MODULE sbcssr !!====================================================================== !! *** MODULE sbcssr *** !! Surface module : heat and fresh water fluxes a restoring term toward targeted SST/SSS !!====================================================================== !! History : 3.0 ! 2006-06 (G. Madec) Original code !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put !! 3.6 ! 2018-06 Update from shaconemo !! 3.6 ! 2018-07 (Y. Ruprich-Robert) restoring ponderated by sea-ice fraction !! 3.6 ! 2018-07 (Y. Ruprich-Robert) Subregion restoring mask !! 3.6 ! 2018-10 (Y. Ruprich-Robert) Adaptation from shaconemo changes Revision #6009 !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_ssr : add to sbc a restoring term toward SST/SSS climatology !! sbc_ssr_init : initialisation of surface restoring !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! surface boundary condition USE phycst ! physical constants USE sbcrnf ! surface boundary condition : runoffs ! USE fldread ! read input fields USE iom ! I/O manager USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE timing ! Timing USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC sbc_ssr ! routine called in sbcmod PUBLIC sbc_ssr_init ! routine called in sbcmod PUBLIC sbc_ssr_alloc ! routine called in sbcmod REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: erp !: evaporation damping [kg/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qrp !: heat flux damping [w/m2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sf_msk_f !: restoring mask REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sf_msk_f_init !: initial restoring mask ! !!* Namelist namsbc_ssr * INTEGER, PUBLIC :: nn_sstr ! SST/SSS restoring indicator INTEGER, PUBLIC :: nn_sssr ! SST/SSS restoring indicator REAL(wp) :: rn_dqdt ! restoring factor on SST and SSS REAL(wp) :: rn_deds ! restoring factor on SST and SSS LOGICAL :: ln_sssr_bnd ! flag to bound erp term REAL(wp) :: rn_sssr_bnd ! ABS(Max./Min.) value of erp term [mm/day] LOGICAL :: ln_sssd_bnd ! flag to bound S-S* term REAL(wp) :: rn_sssd_bnd ! ABS(Max./Min.) value of S-S* term [psu] INTEGER :: nn_icedmp ! Control of surface restoring under ice INTEGER :: nn_msk ! SST/SSS restoring mask indicator REAL(wp) , ALLOCATABLE, DIMENSION(:) :: buffer ! Temporary buffer for exchange TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sst ! structure of input SST (file informations, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_sss ! structure of input SSS (file informations, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_msk ! structure of input MASK (file informations, fields read) !! * Substitutions # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id: sbcssr.F90 4990 2014-12-15 16:42:49Z timgraham $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_ssr( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_ssr *** !! !! ** Purpose : Add to heat and/or freshwater fluxes a damping term !! toward targeted SST and/or SSS. !! !! ** Method : - Read namelist namsbc_ssr !! - Read targeted SST and/or SSS !! - at each nscb time step !! add a retroaction term on qns (nn_sstr = 1) !! add a damping term on sfx (nn_sssr = 1) !! add a damping term on emp (nn_sssr = 2) !!--------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time step !! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zerp ! local scalar for evaporation damping REAL(wp) :: zsdif ! local scalar for salinity difference from climatology REAL(wp) :: zqrp ! local scalar for heat flux damping REAL(wp) :: zsrp ! local scalar for unit conversion of rn_deds factor REAL(wp) :: zerp_bnd ! local scalar for unit conversion of rn_epr_max factor INTEGER :: ierror ! return error code !! CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files TYPE(FLD_N) :: sn_sst, sn_sss, sn_msk ! informations about the fields to be read !