MODULE step !!====================================================================== !! *** MODULE step *** !! Time-stepping : manager of the ocean, tracer and ice time stepping !!====================================================================== !! History : OPA ! 1991-03 (G. Madec) Original code !! - ! 1991-11 (G. Madec) !! - ! 1992-06 (M. Imbard) add a first output record !! - ! 1996-04 (G. Madec) introduction of dynspg !! - ! 1996-04 (M.A. Foujols) introduction of passive tracer !! 8.0 ! 1997-06 (G. Madec) new architecture of call !! 8.2 ! 1997-06 (G. Madec, M. Imbard, G. Roullet) free surface !! - ! 1999-02 (G. Madec, N. Grima) hpg implicit !! - ! 2000-07 (J-M Molines, M. Imbard) Open Bondary Conditions !! NEMO 1.0 ! 2002-06 (G. Madec) free form, suppress macro-tasking !! - ! 2004-08 (C. Talandier) New trends organization !! - ! 2005-01 (C. Ethe) Add the KPP closure scheme !! - ! 2005-11 (G. Madec) Reorganisation of tra and dyn calls !! - ! 2006-01 (L. Debreu, C. Mazauric) Agrif implementation !! - ! 2006-07 (S. Masson) restart using iom !! 3.2 ! 2009-02 (G. Madec, R. Benshila) reintroduicing z*-coordinate !! - ! 2009-06 (S. Masson, G. Madec) TKE restart compatible with key_cpl !! 3.3 ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase + merge TRC-TRA !! 3.4 ! 2011-04 (G. Madec, C. Ethe) Merge of dtatem and dtasal !! ! 2012-07 (J. Simeon, G. Madec, C. Ethe) Online coarsening of outputs !! 3.7 ! 2014-04 (F. Roquet, G. Madec) New equations of state !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! stp : OPA system time-stepping !!---------------------------------------------------------------------- USE step_oce ! time stepping definition modules USE iom IMPLICIT NONE PRIVATE PUBLIC stp ! called by opa.F90 !! * Substitutions # include "domzgr_substitute.h90" !!gm # include "zdfddm_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.7 , NEMO Consortium (2014) !! $Id: step.F90 5510 2015-06-30 08:49:40Z clem $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS #if defined key_agrif RECURSIVE SUBROUTINE stp( ) INTEGER :: kstp ! ocean time-step index #else SUBROUTINE stp( kstp ) INTEGER, INTENT(in) :: kstp ! ocean time-step index #endif !!---------------------------------------------------------------------- !! *** ROUTINE stp *** !! !! ** Purpose : - Time stepping of OPA (momentum and active tracer eqs.) !! - Time stepping of LIM (dynamic and thermodynamic eqs.) !! - Tme stepping of TRC (passive tracer eqs.) !! !! ** Method : -1- Update forcings and data !! -2- Update ocean physics !! -3- Compute the t and s trends !! -4- Update t and s !! -5- Compute the momentum trends !! -6- Update the horizontal velocity !! -7- Compute the diagnostics variables (rd,N2, div,cur,w) !! -8- Outputs and diagnostics !!---------------------------------------------------------------------- INTEGER :: jk ! dummy loop indice INTEGER :: indic ! error indicator if < 0 INTEGER :: kcall ! optional integer argument (dom_vvl_sf_nxt) !! --------------------------------------------------------------------- #if defined key_agrif kstp = nit000 + Agrif_Nb_Step() IF ( lk_agrif_debug ) THEN IF ( Agrif_Root() .and. lwp) Write(*,*) '---' IF (lwp) Write(*,*) 'Grid Number',Agrif_Fixed(),' time step ',kstp, 'int tstep',Agrif_NbStepint() ENDIF IF ( kstp == (nit000 + 1) ) lk_agrif_fstep = .FALSE. # if defined key_iomput IF( Agrif_Nbstepint() == 