# namelist.nemo-ORCA1L46.cfg.sh writes the NEMO namelist for ORCA1L46 in # coupled mode to standard output. This namelist will overwrite the reference # namelist (namelist.nemo.ref.sh). Hence, only parameters specific to the # ORCA1L46/coupled configuration should be specified here. cat << EOF !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> !! NEMO/OPA Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_ref !!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> !!====================================================================== !! *** Run management namelists *** !!====================================================================== !! namrun parameters of the run !!====================================================================== ! !----------------------------------------------------------------------- &namrun ! parameters of the run !----------------------------------------------------------------------- nn_leapy = 1 ! Leap year calendar (1) or not (0) / ! !!====================================================================== !! *** Domain namelists *** !!====================================================================== !! namcfg parameters of the configuration !! namzgr vertical coordinate !! namzgr_sco s-coordinate or hybrid z-s-coordinate !! namdom space and time domain (bathymetry, mesh, timestep) !! namtsd data: temperature & salinity !!====================================================================== ! !----------------------------------------------------------------------- &namcfg ! parameters of the configuration !----------------------------------------------------------------------- cp_cfg = "orca" ! name of the configuration jp_cfg = 025 ! resolution of the configuration jpidta = 1442 ! 1st lateral dimension ( >= jpi ) jpjdta = 1050 ! 2nd " " ( >= jpj ) jpkdta = 75 ! number of levels ( >= jpk ) jpiglo = 1442 ! 1st dimension of global domain --> i =jpidta jpjglo = 1050 ! 2nd - - --> j =jpjdta jperio = 4 ! lateral cond. type (between 0 and 6) ! = 0 closed ; = 1 cyclic East-West ! = 2 equatorial symmetric ; = 3 North fold T-point pivot ! = 4 cyclic East-West AND North fold T-point pivot ! = 5 North fold F-point pivot ! = 6 cyclic East-West AND North fold F-point pivot / !----------------------------------------------------------------------- &namzgr ! vertical coordinate !----------------------------------------------------------------------- ln_zco = .false. ! z-coordinate - full steps (T/F) ("key_zco" may also be defined) ln_zps = .true. ! z-coordinate - partial steps (T/F) ln_sco = .false. ! s- or hybrid z-s-coordinate (T/F) ln_isfcav = .false. ! ice shelf cavity (T/F) / !----------------------------------------------------------------------- &namzgr_sco ! s-coordinate or hybrid z-s-coordinate !----------------------------------------------------------------------- ln_s_sh94 = .true. ! Song & Haidvogel 1994 hybrid S-sigma (T)| ln_s_sf12 = .false. ! Siddorn & Furner 2012 hybrid S-z-sigma (T)| if both are false the NEMO tanh stretching is applied ln_sigcrit = .false. ! use sigma coordinates below critical depth (T) or Z coordinates (F) for Siddorn & Furner stretch ! stretching coefficients for all functions rn_sbot_min = 10.0 ! minimum depth of s-bottom surface (>0) (m) rn_sbot_max = 7000.0 ! maximum depth of s-bottom surface (= ocean depth) (>0) (m) rn_hc = 150.0 ! critical depth for transition to stretched coordinates !!!!!!! Envelop bathymetry rn_rmax = 0.3 ! maximum cut-off r-value allowed (00) or min number of ocean level (<0) rn_e3zps_min= 25. ! partial step thickness is set larger than the minimum of rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0 fill namsbc_core) ln_cpl = .true. ! Coupled formulation (T => fill namsbc_cpl ) nn_ice_embd = 1 ! =0 levitating ice (no mass exchange, concentration/dilution effect) ! =1 levitating ice with mass and salt exchange but no presure effect ! =2 embedded sea-ice (full salt and mass exchanges and pressure) ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave ln_rnf = .true. ! runoffs (T => fill namsbc_rnf) nn_isf = 0 ! ice shelf melting/freezing (/=0 => fill namsbc_isf) ! 0 =no isf 1 = presence of ISF ! 