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('sbc_ssr') ! IF( nn_sstr + nn_sssr /= 0 ) THEN ! sf_msk_f = sf_msk_f_init ! initialize mask at time step kt sf_msk_f = sf_msk_f(:,:) * ( 1.e0 - fr_i(:,:) ) ! decrease of restoring coef with sea-ice fraction IF( nn_icedmp /= 0 ) THEN ! ponderation of restoring coef by sea-ice fraction (increases with sea-ice) sf_msk_f = sf_msk_f(:,:) + sf_msk_f_init(:,:) * nn_icedmp*fr_i(:,:) ENDIF ! IF( nn_sstr == 1) CALL fld_read( kt, nn_fsbc, sf_sst ) ! Read SST data and provides it at kt IF( nn_sssr >= 1) CALL fld_read( kt, nn_fsbc, sf_sss ) ! Read SSS data and provides it at kt ! ! ! ========================= ! IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! Add restoring term ! ! ! ========================= ! ! IF( nn_sstr == 1 ) THEN !* Temperature restoring term DO jj = 1, jpj DO ji = 1, jpi zqrp = rn_dqdt * ( sst_m(ji,jj) - sf_sst(1)%fnow(ji,jj,1) ) & & * sf_msk_f(ji,jj) qns(ji,jj) = qns(ji,jj) + zqrp qrp(ji,jj) = zqrp END DO END DO ENDIF ! IF( nn_sssr == 1 ) THEN !* Salinity damping term (salt flux only (sfx)) zsrp = rn_deds / rday ! from [mm/day] to [kg/m2/s] !CDIR COLLAPSE DO jj = 1, jpj DO ji = 1, jpi zerp = zsrp * ( 1. - 2.*rnfmsk(ji,jj) ) & ! No damping in vicinity of river mouths & * sf_msk_f(ji,jj) & & * ( sss_m(ji,jj) - sf_sss(1)%fnow(ji,jj,1) ) sfx(ji,jj) = sfx(ji,jj) + zerp ! salt flux erp(ji,jj) = zerp / MAX( sss_m(ji,jj), 1.e-20 ) ! converted into an equivalent volume flux (diagnostic only) END DO END DO ! ELSEIF( nn_sssr == 2 ) THEN !* Salinity damping term (volume flux (emp) and associated heat flux (qns) zsrp = rn_deds / rday ! from [mm/day] to [kg/m2/s] zerp_bnd = rn_sssr_bnd / rday ! - - !CDIR COLLAPSE DO jj = 1, jpj DO ji = 1, jpi zsdif = sss_m(ji,jj) - sf_sss(1)%fnow(ji,jj,1) ! Difference between actual and relaxation SSS IF( ln_sssd_bnd ) zsdif = SIGN( MIN( ABS( zsdif ) , rn_sssd_bnd ) , zsdif ) ! Optional bound on salinity difference zerp = zsrp * ( 1. - 2.*rnfmsk(ji,jj) ) & ! No damping in vicinity of river mouths & * sf_msk_f(ji,jj) & & * zsdif / MAX( sss_m(ji,jj), 1.e-20 ) IF( ln_sssr_bnd ) zerp = SIGN( 1., zerp ) * MIN( zerp_bnd, ABS(zerp) ) emp(ji,jj) = emp (ji,jj) + zerp qns(ji,jj) = qns(ji,jj) - zerp * rcp * sst_m(ji,jj) erp(ji,jj) = zerp END DO END DO ENDIF ! ENDIF ! ENDIF ! IF( nn_timing == 1 ) CALL timing_stop('sbc_ssr') ! END SUBROUTINE sbc_ssr SUBROUTINE sbc_ssr_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_ssr_init *** !! !! ** Purpose : initialisation of surface damping term !! !! ** Method : - Read namelist namsbc_ssr !! - Read observed SST and/or SSS if required !!--------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices INTEGER :: ierror ! return error code !! CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files TYPE(FLD_N) :: sn_sst, sn_sss, sn_msk ! informations about the fields to be read NAMELIST/namsbc_ssr/ cn_dir, nn_sstr, nn_sssr, nn_icedmp, nn_msk, rn_dqdt, & & rn_deds, sn_sst, sn_sss, sn_msk, ln_sssr_bnd, & & rn_sssr_bnd, ln_sssd_bnd, rn_sssd_bnd INTEGER :: ios !!---------------------------------------------------------------------- ! REWIND( numnam_ref ) ! Namelist namsbc_ssr in reference namelist : READ ( numnam_ref, namsbc_ssr, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_ssr in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc_ssr in configuration namelist : READ ( numnam_cfg, namsbc_ssr, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_ssr in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc_ssr ) IF(lwp) THEN !