemented coupled
  172. ! = 0 Average per-category fluxes (forced and coupled mode)
  173. ! = 1 Average and redistribute per-category fluxes, forced mode only, not yet implemented coupled
  174. ! = 2 Redistribute a single flux over categories (coupled mode only)
  175. /
  176. !-----------------------------------------------------------------------
  177. &namsbc_ana ! analytical surface boundary condition
  178. !-----------------------------------------------------------------------
  179. /
  180. !-----------------------------------------------------------------------
  181. &namsbc_flx ! surface boundary condition : flux formulation
  182. !-----------------------------------------------------------------------
  183. /
  184. !-----------------------------------------------------------------------
  185. &namsbc_clio ! namsbc_clio CLIO bulk formulae
  186. !-----------------------------------------------------------------------
  187. /
  188. !-----------------------------------------------------------------------
  189. &namsbc_core ! namsbc_core CORE bulk formulae
  190. !-----------------------------------------------------------------------
  191. /
  192. !-----------------------------------------------------------------------
  193. &namsbc_cpl ! coupled ocean/atmosphere model ("key_coupled")
  194. !-----------------------------------------------------------------------
  195. ! ! description ! multiple ! vector ! vector ! vector !
  196. ! ! ! categories ! reference ! orientation ! grids !
  197. ! send
  198. sn_snd_temp = 'oce and ice' , 'no' , '' , '' , ''
  199. sn_snd_alb = 'ice' , 'no' , '' , '' , ''
  200. sn_snd_thick = 'ice and snow' , 'no' , '' , '' , ''
  201. sn_snd_crt = 'none' , 'no' , 'spherical' , 'eastward-northward' , 'T'
  202. sn_snd_co2 = 'none' , 'no' , '' , '' , ''
  203. ! receive
  204. sn_rcv_w10m = 'none' , 'no' , '' , '' , ''
  205. sn_rcv_taumod = 'none' , 'no' , '' , '' , ''
  206. sn_rcv_tau = 'oce and ice' , 'no' , 'spherical' , 'eastward-northward' , 'U,V'
  207. sn_rcv_dqnsdt = 'coupled' , 'no' , '' , '' , ''
  208. sn_rcv_qsr = 'conservative' , 'no' , '' , '' , ''
  209. sn_rcv_qns = 'conservative' , 'no' , '' , '' , ''
  210. sn_rcv_emp = 'conservative' , 'no' , '' , '' , ''
  211. sn_rcv_rnf = 'coupled' , 'no' , '' , '' , ''
  212. sn_rcv_cal = 'coupled' , 'no' , '' , '' , ''
  213. sn_rcv_co2 = 'none' , 'no' , '' , '' , ''
  214. sn_rcv_iceflx = 'none' , 'no' , '' , '' , ''
  215. !
  216. nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
  217. ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models
  218. ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
  219. /
  220. !-----------------------------------------------------------------------
  221. &namtra_qsr ! penetrative solar radiation
  222. !-----------------------------------------------------------------------
  223. nn_chldta = 0 ! RGB : Chl data (=1) or cst value (=0)
  224. /
  225. !-----------------------------------------------------------------------
  226. &namsbc_rnf ! runoffs namelist surface boundary condition
  227. !-----------------------------------------------------------------------
  228. ! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation !
  229. ! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing !
  230. sn_rnf = 'ORCA_R025_runoff_v1.1.nc', -1 , 'sornficb' , .true. , .true., 'yearly' , '' , '' , ''
  231. sn_cnf = 'ORCA_R025_runoff_v1.1.nc', 0 , 'socoefr' , .false. , .true., 'yearly' , '' , '' , ''
  232. sn_dep_rnf = 'runoff_depth' , 0 , 'rodepth' , .false. , .true., 'yearly' , '' , '' , ''
  233. !
  234. cn_dir = './' ! root directory for the location of the runoff files
  235. ln_rnf_mouth = .false. ! specific treatment at rivers mouths
  236. rn_hrnf = 10. ! depth over which enhanced vertical mixing is used
  237. rn_avt_rnf = 2.e-3 ! value of the additional vertical mixing coef. [m2/s]
  238. rn_rfact = 1.e0 ! multiplicative factor for runoff
  239. ln_rnf_depth = .true. ! read in depth information for runoff
  240. ln_rnf_tem = .false. ! read in temperature information for runoff
  241. ln_rnf_sal = .false. ! read in salinity information for runoff
  242. ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file
  243. rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain ( ln_rnf_depth_ini = .true )
  244. rn_dep_max = 150. ! depth over which runoffs is spread ( ln_rnf_depth_ini = .true )
  245. nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0)
  246. /
  247. !-----------------------------------------------------------------------
  248. &namsbc_ssr ! surface boundary condition : sea surface restoring
  249. !-----------------------------------------------------------------------
  250. !
