MODULE trabbc !!============================================================================== !! *** MODULE trabbc *** !! Ocean active tracers: bottom boundary condition (geothermal heat flux) !!============================================================================== !! History : OPA ! 1999-10 (G. Madec) original code !! NEMO 1.0 ! 2002-08 (G. Madec) free form + modules !! - ! 2002-11 (A. Bozec) tra_bbc_init: original code !! 3.3 ! 2010-10 (G. Madec) dynamical allocation + suppression of key_trabbc !! - ! 2010-11 (G. Madec) use mbkt array (deepest ocean t-level) !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! tra_bbc : update the tracer trend at ocean bottom !! tra_bbc_init : initialization of geothermal heat flux trend !!---------------------------------------------------------------------- USE oce ! ocean variables USE dom_oce ! domain: ocean USE phycst ! physical constants USE trd_oce ! trends: ocean variables USE trdtra ! trends manager: tracers USE in_out_manager ! I/O manager USE iom ! I/O manager USE fldread ! read input fields USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! distributed memory computing library USE prtctl ! Print control USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC tra_bbc ! routine called by step.F90 PUBLIC tra_bbc_init ! routine called by opa.F90 ! !!* Namelist nambbc: bottom boundary condition * LOGICAL, PUBLIC :: ln_trabbc !: Geothermal heat flux flag INTEGER :: nn_geoflx ! Geothermal flux (=1:constant flux, =2:read in file ) REAL(wp) :: rn_geoflx_cst ! Constant value of geothermal heat flux REAL(wp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: qgh_trd0 ! geothermal heating trend TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_qgh ! structure of input qgh (file informations, fields read) !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_bbc( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_bbc *** !! !! ** Purpose : Compute the bottom boundary contition on temperature !! associated with geothermal heating and add it to the !! general trend of temperature equations. !! !! ** Method : The geothermal heat flux set to its constant value of !! 86.4 mW/m2 (Stein and Stein 1992, Huang 1999). !! The temperature trend associated to this heat flux through the !! ocean bottom can be computed once and is added to the temperature !! trend juste above the bottom at each time step: !! ta = ta + Qsf / (rau0 rcp e3T) for k= mbkt !! Where Qsf is the geothermal heat flux. !! !! ** Action : - update the temperature trends (ta) with the trend of !! the ocean bottom boundary condition !! !! References : Stein, C. A., and S. Stein, 1992, Nature, 359, 123-129. !! Emile-Geay and Madec, 2009, Ocean Science. !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index !! INTEGER :: ji, jj, ik ! dummy loop indices REAL(wp) :: zqgh_trd ! geothermal heat flux trend REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdt !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('tra_bbc') ! IF( l_trdtra ) THEN ! Save ta and sa trends CALL wrk_alloc( jpi, jpj, jpk, ztrdt ) ztrdt(:,:,:) = tsa(:,:,:,jp_tem) ENDIF ! ! ! Add the geothermal heat flux trend on temperature DO jj = 2, jpjm1 DO ji = 2, jpim1 ik = mbkt(ji,jj) zqgh_trd = qgh_trd0(ji,jj) / fse3t(ji,jj,ik) tsa(ji,jj,ik,jp_tem) = tsa(ji,jj,ik,jp_tem) + zqgh_trd END DO END DO ! CALL lbc_lnk( tsa(:,:,:,jp_tem) , 'T', 1. ) ! IF( l_trdtra ) THEN ! Save the geothermal heat flux trend for diagnostics ztrdt(:,:,:) = tsa(:,:,:,jp_tem) - ztrdt(:,:,:) CALL trd_tra( kt, 'TRA', jp_tem, jptra_bbc, ztrdt ) CALL wrk_dealloc( jpi, jpj, jpk, ztrdt ) ENDIF ! CALL iom_put ( "hfgeou" , rau0_rcp * qgh_trd0(:,:) ) ! IF(ln_ctl) CALL prt_ctl( tab3d_1=tsa(:,:,:,jp_tem), clinfo1=' bbc - Ta: ', mask1=tmask, clinfo3='tra-ta' ) ! IF( nn_timing == 1 ) CALL timing_stop('tra_bbc') ! END SUBROUTINE tra_bbc SUBROUTINE tra_bbc_init !!