2 = bg03 parametrisation 3 = rnf file for isf ! 4 = ISF fwf specified ! option 1 and 4 need ln_isfcav = .true. (domzgr) ln_ssr = ${ln_ssr} ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr) nn_fwb = 0 ! FreshWater Budget: =0 unchecked ! =1 global mean of e-p-r set to zero at each time step ! =2 annual global mean of e-p-r set to zero nn_limflx = 2 ! LIM3 Multi-category heat flux formulation (use -1 if LIM3 is not used) ! =-1 Use per-category fluxes, bypass redistributor, forced mode only, not yet implemented coupled ! = 0 Average per-category fluxes (forced and coupled mode) ! = 1 Average and redistribute per-category fluxes, forced mode only, not yet implemented coupled ! = 2 Redistribute a single flux over categories (coupled mode only) / !----------------------------------------------------------------------- &namsbc_ana ! analytical surface boundary condition !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc_flx ! surface boundary condition : flux formulation !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc_clio ! namsbc_clio CLIO bulk formulae !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc_core ! namsbc_core CORE bulk formulae !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc_cpl ! coupled ocean/atmosphere model ("key_coupled") !----------------------------------------------------------------------- ! ! description ! multiple ! vector ! vector ! vector ! ! ! ! categories ! reference ! orientation ! grids ! ! send sn_snd_temp = 'oce and ice' , 'no' , '' , '' , '' sn_snd_alb = 'ice' , 'no' , '' , '' , '' sn_snd_thick = 'ice and snow' , 'no' , '' , '' , '' sn_snd_crt = 'none' , 'no' , 'spherical' , 'eastward-northward' , 'T' sn_snd_co2 = 'none' , 'no' , '' , '' , '' ! receive sn_rcv_w10m = 'none' , 'no' , '' , '' , '' sn_rcv_taumod = 'none' , 'no' , '' , '' , '' sn_rcv_tau = 'oce and ice' , 'no' , 'spherical' , 'eastward-northward' , 'U,V' sn_rcv_dqnsdt = 'coupled' , 'no' , '' , '' , '' sn_rcv_qsr = 'conservative' , 'no' , '' , '' , '' sn_rcv_qns = 'conservative' , 'no' , '' , '' , '' sn_rcv_emp = 'conservative' , 'no' , '' , '' , '' sn_rcv_rnf = 'coupled' , 'no' , '' , '' , '' sn_rcv_cal = 'coupled' , 'no' , '' , '' , '' sn_rcv_co2 = 'none' , 'no' , '' , '' , '' sn_rcv_iceflx = 'none' , 'no' , '' , '' , '' ! nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentialy sending/receiving data ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel) / !----------------------------------------------------------------------- &namtra_qsr ! penetrative solar radiation !----------------------------------------------------------------------- nn_chldta = 0 ! RGB : Chl data (=1) or cst value (=0) / !----------------------------------------------------------------------- &namsbc_rnf ! runoffs namelist surface boundary condition !----------------------------------------------------------------------- ! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! ! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! sn_rnf = 'ORCA_R025_runoff_v1.1.nc', -1 , 'sornficb' , .true. , .true., 'yearly' , '' , '' , '' sn_cnf = 'ORCA_R025_runoff_v1.1.nc', 0 , 'socoefr' , .false. , .true., 'yearly' , '' , '' , '' sn_dep_rnf = 'runoff_depth' , 0 , 'rodepth' , .false. , .true., 'yearly' , '' , '' , '' ! cn_dir = './' ! root directory for the location of the runoff files ln_rnf_mouth = .false. ! specific treatment at rivers mouths rn_hrnf = 10. ! depth over which enhanced vertical mixing is used rn_avt_rnf = 2.e-3 ! value of the additional vertical mixing coef. [m2/s] rn_rfact = 1.e0 ! multiplicative factor for runoff ln_rnf_depth = .true. ! read in depth information for runoff ln_rnf_tem = .false. ! read in temperature information for runoff ln_rnf_sal = .false. ! read in salinity information for runoff ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain ( ln_rnf_depth_ini = .true ) rn_dep_max = 150. ! depth over which runoffs is spread ( ln_rnf_depth_ini = .true ) nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0) / !----------------------------------------------------------------------- &namsbc_ssr ! surface boundary condition : sea surface restoring !----------------------------------------------------------------------- ! ! 