  251. ! 07/2018 - Yohan Ruprich-Robert chages: add mask_ssr reading option and take into account last shaconemo update (06/2018)
  252. !
  253. ! ! filename ! freq ! variable name ! time ! clim ! year or ! weights ! rot ! mask
  254. ! ! ! ! ! interp ! ! monthly ! filename ! pair ! filename
  255. !----------------------------------------------------------------------------------------------------------------------------------------
  256. sn_sss = 'sss_restore_data' , -1. , 'so' , .true. , .true. , 'yearly' , '' , '' , ''
  257. sn_sst = 'sst_restore_data' , -1. , 'thetao' , .true. , .true. , 'yearly' , '' , '' , ''
  258. sn_msk = 'mask_restore' , -12. , 'mask_ssr' , .false. , .true. , 'yearly' , '' , '' , ''
  259. !
  260. cn_dir = './' ! root directory for the location of the runoff files
  261. nn_sstr = 1 ! add a retroaction term in the surface heat flux (=1) or not (=0)
  262. nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2) or to SSS only (=1) or no damping term (=0)
  263. nn_icedmp = 0 ! Cntrl of surface restoration under ice nn_icedmp
  264. ! ( 0 = no restoration under ice )
  265. ! ( 1 = restoration everywhere )
  266. ! ( > 1 = reinforced damping (x nn_icedmp) under ice
  267. nn_msk = 1 ! add a sub-regional masking to the surface restoring (=1) or not (=0)
  268. ! sn_msk can be empty if nn_msk = 0
  269. rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]
  270. rn_deds = -166.67 ! -864 magnitude of the damping on salinity [kg/m2/s/psu]
  271. ln_sssr_bnd = .false. ! .true. ! flag to bound erp term (associated with nn_sssr=2)
  272. rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day] (associated with nn_sssr=2)
  273. ln_sssd_bnd = .false. ! .true. ! flag to bound S-S* term (associated with nn_ssr=2)
  274. rn_sssd_bnd = 0.01 ! ABS(Max./Min.) value of S-S* term [psu] (associated with nn_ssr=2)
  275. /
  276. !-----------------------------------------------------------------------
  277. &namsbc_alb ! albedo parameters
  278. !-----------------------------------------------------------------------
  279. /
  280. !-----------------------------------------------------------------------
  281. &namberg ! iceberg parameters
  282. !-----------------------------------------------------------------------
  283. /
  284. !-----------------------------------------------------------------------
  285. &namlbc ! lateral momentum boundary condition
  286. !-----------------------------------------------------------------------
  287. rn_shlat = 0.0 ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
  288. ! free slip ! partial slip ! no slip ! strong slip
  289. /
  290. !-----------------------------------------------------------------------
  291. &namcla ! cross land advection
  292. !-----------------------------------------------------------------------
  293. /
  294. !-----------------------------------------------------------------------
  295. &namobc ! open boundaries parameters ("key_obc")
  296. !-----------------------------------------------------------------------
  297. /
  298. !-----------------------------------------------------------------------
  299. &namagrif ! AGRIF zoom ("key_agrif")
  300. !-----------------------------------------------------------------------
  301. /
  302. !-----------------------------------------------------------------------
  303. &nam_tide ! tide parameters (#ifdef key_tide)
  304. !-----------------------------------------------------------------------
  305. /
  306. !-----------------------------------------------------------------------
  307. &nambdy ! unstructured open boundaries ("key_bdy")
  308. !-----------------------------------------------------------------------
  309. /
  310. !-----------------------------------------------------------------------
  311. &nambdy_dta ! open boundaries - external data ("key_bdy")
  312. !-----------------------------------------------------------------------
  313. /
  314. !-----------------------------------------------------------------------
  315. &nambdy_tide ! tidal forcing at open boundaries
  316. !-----------------------------------------------------------------------
  317. /
  318. !-----------------------------------------------------------------------
  319. &nambfr ! bottom friction
  320. !-----------------------------------------------------------------------
  321. nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction
  322. ! = 2 : nonlinear friction
  323. rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case)