0 ) CALL iom_swap( cxios_context ) # endif #endif indic = 0 ! reset to no error condition IF( kstp == nit000 ) THEN ! must be done after nemo_init for AGRIF+XIOS+OASIS CALL iom_init( cxios_context ) ! iom_put initialization IF( ln_crs ) CALL iom_init( TRIM(cxios_context)//"_crs" ) ! initialize context for coarse grid ENDIF IF( kstp /= nit000 ) CALL day( kstp ) ! Calendar (day was already called at nit000 in day_init) CALL iom_setkt( kstp - nit000 + 1, cxios_context ) ! tell iom we are at time step kstp IF( ln_crs ) CALL iom_setkt( kstp - nit000 + 1, TRIM(cxios_context)//"_crs" ) ! tell iom we are at time step kstp !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Update data, open boundaries, surface boundary condition (including sea-ice) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_tide ) CALL sbc_tide( kstp ) IF( lk_bdy ) THEN IF( ln_apr_dyn) CALL sbc_apr( kstp ) ! bdy_dta needs ssh_ib CALL bdy_dta ( kstp, time_offset=+1 ) ! update dynamic & tracer data at open boundaries ENDIF CALL sbc ( kstp ) ! Sea Boundary Condition (including sea-ice) ! clem: moved here for bdy ice purpose !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Update stochastic parameters and random T/S fluctuations !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> IF( ln_sto_eos ) CALL sto_par( kstp ) ! Stochastic parameters IF( ln_sto_eos ) CALL sto_pts( tsn ) ! Random T/S fluctuations !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Ocean physics update (ua, va, tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ! THERMODYNAMICS CALL eos_rab( tsb, rab_b ) ! before local thermal/haline expension ratio at T-points CALL eos_rab( tsn, rab_n ) ! now local thermal/haline expension ratio at T-points CALL bn2 ( tsb, rab_b, rn2b ) ! before Brunt-Vaisala frequency CALL bn2 ( tsn, rab_n, rn2 ) ! now Brunt-Vaisala frequency ! ! VERTICAL PHYSICS CALL zdf_bfr( kstp ) ! bottom friction (if quadratic) ! ! Vertical eddy viscosity and diffusivity coefficients IF( lk_zdfric ) CALL zdf_ric( kstp ) ! Richardson number dependent Kz IF( lk_zdftke ) CALL zdf_tke( kstp ) ! TKE closure scheme for Kz IF( lk_zdfgls ) CALL zdf_gls( kstp ) ! GLS closure scheme for Kz IF( lk_zdfkpp ) CALL zdf_kpp( kstp ) ! KPP closure scheme for Kz IF( lk_zdfcst ) THEN ! Constant Kz (reset avt, avm[uv] to the background value) avt (:,:,:) = rn_avt0 * wmask (:,:,:) avmu(:,:,:) = rn_avm0 * wumask(:,:,:) avmv(:,:,:) = rn_avm0 * wvmask(:,:,:) ENDIF IF( ln_rnf_mouth ) THEN ! increase diffusivity at rivers mouths DO jk = 2, nkrnf ; avt(:,:,jk) = avt(:,:,jk) + 2.e0 * rn_avt_rnf * rnfmsk(:,:) * tmask(:,:,jk) ; END DO ENDIF IF( ln_zdfevd ) CALL zdf_evd( kstp ) ! enhanced vertical eddy diffusivity IF( lk_zdftmx ) CALL zdf_tmx( kstp ) ! tidal vertical mixing IF( lk_zdfddm .AND. .NOT. lk_zdfkpp ) & & CALL zdf_ddm( kstp ) ! double diffusive mixing CALL zdf_mxl( kstp ) ! mixed layer depth ! write TKE or GLS information in the restart file IF( lrst_oce .AND. lk_zdftke ) CALL tke_rst( kstp, 'WRITE' ) IF( lrst_oce .AND. lk_zdfgls ) CALL gls_rst( kstp, 'WRITE' ) ! ! LATERAL PHYSICS ! IF( lk_ldfslp ) THEN ! slope of lateral mixing CALL eos( tsb, rhd, gdept_0(:,:,:) ) ! before in situ density IF( ln_zps .AND. .NOT. ln_isfcav) & & CALL zps_hde ( kstp, jpts, tsb, gtsu, gtsv, & ! Partial steps: before horizontal gradient & rhd, gru , grv ) ! of t, s, rd at the last ocean level IF( ln_zps .AND. ln_isfcav) & & CALL zps_hde_isf( kstp, jpts, tsb, gtsu, gtsv, & ! Partial steps for top cell (ISF) & rhd, gru , grv , aru , arv , gzu , gzv , ge3ru , ge3rv , & & gtui, gtvi, grui, grvi, arui, arvi, gzui, gzvi, ge3rui, ge3rvi ) ! of t, s, rd at the first ocean level IF( ln_traldf_grif ) THEN ! before slope for Griffies operator CALL ldf_slp_grif( kstp ) ELSE CALL ldf_slp( kstp, rhd, rn2b ) ! before slope for Madec operator ENDIF ENDIF #if defined key_traldf_c2d IF( lk_traldf_eiv ) CALL ldf_eiv( kstp ) ! eddy induced velocity coefficient #endif #if defined key_traldf_c3d && defined key_traldf_smag CALL ldf_tra_smag( kstp ) ! eddy induced velocity coefficient # endif #if defined key_dynldf_c3d && defined key_dynldf_smag CALL ldf_dyn_smag( kstp ) ! eddy induced velocity coefficient # endif !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Ocean dynamics : hdiv, rot, ssh, e3, wn !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL ssh_nxt ( kstp ) ! after ssh (includes call to div_cur) IF( lk_vvl ) CALL dom_vvl_sf_nxt( kstp ) ! after vertical scale factors CALL wzv ( kstp ) ! now cross-level velocity IF( lk_dynspg_ts ) THEN ! In case the time splitting case, update almost all momentum trends here: ! Note that the computation of vertical velocity above, hence "after" sea level ! is necessary to compute momentum advection for the rhs of barotropic loop: CALL eos ( tsn, rhd, rhop, fsdept_n(:,:,:) ) ! now in situ density for hpg computation IF( ln_zps .AND. .NOT. ln_isfcav) & & CALL zps_hde ( kstp, jpts, tsn, gtsu, gtsv, & ! Partial steps: before horizontal gradient & rhd, gru , grv ) ! of t, s, rd at the last ocean level IF( ln_zps .AND. ln_isfcav) & & CALL zps_hde_isf( kstp, jpts, tsn, gtsu, gtsv, & ! Partial steps for top cell (ISF) & rhd, gru , grv , aru , arv , gzu , gzv , ge3ru , ge3rv , & & gtui, gtvi, grui, grvi, arui, arvi, gzui, gzvi, ge3rui, ge3rvi ) ! of t, s, rd at the last ocean level ua(:,:,:) = 0.e0 ! set dynamics trends to zero va(:,:,:) = 0.e0 IF( lk_asminc .AND. ln_asmiau .AND. & & ln_dyninc ) CALL dyn_asm_inc ( kstp ) ! apply dynamics assimilation increment IF( ln_neptsimp ) CALL dyn_nept_cor ( kstp ) ! subtract Neptune velocities (simplified) IF( lk_bdy ) CALL bdy_dyn3d_dmp( kstp ) ! bdy damping trends CALL dyn_adv ( kstp ) ! advection (vector or flux form) CALL dyn_vor ( kstp ) ! vorticity term including Coriolis CALL dyn_ldf ( kstp ) ! lateral mixing IF( ln_neptsimp ) CALL dyn_nept_cor ( kstp ) ! add Neptune velocities (simplified) #if defined key_agrif IF(.NOT. Agrif_Root()) CALL Agrif_Sponge_dyn ! momentum sponge #endif CALL dyn_hpg( kstp ) ! horizontal gradient of Hydrostatic pressure CALL dyn_spg( kstp, indic ) ! surface pressure gradient ua_sv(:,:,:) = ua(:,:,:) ! Save trends (barotropic trend has been fully updated at this stage) va_sv(:,:,:) = va(:,:,:) CALL div_cur( kstp ) ! Horizontal divergence & Relative vorticity (2nd call in time-split case) IF( lk_vvl ) CALL dom_vvl_sf_nxt( kstp, kcall=2 ) ! after vertical scale factors (update depth average component) CALL wzv ( kstp ) ! now cross-level velocity ENDIF !