* control print WRITE(numout,*) WRITE(numout,*) 'sbc_ssr : SST and/or SSS damping term ' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namsbc_ssr :' WRITE(numout,*) ' SST restoring term (Yes=1) nn_sstr = ', nn_sstr WRITE(numout,*) ' SSS damping term (Yes=1, salt flux) nn_sssr = ', nn_sssr WRITE(numout,*) ' (Yes=2, volume flux) ' WRITE(numout,*) ' dQ/dT (restoring magnitude on SST) rn_dqdt = ', rn_dqdt, ' W/m2/K' WRITE(numout,*) ' dE/dS (restoring magnitude on SST) rn_deds = ', rn_deds, ' mm/day' WRITE(numout,*) ' flag to bound erp term ln_sssr_bnd = ', ln_sssr_bnd WRITE(numout,*) ' ABS(Max./Min.) erp threshold rn_sssr_bnd = ', rn_sssr_bnd, ' mm/day' WRITE(numout,*) ' flag to bound S-S* ln_sssd_bnd = ', ln_sssd_bnd WRITE(numout,*) ' ABS(Max./Min.) S-S* threshold rn_sssd_bnd = ', rn_sssd_bnd, ' psu' WRITE(numout,*) ' Cntrl of surface restoration under ice nn_icedmp = ', nn_icedmp WRITE(numout,*) ' ( 0 = no restoration under ice)' WRITE(numout,*) ' ( 1 = restoration everywhere )' WRITE(numout,*) ' (>1 = enhanced restoration under ice )' WRITE(numout,*) ' subregion restoring mask (Yes=1) nn_msk = ', nn_msk ENDIF ! IF( nn_sstr + nn_sssr /= 0 ) THEN ! sf_msk_f_init = tmask(:,:,1) IF( nn_msk == 1 ) THEN !* set sf_msk structure & allocate arrays ! ALLOCATE( sf_msk(1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_msk structure' ) ALLOCATE( sf_msk(1)%fnow(jpi,jpj,1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_msk now array' ) ! ! fill sf_msk with sn_msk and control print CALL fld_fill( sf_msk, (/ sn_msk /), cn_dir, 'sbc_ssr', 'mask for sea surface restoring', 'namsbc_ssr' ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_msk data array' ) ! CALL fld_read( 1, 1, sf_msk ) ! Read mask sf_msk_f_init = sf_msk(1)%fnow(:,:,1) ! ENDIF ! ENDIF ! IF( nn_sstr == 1 ) THEN !* set sf_sst structure & allocate arrays ! ALLOCATE( sf_sst(1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst structure' ) ALLOCATE( sf_sst(1)%fnow(jpi,jpj,1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst now array' ) ! ! fill sf_sst with sn_sst and control print CALL fld_fill( sf_sst, (/ sn_sst /), cn_dir, 'sbc_ssr', 'SST restoring term toward SST data', 'namsbc_ssr' ) IF( sf_sst(1)%ln_tint ) ALLOCATE( sf_sst(1)%fdta(jpi,jpj,1,2), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sst data array' ) ! ENDIF ! IF( nn_sssr >= 1 ) THEN !* set sf_sss structure & allocate arrays ! ALLOCATE( sf_sss(1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss structure' ) ALLOCATE( sf_sss(1)%fnow(jpi,jpj,1), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss now array' ) ! ! fill sf_sss with sn_sss and control print CALL fld_fill( sf_sss, (/ sn_sss /), cn_dir, 'sbc_ssr', 'SSS restoring term toward SSS data', 'namsbc_ssr' ) IF( sf_sss(1)%ln_tint ) ALLOCATE( sf_sss(1)%fdta(jpi,jpj,1,2), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_ssr: unable to allocate sf_sss data array' ) ! ENDIF ! ! !* Initialize qrp and erp if no restoring IF( nn_sstr /= 1 ) qrp(:,:) = 0._wp IF( nn_sssr /= 1 .OR. nn_sssr /= 2 ) erp(:,:) = 0._wp ! END SUBROUTINE sbc_ssr_init INTEGER FUNCTION sbc_ssr_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION sbc_ssr_alloc *** !!---------------------------------------------------------------------- sbc_ssr_alloc = 0 ! set to zero if no array to be allocated IF( .NOT. ALLOCATED( erp ) ) THEN ALLOCATE( qrp(jpi,jpj), erp(jpi,jpj), sf_msk_f_init(jpi,jpj), sf_msk_f(jpi,jpj), STAT= sbc_ssr_alloc ) ! IF( lk_mpp ) CALL mpp_sum ( sbc_ssr_alloc ) IF( sbc_ssr_alloc /= 0 ) CALL ctl_warn('sbc_ssr_alloc: failed to allocate arrays.') ! ENDIF END FUNCTION !!====================================================================== END MODULE sbcssr