  324. rn_bfri2 = 1.e-3 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T
  325. rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T)
  326. rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2)
  327. rn_bfrz0 = 3.e-3 ! bottom roughness [m] if ln_loglayer=T
  328. ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file )
  329. rn_bfrien = 10. ! local multiplying factor of bfr (ln_bfr2d=T)
  330. rn_tfri1 = 4.e-4 ! top drag coefficient (linear case)
  331. rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T
  332. rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T)
  333. rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2)
  334. rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T
  335. ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file )
  336. rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T)
  337. ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true)
  338. ln_loglayer = .false. ! logarithmic formulation (non linear case)
  339. /
  340. !-----------------------------------------------------------------------
  341. &nambbc ! bottom temperature boundary condition
  342. !-----------------------------------------------------------------------
  343. ln_trabbc = .true. ! Apply a geothermal heating at the ocean bottom
  344. nn_geoflx = 2 ! geothermal heat flux: = 0 no flux
  345. ! = 1 constant flux
  346. ! = 2 variable flux (read in geothermal_heating.nc in mW/m2)
  347. sn_qgh = 'Goutorbe_ghflux.nc', -12. , 'gh_flux' , .false. , .true. , 'yearly' , 'weights_Goutorbe1_2_orca025_bilinear.nc' , '' , ''
  348. /
  349. !-----------------------------------------------------------------------
  350. &nambbl ! bottom boundary layer scheme
  351. !-----------------------------------------------------------------------
  352. /
  353. !-----------------------------------------------------------------------
  354. &nameos ! ocean physical parameters
  355. !-----------------------------------------------------------------------
  356. /
  357. !-----------------------------------------------------------------------
  358. &namtra_adv ! advection scheme for tracer
  359. !-----------------------------------------------------------------------
  360. ln_traadv_cen2 = .false. ! 2nd order centered scheme
  361. ln_traadv_tvd = .true. ! TVD scheme
  362. ln_traadv_muscl = .false. ! MUSCL scheme
  363. ln_traadv_muscl2 = .false. ! MUSCL2 scheme + cen2 at boundaries
  364. ln_traadv_ubs = .false. ! UBS scheme
  365. ln_traadv_qck = .false. ! QUICKEST scheme
  366. ln_traadv_msc_ups= .false. ! use upstream scheme within muscl
  367. ln_traadv_tvd_zts= .false. ! TVD scheme with sub-timestepping of vertical tracer advection
  368. /
  369. !-----------------------------------------------------------------------
  370. &namtra_adv_mle ! mixed layer eddy parametrisation (Fox-Kemper param)
  371. !-----------------------------------------------------------------------
  372. ln_mle = .false. ! (T) use the Mixed Layer Eddy (MLE) parameterisation
  373. rn_ce = 0.06 ! magnitude of the MLE (typical value: 0.06 to 0.08)
  374. nn_mle = 1 ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
  375. rn_lf = 5.e+3 ! typical scale of mixed layer front (meters) (case rn_mle=0)
  376. rn_time = 172800. ! time scale for mixing momentum across the mixed layer (seconds) (case rn_mle=0)
  377. rn_lat = 20. ! reference latitude (degrees) of MLE coef. (case rn_mle=1)
  378. nn_mld_uv = 0 ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
  379. nn_conv = 0 ! =1 no MLE in case of convection ; =0 always MLE
  380. rn_rho_c_mle = 0.01 ! delta rho criterion used to calculate MLD for FK
  381. /
  382. !----------------------------------------------------------------------------------
  383. &namtra_ldf ! lateral diffusion scheme for tracers
  384. !----------------------------------------------------------------------------------
  385. ! ! Operator type:
  386. ln_traldf_lap = .true. ! laplacian operator
  387. ln_traldf_bilap = .false. ! bilaplacian operator
  388. ! ! Direction of action:
  389. ln_traldf_level = .false. ! iso-level
  390. ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T)
  391. ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp")
  392. ! ! Griffies parameters (all need "key_ldfslp")
  393. ln_traldf_grif = .false. ! use griffies triads
  394. ln_traldf_gdia = .false. ! output griffies eddy velocities
  395. ln_triad_iso = .false. ! pure lateral mixing in ML
  396. ln_botmix_grif = .false. ! lateral mixing on bottom
  397. ! ! Coefficients