---------------------------------------------------------------------- !! *** ROUTINE tra_bbc_init *** !! !! ** Purpose : Compute once for all the trend associated with geothermal !! heating that will be applied at each time step at the !! last ocean level !! !! ** Method : Read the nambbc namelist and check the parameters. !! !! ** Input : - Namlist nambbc !! - NetCDF file : geothermal_heating.nc ( if necessary ) !! !! ** Action : - read/fix the geothermal heat qgh_trd0 !!---------------------------------------------------------------------- USE iom !! INTEGER :: ji, jj ! dummy loop indices INTEGER :: inum ! temporary logical unit INTEGER :: ios ! Local integer output status for namelist read INTEGER :: ierror ! local integer ! TYPE(FLD_N) :: sn_qgh ! informations about the geotherm. field to be read CHARACTER(len=256) :: cn_dir ! Root directory for location of ssr files ! NAMELIST/nambbc/ln_trabbc, nn_geoflx, rn_geoflx_cst, sn_qgh, cn_dir !!---------------------------------------------------------------------- REWIND( numnam_ref ) ! Namelist nambbc in reference namelist : Bottom momentum boundary condition READ ( numnam_ref, nambbc, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambbc in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist nambbc in configuration namelist : Bottom momentum boundary condition READ ( numnam_cfg, nambbc, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambbc in configuration namelist', lwp ) IF(lwm) WRITE ( numond, nambbc ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'tra_bbc : Bottom Boundary Condition (bbc), apply a Geothermal heating' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist nambbc : set bbc parameters' WRITE(numout,*) ' Apply a geothermal heating at ocean bottom ln_trabbc = ', ln_trabbc WRITE(numout,*) ' type of geothermal flux nn_geoflx = ', nn_geoflx WRITE(numout,*) ' Constant geothermal flux value rn_geoflx_cst = ', rn_geoflx_cst WRITE(numout,*) ENDIF IF( ln_trabbc ) THEN !== geothermal heating ==! ! ALLOCATE( qgh_trd0(jpi,jpj) ) ! allocation ! SELECT CASE ( nn_geoflx ) ! geothermal heat flux / (rauO * Cp) ! CASE ( 1 ) !* constant flux IF(lwp) WRITE(numout,*) ' *** constant heat flux = ', rn_geoflx_cst qgh_trd0(:,:) = r1_rau0_rcp * rn_geoflx_cst ! CASE ( 2 ) !* variable geothermal heat flux : read the geothermal fluxes in mW/m2 IF(lwp) WRITE(numout,*) ' *** variable geothermal heat flux' ! ALLOCATE( sf_qgh(1), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'tra_bbc_init: unable to allocate sf_qgh structure' ) ; RETURN ENDIF ALLOCATE( sf_qgh(1)%fnow(jpi,jpj,1) ) IF( sn_qgh%ln_tint )ALLOCATE( sf_qgh(1)%fdta(jpi,jpj,1,2) ) ! fill sf_chl with sn_chl and control print CALL fld_fill( sf_qgh, (/ sn_qgh /), cn_dir, 'tra_bbc_init', & & 'bottom temperature boundary condition', 'nambbc' ) CALL fld_read( nit000, 1, sf_qgh ) ! Read qgh data qgh_trd0(:,:) = r1_rau0_rcp * sf_qgh(1)%fnow(:,:,1) * 1.e-3 ! conversion in W/m2 ! CASE DEFAULT WRITE(ctmp1,*) ' bad flag value for nn_geoflx = ', nn_geoflx CALL ctl_stop( ctmp1 ) ! END SELECT ! ELSE IF(lwp) WRITE(numout,*) ' *** no geothermal heat flux' ENDIF ! END SUBROUTINE tra_bbc_init !!====================================================================== END MODULE trabbc