MODULE sbcssm !!====================================================================== !! *** MODULE sbcssm *** !! Off-line : interpolation of the physical fields !!====================================================================== !! History : !! NEMO 3.4 ! 2012-03 First version by S. Alderson !! ! Heavily derived from Christian's dtadyn routine !! ! in OFF_SRC !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_ssm_init : initialization, namelist read, and SAVEs control !! sbc_ssm : Interpolation of the fields !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE c1d ! 1D configuration: lk_c1d USE dom_oce ! ocean domain: variables USE zdf_oce ! ocean vertical physics: variables USE sbc_oce ! surface module: variables USE phycst ! physical constants USE eosbn2 ! equation of state - Brunt Vaisala frequency USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE zpshde ! z-coord. with partial steps: horizontal derivatives USE in_out_manager ! I/O manager USE iom ! I/O library USE lib_mpp ! distributed memory computing library USE prtctl ! print control USE fldread ! read input fields USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC sbc_ssm_init ! called by sbc_init PUBLIC sbc_ssm ! called by sbc CHARACTER(len=100) :: cn_dir !: Root directory for location of ssm files LOGICAL :: ln_3d_uve !: specify whether input velocity data is 3D LOGICAL :: ln_read_frq !: specify whether we must read frq or not LOGICAL :: l_initdone = .false. INTEGER :: nfld_3d INTEGER :: nfld_2d INTEGER :: jf_tem ! index of temperature INTEGER :: jf_sal ! index of salinity INTEGER :: jf_usp ! index of u velocity component INTEGER :: jf_vsp ! index of v velocity component INTEGER :: jf_ssh ! index of sea surface height INTEGER :: jf_e3t ! index of first T level thickness INTEGER :: jf_frq ! index of fraction of qsr absorbed in the 1st T level TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ssm_3d ! structure of input fields (file information, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ssm_2d ! structure of input fields (file information, fields read) !!---------------------------------------------------------------------- !! NEMO/OFF 3.3 , NEMO Consortium (2010) !! $Id: sbcssm.F90 2442 2015-06-12 08:32:11Z ufla $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_ssm( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE sbc_ssm *** !! !! ** Purpose : Prepares dynamics and physics fields from a NEMO run !! for an off-line simulation using surface processes only !! !! ** Method : calculates the position of data !! - interpolates data if needed !!---------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt ! ocean time-step index ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: ztinta ! ratio applied to after records when doing time interpolation REAL(wp) :: ztintb ! ratio applied to before records when doing time interpolation !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start( 'sbc_ssm') IF( nfld_3d > 0 ) CALL fld_read( kt, 1, sf_ssm_3d ) !== read data at kt time step ==! IF( nfld_2d > 0 ) CALL fld_read( kt, 1, sf_ssm_2d ) !== read data at kt time step ==! ! IF( ln_3d_uve ) THEN ssu_m(:,:) = sf_ssm_3d(jf_usp)%fnow(:,:,1) * umask(:,:,1) ! u-velocity ssv_m(:,:) = sf_ssm_3d(jf_vsp)%fnow(:,:,1) * vmask(:,:,1) ! v-velocity IF( lk_vvl ) e3t_m(:,:) = sf_ssm_3d(jf_e3t)%fnow(:,:,1) * tmask(:,:,1) ! v-velocity ELSE ssu_m(:,:) = sf_ssm_2d(jf_usp)%fnow(:,:,1) * umask(:,:,1) ! u-velocity ssv_m(:,:) = sf_ssm_2d(jf_vsp)%fnow(:,:,1) * vmask(:,:,1) ! v-velocity IF( lk_vvl ) e3t_m(:,:) = sf_ssm_2d(jf_e3t)%fnow(:,:,1) * tmask(:,:,1) ! v-velocity ENDIF ! sst_m(:,:) = sf_ssm_2d(jf_tem)%fnow(:,:,1) * tmask(:,:,1) ! temperature sss_m(:,:) = sf_ssm_2d(jf_sal)%fnow(:,:,1) * tmask(:,:,1) ! salinity ssh_m(:,:) = sf_ssm_2d(jf_ssh)%fnow(:,:,1) * tmask(:,:,1) ! sea