  398. ! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv"
  399. ! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv
  400. ! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05)
  401. rn_aeiv_0 = 0. ! eddy induced velocity coefficient [m2/s]
  402. rn_aht_0 = 300. ! horizontal eddy diffusivity for tracers [m2/s]
  403. rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s]
  404. ! (normally=0; not used with Griffies)
  405. rn_slpmax = 0.01 ! slope limit
  406. rn_chsmag = 1. ! multiplicative factor in Smagorinsky diffusivity
  407. rn_smsh = 0. ! Smagorinsky diffusivity: = 0 - use only sheer
  408. rn_aht_m = 2000. ! upper limit or stability criteria for lateral eddy diffusivity (m2/s)
  409. /
  410. !-----------------------------------------------------------------------
  411. &namtra_dmp ! tracer: T & S newtonian damping
  412. !-----------------------------------------------------------------------
  413. ln_tradmp = ${ln_tradmp} ! add a damping termn (T) or not (F)
  414. nn_zdmp = 2 ! vertical shape =0 damping throughout the water column
  415. ! =1 no damping in the mixing layer (kz criteria)
  416. ! =2 no damping in the mixed layer (rho crieria)
  417. cn_resto = 'resto.nc' ! Name of file containing restoration coefficient field (use dmp_tools to create this)
  418. /
  419. !-----------------------------------------------------------------------
  420. &namdyn_adv ! formulation of the momentum advection
  421. !-----------------------------------------------------------------------
  422. ln_dynadv_vec = .true. ! vector form (T) or flux form (F)
  423. nn_dynkeg = 1 ! scheme for grad(KE): =0 C2 ; =1 Hollingsworth correction
  424. ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme
  425. ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme
  426. ln_dynzad_zts = .false. ! Use (T) sub timestepping for vertical momentum advection
  427. /
  428. !-----------------------------------------------------------------------
  429. &nam_vvl ! vertical coordinate options
  430. !-----------------------------------------------------------------------
  431. ln_vvl_zstar = .true. ! zstar vertical coordinate
  432. ln_vvl_ztilde = .false. ! ztilde vertical coordinate: only high frequency variations
  433. ln_vvl_layer = .false. ! full layer vertical coordinate
  434. ln_vvl_ztilde_as_zstar = .false. ! ztilde vertical coordinate emulating zstar
  435. ln_vvl_zstar_at_eqtor = .false. ! ztilde near the equator
  436. rn_ahe3 = 0.0e0 ! thickness diffusion coefficient
  437. rn_rst_e3t = 30.e0 ! ztilde to zstar restoration timescale [days]
  438. rn_lf_cutoff = 5.0e0 ! cutoff frequency for low-pass filter [days]
  439. rn_zdef_max = 0.9e0 ! maximum fractional e3t deformation
  440. ln_vvl_dbg = .true. ! debug prints (T/F)
  441. /
  442. !-----------------------------------------------------------------------
  443. &namdyn_vor ! option of physics/algorithm (not control by CPP keys)
  444. !-----------------------------------------------------------------------
  445. ln_dynvor_ene = .false. ! enstrophy conserving scheme
  446. ln_dynvor_ens = .false. ! energy conserving scheme
  447. ln_dynvor_mix = .false. ! mixed scheme
  448. ln_dynvor_een = .true. ! energy & enstrophy scheme
  449. ln_dynvor_een_old = .false. ! energy & enstrophy scheme - original formulation
  450. /
  451. !-----------------------------------------------------------------------
  452. &namdyn_hpg ! Hydrostatic pressure gradient option
  453. !-----------------------------------------------------------------------
  454. ln_hpg_zco = .false. ! z-coordinate - full steps
  455. ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation)
  456. ln_hpg_sco = .true. ! s-coordinate (standard jacobian formulation)
  457. ln_hpg_isf = .false. ! s-coordinate (sco ) adapted to isf
  458. ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
  459. ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)
  460. ln_dynhpg_imp = .false. ! time stepping: semi-implicit time scheme (T)
  461. ! centered time scheme (F)
  462. /
  463. !-----------------------------------------------------------------------
  464. &namdyn_ldf ! lateral diffusion on momentum
  465. !-----------------------------------------------------------------------
  466. ! ! Type of the operator :
  467. ln_dynldf_lap = .false. ! laplacian operator
  468. ln_dynldf_bilap = .true. ! bilaplacian operator
  469. ! ! Direction of action :
  470. ln_dynldf_level = .false. ! iso-level
  471. ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.)