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! diagnostics and outputs (ua, va, tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_floats ) CALL flo_stp( kstp ) ! drifting Floats IF( lk_diahth ) CALL dia_hth( kstp ) ! Thermocline depth (20 degres isotherm depth) IF( .NOT. ln_cpl ) CALL dia_fwb( kstp ) ! Fresh water budget diagnostics IF( lk_diadct ) CALL dia_dct( kstp ) ! Transports IF( lk_diaar5 ) CALL dia_ar5( kstp ) ! ar5 diag IF( lk_diaharm ) CALL dia_harm( kstp ) ! Tidal harmonic analysis CALL dia_prod( kstp ) ! ocean model: product diagnostics CALL dia_wri( kstp ) ! ocean model: outputs ! IF( ln_crs ) CALL crs_fld( kstp ) ! ocean model: online field coarsening & output #if defined key_top !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Passive Tracer Model !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL trc_stp( kstp ) ! time-stepping #endif !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Active tracers (ua, va used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< tsa(:,:,:,:) = 0.e0 ! set tracer trends to zero IF( lk_asminc .AND. ln_asmiau .AND. & & ln_trainc ) CALL tra_asm_inc( kstp ) ! apply tracer assimilation increment CALL tra_sbc ( kstp ) ! surface boundary condition IF( ln_traqsr ) CALL tra_qsr ( kstp ) ! penetrative solar radiation qsr IF( ln_trabbc ) CALL tra_bbc ( kstp ) ! bottom heat flux IF( lk_trabbl ) CALL tra_bbl ( kstp ) ! advective (and/or diffusive) bottom boundary layer scheme IF( ln_tradmp ) CALL tra_dmp ( kstp ) ! internal damping trends IF( lk_bdy ) CALL bdy_tra_dmp( kstp ) ! bdy damping trends CALL tra_adv ( kstp ) ! horizontal & vertical advection IF( lk_zdfkpp ) CALL tra_kpp ( kstp ) ! KPP non-local tracer fluxes CALL tra_ldf ( kstp ) ! lateral mixing IF( ln_diaptr ) CALL dia_ptr ! Poleward adv/ldf TRansports diagnostics #if defined key_agrif IF(.NOT. Agrif_Root()) CALL Agrif_Sponge_tra ! tracers sponge #endif CALL tra_zdf ( kstp ) ! vertical mixing and after tracer fields IF( ln_dynhpg_imp ) THEN ! semi-implicit hpg (time stepping then eos) IF( ln_zdfnpc ) CALL tra_npc( kstp ) ! update after fields by non-penetrative convection CALL tra_nxt( kstp ) ! tracer fields at next time step CALL eos ( tsa, rhd, rhop, fsdept_n(:,:,:) ) ! Time-filtered in situ density for hpg computation IF( ln_zps .AND. .NOT. ln_isfcav) & & CALL zps_hde ( kstp, jpts, tsa, gtsu, gtsv, & ! Partial steps: before horizontal gradient & rhd, gru , grv ) ! of t, s, rd at the last ocean level IF( ln_zps .AND. ln_isfcav) & & CALL zps_hde_isf( kstp, jpts, tsa, gtsu, gtsv, & ! Partial steps for top cell (ISF) & rhd, gru , grv , aru , arv , gzu , gzv , ge3ru , ge3rv , & & gtui, gtvi, grui, grvi, arui, arvi, gzui, gzvi, ge3rui, ge3rvi ) ! of t, s, rd at the last ocean level ELSE ! centered hpg (eos then time stepping) IF ( .NOT. lk_dynspg_ts ) THEN ! eos already called in time-split case CALL eos ( tsn, rhd, rhop, fsdept_n(:,:,:) ) ! now in situ density for hpg computation IF( ln_zps .AND. .NOT. ln_isfcav) & & CALL zps_hde ( kstp, jpts, tsn, gtsu, gtsv, & ! Partial steps: before horizontal gradient & rhd, gru , grv ) ! of t, s, rd at the last ocean level IF( ln_zps .AND. ln_isfcav) & & CALL zps_hde_isf( kstp, jpts, tsn, gtsu, gtsv, & ! Partial steps for top cell (ISF) & rhd, gru , grv , aru , arv , gzu , gzv , ge3ru , ge3rv , & & gtui, gtvi, grui, grvi, arui, arvi, gzui, gzvi, ge3rui, ge3rvi ) ! of t, s, rd at the last ocean level ENDIF IF( ln_zdfnpc ) CALL tra_npc( kstp ) ! update after fields by non-penetrative convection CALL tra_nxt( kstp ) ! tracer fields at next time step ENDIF !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Dynamics (tsa used as workspace) !