surface height IF( ln_read_frq ) frq_m(:,:) = sf_ssm_2d(jf_frq)%fnow(:,:,1) * tmask(:,:,1) ! sea surface height ! IF ( nn_ice == 1 ) THEN tsn(:,:,1,jp_tem) = sst_m(:,:) tsn(:,:,1,jp_sal) = sss_m(:,:) tsb(:,:,1,jp_tem) = sst_m(:,:) tsb(:,:,1,jp_sal) = sss_m(:,:) ENDIF ub (:,:,1) = ssu_m(:,:) vb (:,:,1) = ssv_m(:,:) IF(ln_ctl) THEN ! print control CALL prt_ctl(tab2d_1=sst_m, clinfo1=' sst_m - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=sss_m, clinfo1=' sss_m - : ', mask1=tmask, ovlap=1 ) CALL prt_ctl(tab2d_1=ssu_m, clinfo1=' ssu_m - : ', mask1=umask, ovlap=1 ) CALL prt_ctl(tab2d_1=ssv_m, clinfo1=' ssv_m - : ', mask1=vmask, ovlap=1 ) CALL prt_ctl(tab2d_1=ssh_m, clinfo1=' ssh_m - : ', mask1=tmask, ovlap=1 ) IF( lk_vvl ) CALL prt_ctl(tab2d_1=ssh_m, clinfo1=' e3t_m - : ', mask1=tmask, ovlap=1 ) IF( ln_read_frq ) CALL prt_ctl(tab2d_1=frq_m, clinfo1=' frq_m - : ', mask1=tmask, ovlap=1 ) ENDIF ! IF( l_initdone ) THEN ! Mean value at each nn_fsbc time-step ! CALL iom_put( 'ssu_m', ssu_m ) CALL iom_put( 'ssv_m', ssv_m ) CALL iom_put( 'sst_m', sst_m ) CALL iom_put( 'sss_m', sss_m ) CALL iom_put( 'ssh_m', ssh_m ) IF( lk_vvl ) CALL iom_put( 'e3t_m', e3t_m ) IF( ln_read_frq ) CALL iom_put( 'frq_m', frq_m ) ENDIF ! IF( nn_timing == 1 ) CALL timing_stop( 'sbc_ssm') ! END SUBROUTINE sbc_ssm SUBROUTINE sbc_ssm_init !!---------------------------------------------------------------------- !! *** ROUTINE sbc_ssm_init *** !! !! ** Purpose : Initialisation of the dynamical data !! ** Method : - read the data namsbc_ssm namelist !! !! ** Action : - read parameters !!---------------------------------------------------------------------- INTEGER :: ierr, ierr0, ierr1, ierr2, ierr3 ! return error code INTEGER :: ifpr ! dummy loop indice INTEGER :: inum, idv, idimv, jpm ! local integer INTEGER :: ios ! Local integer output status for namelist read !! CHARACTER(len=100) :: cn_dir ! Root directory for location of core files TYPE(FLD_N), ALLOCATABLE, DIMENSION(:) :: slf_3d ! array of namelist information on the fields to read TYPE(FLD_N), ALLOCATABLE, DIMENSION(:) :: slf_2d ! array of namelist information on the fields to read TYPE(FLD_N) :: sn_tem, sn_sal ! information about the fields to be read TYPE(FLD_N) :: sn_usp, sn_vsp TYPE(FLD_N) :: sn_ssh, sn_e3t, sn_frq ! NAMELIST/namsbc_sas/cn_dir, ln_3d_uve, ln_read_frq, sn_tem, sn_sal, sn_usp, sn_vsp, sn_ssh, sn_e3t, sn_frq !!---------------------------------------------------------------------- IF( ln_rstart .AND. nn_components == jp_iam_sas ) RETURN REWIND( numnam_ref ) ! Namelist namsbc_sas in reference namelist : Input fields READ ( numnam_ref, namsbc_sas, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_sas in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc_sas in configuration namelist : Input fields READ ( numnam_cfg, namsbc_sas, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_sas in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc_sas ) ! ! store namelist information in an array ! ! Control print IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_sas : standalone surface scheme ' WRITE(numout,*) '~~~~~~~~~~~ ' WRITE(numout,*) ' Namelist namsbc_sas' WRITE(numout,*) ' Are we supplying a 3D u,v and e3 field ln_3d_uve = ', ln_3d_uve WRITE(numout,*) ' Are we reading frq (fraction of qsr absorbed in the 1st T level) ln_read_frq = ', ln_read_frq WRITE(numout,*) ENDIF ! !! switch off stuff that isn't sensible with a standalone module !! note that we need sbc_ssm called first in sbc ! IF( ln_apr_dyn ) THEN IF( lwp ) WRITE(numout,*) 'No atmospheric gradient needed with StandAlone Surface scheme' ln_apr_dyn = .FALSE. ENDIF IF( ln_rnf ) THEN IF( lwp ) WRITE(numout,*) 'No runoff needed with StandAlone Surface scheme' ln_rnf = .FALSE. ENDIF IF( ln_ssr ) THEN IF( lwp ) WRITE(numout,*) 'No surface relaxation needed with StandAlone Surface scheme' ln_ssr = .FALSE. ENDIF IF( nn_fwb > 0 ) THEN IF( lwp ) WRITE(numout,*) 'No freshwater budget adjustment needed with StandAlone Surface scheme' nn_fwb = 0 ENDIF IF( nn_closea > 0 ) THEN IF( lwp ) WRITE(numout,*) 'No closed seas adjustment needed with StandAlone Surface scheme' nn_closea = 0 ENDIF ! !! following code is a bit messy, but distinguishes between when u,v are 3d arrays and !! when we have other 3d arrays that we need to read in !! so if a new field is added i.e. jf_new, just give it the next integer in sequence !! for the corresponding dimension (currently if ln_3d_uve is true, 4 for 2d and 3 for 3d, !! alternatively if ln_3d_uve is false, 6 for 2d and 1 for 3d), reset nfld_3d, nfld_2d, !! and the rest of the logic should still work ! jf_tem = 1 ; jf_sal = 2 ; jf_ssh = 3 ; jf_frq = 4 ! default 2D fields index ! IF( ln_3d_uve ) THEN jf_usp = 1 ; jf_vsp = 2 ; jf_e3t = 3 ! define 3D fields index nfld_3d = 2 + COUNT( (/lk_vvl/) ) ! number of 3D fields to read nfld_2d = 3 + COUNT( (/ln_read_frq/) ) ! number of 2D fields to read ELSE jf_usp = 4 ; jf_vsp = 5 ; jf_e3t = 6 ; jf_frq = 6 + COUNT( (/lk_vvl/) ) ! update 2D fields index nfld_3d = 0 ! no 3D fields to read nfld_2d = 5 + COUNT( (/lk_vvl/) ) + COUNT( (/ln_read_frq/) ) ! number of 2D fields to read ENDIF IF( nfld_3d > 0 ) THEN ALLOCATE( slf_3d(nfld_3d), STAT=ierr ) ! set slf structure IF( ierr > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init: unable to allocate slf 3d structure' ) ; RETURN ENDIF slf_3d(jf_usp) = sn_usp slf_3d(jf_vsp) = sn_vsp IF( lk_vvl ) slf_3d(jf_e3t) = sn_e3t ENDIF IF( nfld_2d > 0 ) THEN ALLOCATE( slf_2d(nfld_2d), STAT=ierr ) ! set slf structure IF( ierr > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init: unable to allocate slf 2d structure' ) ; RETURN ENDIF slf_2d(jf_tem) = sn_tem ; slf_2d(jf_sal) = sn_sal ; slf_2d(jf_ssh) = sn_ssh IF( ln_read_frq ) slf_2d(jf_frq) = sn_frq IF( .NOT. ln_3d_uve ) THEN slf_2d(jf_usp) = sn_usp ; slf_2d(jf_vsp) = sn_vsp IF( lk_vvl ) slf_2d(jf_e3t) = sn_e3t ENDIF ENDIF ! ierr1 = 0 ! default definition if slf_?d(ifpr)%ln_tint = .false. IF( nfld_3d > 0 ) THEN ALLOCATE( sf_ssm_3d(nfld_3d), STAT=ierr ) ! set sf structure IF( ierr > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init: unable to allocate sf structure' ) ; RETURN ENDIF DO ifpr = 1, nfld_3d ALLOCATE( sf_ssm_3d(ifpr)%fnow(jpi,jpj,jpk) , STAT=ierr0 ) IF( slf_3d(ifpr)%ln_tint ) ALLOCATE( sf_ssm_3d(ifpr)%fdta(jpi,jpj,jpk,2) , STAT=ierr1 ) IF( ierr0 + ierr1 > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init : unable to allocate sf_ssm_3d array structure' ) ; RETURN ENDIF END DO ! ! fill sf with slf_i and control print CALL fld_fill( sf_ssm_3d, slf_3d, cn_dir, 'sbc_ssm_init', '3D Data in file', 'namsbc_ssm' ) ENDIF IF( nfld_2d > 0 ) THEN ALLOCATE( sf_ssm_2d(nfld_2d), STAT=ierr ) ! set sf structure IF( ierr > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init: unable to allocate sf 2d structure' ) ; RETURN ENDIF DO ifpr = 1, nfld_2d ALLOCATE( sf_ssm_2d(ifpr)%fnow(jpi,jpj,1) , STAT=ierr0 ) IF( slf_2d(ifpr)%ln_tint ) ALLOCATE( sf_ssm_2d(ifpr)%fdta(jpi,jpj,1,2) , STAT=ierr1 ) IF( ierr0 + ierr1 > 0 ) THEN CALL ctl_stop( 'sbc_ssm_init : unable to allocate sf_ssm_2d array structure' ) ; RETURN ENDIF END DO ! CALL fld_fill( sf_ssm_2d, slf_2d, cn_dir, 'sbc_ssm_init', '2D Data in file', 'namsbc_ssm' ) ENDIF ! ! finally tidy up IF( nfld_3d > 0 ) DEALLOCATE( slf_3d, STAT=ierr ) IF( nfld_2d > 0 ) DEALLOCATE( slf_2d, STAT=ierr ) CALL sbc_ssm( nit000 ) ! need to define ss?_m arrays used in limistate IF( .NOT. ln_read_frq ) frq_m(:,:) = 1. l_initdone = .TRUE. ! END SUBROUTINE sbc_ssm_init !!====================================================================== END MODULE sbcssm