  472. ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp")
  473. ! ! Coefficient
  474. rn_ahm_0_lap = 0. ! horizontal laplacian eddy viscosity [m2/s]
  475. rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s]
  476. rn_ahm_0_blp = -6.4e11! horizontal bilaplacian eddy viscosity [m4/s]
  477. rn_cmsmag_1 = 3. ! constant in laplacian Smagorinsky viscosity
  478. rn_cmsmag_2 = 3 ! constant in bilaplacian Smagorinsky viscosity
  479. rn_cmsh = 0. ! 1 or 0 , if 0 -use only shear for Smagorinsky viscosity
  480. rn_ahm_m_blp = -1.e12 ! upper limit for bilap abs(ahm) < min( dx^4/128rdt, rn_ahm_m_blp)
  481. rn_ahm_m_lap = 40000. ! upper limit for lap ahm < min(dx^2/16rdt, rn_ahm_m_lap)
  482. /
  483. !!======================================================================
  484. !! Tracers & Dynamics vertical physics namelists
  485. !!======================================================================
  486. !! namzdf vertical physics
  487. !! namzdf_ric richardson number dependent vertical mixing ("key_zdfric")
  488. !! namzdf_tke TKE dependent vertical mixing ("key_zdftke")
  489. !! namzdf_kpp KPP dependent vertical mixing ("key_zdfkpp")
  490. !! namzdf_ddm double diffusive mixing parameterization ("key_zdfddm")
  491. !! namzdf_tmx tidal mixing parameterization ("key_zdftmx")
  492. !!======================================================================
  493. !
  494. !-----------------------------------------------------------------------
  495. &namzdf ! vertical physics
  496. !-----------------------------------------------------------------------
  497. rn_avm0 = 1.e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst")
  498. rn_avt0 = 1.e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst")
  499. nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
  500. nn_havtb = 1 ! horizontal shape for avtb (=1) or not (=0)
  501. ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F)
  502. nn_evdm = 1 ! evd apply on tracer (=0) or on tracer and momentum (=1)
  503. rn_avevd = 10. ! evd mixing coefficient [m2/s]
  504. ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F)
  505. nn_npc = 1 ! frequency of application of npc
  506. nn_npcp = 365 ! npc control print frequency
  507. ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping
  508. nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T
  509. /
  510. !-----------------------------------------------------------------------
  511. &namzdf_ric ! richardson number dependent vertical diffusion ("key_zdfric" )
  512. !-----------------------------------------------------------------------
  513. /
  514. !-----------------------------------------------------------------------
  515. &namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke")
  516. !-----------------------------------------------------------------------
  517. rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e) )
  518. rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
  519. rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T)
  520. rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
  521. rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
  522. rn_bshear = 1.e-20 ! background shear (>0) currently a numerical threshold (do not change it)
  523. nn_mxl = 3 ! mixing length: = 0 bounded by the distance to surface and bottom
  524. ! = 1 bounded by the local vertical scale factor
  525. ! = 2 first vertical derivative of mixing length bounded by 1
  526. ! = 3 as =2 with distinct disspipative an mixing length scale
  527. nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
  528. ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)
  529. rn_mxl0 = 0.01 ! surface buoyancy lenght scale minimum value
  530. ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)
  531. rn_lc = 0.20 ! coef. associated to Langmuir cells
  532. nn_etau = 0 ! penetration of tke below the mixed layer (ML) due to internal & intertial waves
  533. ! = 0 no penetration
  534. ! = 1 add a tke source below the ML
  535. ! = 2 add a tke source just at the base of the ML
  536. ! = 3 as = 1 applied on HF part of the stress ("key_oasis3")
  537. rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2)
  538. nn_htau = 1 ! type of exponential decrease of tke penetration below the ML
  539. ! = 0 constant 10 m length scale
  540. ! = 1 0.5m at the equator to 30m poleward of 40 degrees
  541. /
  542. !------------------------------------------------------------------------
  543. &namzdf_kpp ! K-Profile Parameterization dependent vertical mixing ("key_zdfkpp", and optionally:
  544. !------------------------------------------------------------------------ "key_kppcustom" or "key_kpplktb")
  545. /
  546. !-----------------------------------------------------------------------
  547. &namzdf_gls ! GLS vertical diffusion ("key_zdfgls")
  548. !-----------------------------------------------------------------------
  549. /
  550. !-----------------------------------------------------------------------
  551. &namzdf_ddm ! double diffusive mixing parameterization ("key_zdfddm")
  552. !-----------------------------------------------------------------------
  553. rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
  554. rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio