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_dynspg_ts ) THEN ! revert to previously computed momentum tendencies ! (not using ua, va as temporary arrays during tracers' update could avoid that) ua(:,:,:) = ua_sv(:,:,:) va(:,:,:) = va_sv(:,:,:) ! Revert now divergence and rotational to previously computed ones !(needed because of the time swap in div_cur, at the beginning of each time step) hdivn(:,:,:) = hdivb(:,:,:) rotn(:,:,:) = rotb(:,:,:) CALL dyn_bfr( kstp ) ! bottom friction CALL dyn_zdf( kstp ) ! vertical diffusion ELSE ua(:,:,:) = 0.e0 ! set dynamics trends to zero va(:,:,:) = 0.e0 IF( lk_asminc .AND. ln_asmiau .AND. & & ln_dyninc ) CALL dyn_asm_inc( kstp ) ! apply dynamics assimilation increment IF( ln_bkgwri ) CALL asm_bkg_wri( kstp ) ! output background fields IF( ln_neptsimp ) CALL dyn_nept_cor( kstp ) ! subtract Neptune velocities (simplified) IF( lk_bdy ) CALL bdy_dyn3d_dmp(kstp ) ! bdy damping trends CALL dyn_adv( kstp ) ! advection (vector or flux form) CALL dyn_vor( kstp ) ! vorticity term including Coriolis CALL dyn_ldf( kstp ) ! lateral mixing IF( ln_neptsimp ) CALL dyn_nept_cor( kstp ) ! add Neptune velocities (simplified) #if defined key_agrif IF(.NOT. Agrif_Root()) CALL Agrif_Sponge_dyn ! momemtum sponge #endif CALL dyn_hpg( kstp ) ! horizontal gradient of Hydrostatic pressure CALL dyn_bfr( kstp ) ! bottom friction CALL dyn_zdf( kstp ) ! vertical diffusion CALL dyn_spg( kstp, indic ) ! surface pressure gradient ENDIF CALL dyn_nxt( kstp ) ! lateral velocity at next time step CALL ssh_swp( kstp ) ! swap of sea surface height IF( lk_vvl ) CALL dom_vvl_sf_swp( kstp ) ! swap of vertical scale factors ! IF( ln_diahsb ) CALL dia_hsb( kstp ) ! - ML - global conservation diagnostics IF( lrst_oce ) CALL rst_write( kstp ) ! write output ocean restart file IF( ln_sto_eos ) CALL sto_rst_write( kstp ) ! write restart file for stochastic parameters #if defined key_agrif !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! AGRIF !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL Agrif_Integrate_ChildGrids( stp ) IF ( Agrif_NbStepint().EQ.0 ) THEN CALL Agrif_Update_Tra() ! Update active tracers CALL Agrif_Update_Dyn() ! Update momentum ENDIF #endif IF( lk_diaobs ) CALL dia_obs( kstp ) ! obs-minus-model (assimilation) diagnostics (call after dynamics update) !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Control !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< CALL stp_ctl( kstp, indic ) IF( indic < 0 ) THEN CALL ctl_stop( 'step: indic < 0' ) CALL dia_wri_state( 'output.abort', kstp ) ENDIF IF( kstp == nit000 ) THEN CALL iom_close( numror ) ! close input ocean restart file IF(lwm) CALL FLUSH ( numond ) ! flush output namelist oce IF( lwm.AND.numoni /= -1 ) CALL FLUSH ( numoni ) ! flush output namelist ice ENDIF !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ! Coupled mode !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< IF( lk_oasis ) CALL sbc_cpl_snd( kstp ) ! coupled mode : field exchanges ! #if defined key_iomput IF( kstp == nitend .OR. indic < 0 ) THEN CALL iom_context_finalize( cxios_context ) ! needed for XIOS+AGRIF IF( ln_crs ) CALL iom_context_finalize( trim(cxios_context)//"_crs" ) ! ENDIF #endif ! IF( nn_timing == 1 .AND. kstp == nit000 ) CALL timing_reset ! ! END SUBROUTINE stp !!====================================================================== END MODULE step