  555. /
  556. !-----------------------------------------------------------------------
  557. &namzdf_tmx ! tidal mixing parameterization ("key_zdftmx")
  558. !-----------------------------------------------------------------------
  559. rn_htmx = 500. ! vertical decay scale for turbulence (meters)
  560. rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1)
  561. rn_tfe = 0.333 ! tidal dissipation efficiency
  562. rn_me = 0.2 ! mixing efficiency
  563. ln_tmx_itf = .true. ! ITF specific parameterisation
  564. rn_tfe_itf = 1. ! ITF tidal dissipation efficiency
  565. /
  566. !-----------------------------------------------------------------------
  567. &namzdf_tmx_new ! new tidal mixing parameterization ("key_zdftmx_new")
  568. !-----------------------------------------------------------------------
  569. /
  570. !-----------------------------------------------------------------------
  571. &namsol ! elliptic solver / island / free surface
  572. !-----------------------------------------------------------------------
  573. nn_solv = 1 ! elliptic solver: =1 preconditioned conjugate gradient (pcg)
  574. ! =2 successive-over-relaxation (sor)
  575. nn_sol_arp = 0 ! absolute/relative (0/1) precision convergence test
  576. rn_eps = 1.e-6 ! absolute precision of the solver
  577. nn_nmin = 300 ! minimum of iterations for the SOR solver
  578. nn_nmax = 800 ! maximum of iterations for the SOR solver
  579. nn_nmod = 10 ! frequency of test for the SOR solver
  580. rn_resmax = 1.e-10 ! absolute precision for the SOR solver
  581. rn_sor = 1.92 ! optimal coefficient for SOR solver (to be adjusted with the domain)
  582. /
  583. !-----------------------------------------------------------------------
  584. &nammpp ! Massively Parallel Processing ("key_mpp_mpi)
  585. !-----------------------------------------------------------------------
  586. /
  587. !-----------------------------------------------------------------------
  588. &namctl ! Control prints & Benchmark
  589. !-----------------------------------------------------------------------
  590. /
  591. !-----------------------------------------------------------------------
  592. &namc1d_uvd ! data: U & V currents ("key_c1d")
  593. !-----------------------------------------------------------------------
  594. /
  595. !-----------------------------------------------------------------------
  596. &namc1d_dyndmp ! U & V newtonian damping ("key_c1d")
  597. !-----------------------------------------------------------------------
  598. /
  599. !-----------------------------------------------------------------------
  600. &namsto ! Stochastic parametrization of EOS
  601. !-----------------------------------------------------------------------
  602. /
  603. !-----------------------------------------------------------------------
  604. &namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
  605. !-----------------------------------------------------------------------
  606. /
  607. !-----------------------------------------------------------------------
  608. &namtrd ! diagnostics on dynamics and/or tracer trends ("key_trddyn" and/or "key_trdtra")
  609. !-----------------------------------------------------------------------
  610. /
  611. !-----------------------------------------------------------------------
  612. &namflo ! float parameters ("key_float")
  613. !-----------------------------------------------------------------------
  614. /
  615. !-----------------------------------------------------------------------
  616. &namptr ! Poleward Transport Diagnostic
  617. !-----------------------------------------------------------------------
  618. /
  619. !-----------------------------------------------------------------------
  620. &namhsb ! Heat and salt budgets
  621. !-----------------------------------------------------------------------
  622. /
  623. !-----------------------------------------------------------------------
  624. &nam_diaharm ! Harmonic analysis of tidal constituents ('key_diaharm')
  625. !-----------------------------------------------------------------------
  626. /
  627. !-----------------------------------------------------------------------
  628. &namdct ! transports through sections
  629. !-----------------------------------------------------------------------
  630. /
  631. !-----------------------------------------------------------------------
  632. &namobs ! observation usage switch ('key_diaobs')
  633. !-----------------------------------------------------------------------
  634. /
  635. !-----------------------------------------------------------------------
  636. &nam_asminc ! assimilation increments ('key_asminc')
  637. !-----------------------------------------------------------------------
  638. /
  639. !-----------------------------------------------------------------------
  640. &namsbc_wave ! External fields from wave model
  641. !-----------------------------------------------------------------------
  642. /
  643. !-----------------------------------------------------------------------
  644. &namdyn_nept ! Neptune effect (simplified: lateral and vertical diffusions removed)
  645. !-----------------------------------------------------------------------
  646. /
  647. EOF