07/2018 - Yohan Ruprich-Robert chages: add mask_ssr reading option and take into account last shaconemo update (06/2018) ! ! ! filename ! freq ! variable name ! time ! clim ! year or ! weights ! rot ! mask ! ! ! ! ! interp ! ! monthly ! filename ! pair ! filename !---------------------------------------------------------------------------------------------------------------------------------------- sn_sss = 'sss_restore_data' , -1. , 'so' , .true. , .true. , 'yearly' , '' , '' , '' sn_sst = 'sst_restore_data' , -1. , 'thetao' , .true. , .true. , 'yearly' , '' , '' , '' sn_msk = 'mask_restore' , -12. , 'mask_ssr' , .false. , .true. , 'yearly' , '' , '' , '' ! cn_dir = './' ! root directory for the location of the runoff files nn_sstr = 1 ! add a retroaction term in the surface heat flux (=1) or not (=0) nn_sssr = 2 ! add a damping term in the surface freshwater flux (=2) or to SSS only (=1) or no damping term (=0) nn_icedmp = 0 ! Cntrl of surface restoration under ice nn_icedmp ! ( 0 = no restoration under ice ) ! ( 1 = restoration everywhere ) ! ( > 1 = reinforced damping (x nn_icedmp) under ice nn_msk = 1 ! add a sub-regional masking to the surface restoring (=1) or not (=0) ! sn_msk can be empty if nn_msk = 0 rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K] rn_deds = -166.67 ! -864 magnitude of the damping on salinity [kg/m2/s/psu] ln_sssr_bnd = .false. ! .true. ! flag to bound erp term (associated with nn_sssr=2) rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day] (associated with nn_sssr=2) ln_sssd_bnd = .false. ! .true. ! flag to bound S-S* term (associated with nn_ssr=2) rn_sssd_bnd = 0.01 ! ABS(Max./Min.) value of S-S* term [psu] (associated with nn_ssr=2) / !----------------------------------------------------------------------- &namsbc_alb ! albedo parameters !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namberg ! iceberg parameters !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namlbc ! lateral momentum boundary condition !----------------------------------------------------------------------- rn_shlat = 0.0 ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat ! free slip ! partial slip ! no slip ! strong slip / !----------------------------------------------------------------------- &namcla ! cross land advection !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namobc ! open boundaries parameters ("key_obc") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namagrif ! AGRIF zoom ("key_agrif") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nam_tide ! tide parameters (#ifdef key_tide) !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nambdy ! unstructured open boundaries ("key_bdy") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nambdy_dta ! open boundaries - external data ("key_bdy") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nambdy_tide ! tidal forcing at open boundaries !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nambfr ! bottom friction !----------------------------------------------------------------------- nn_bfr = 2 ! type of bottom friction : = 0 : free slip, = 1 : linear friction ! = 2 : nonlinear friction rn_bfri1 = 4.e-4 ! bottom drag coefficient (linear case) rn_bfri2 = 1.e-3 ! bottom drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_bfri2_max = 1.e-1 ! max. bottom drag coefficient (non linear case and ln_loglayer=T) rn_bfeb2 = 2.5e-3 ! bottom turbulent kinetic energy background (m2/s2) rn_bfrz0 = 3.e-3 ! bottom roughness [m] if ln_loglayer=T ln_bfr2d = .false. ! horizontal variation of the bottom friction coef (read a 2D mask file ) rn_bfrien = 10. ! local multiplying factor of bfr (ln_bfr2d=T) rn_tfri1 = 4.e-4 ! top drag coefficient (linear case) rn_tfri2 = 2.5e-3 ! top drag coefficient (non linear case). Minimum coeft if ln_loglayer=T rn_tfri2_max = 1.e-1 ! max. top drag coefficient (non linear case and ln_loglayer=T) rn_tfeb2 = 0.0 ! top turbulent kinetic energy background (m2/s2) rn_tfrz0 = 3.e-3 ! top roughness [m] if ln_loglayer=T ln_tfr2d = .false. ! horizontal variation of the top friction coef (read a 2D mask file ) rn_tfrien = 50. ! local multiplying factor of tfr (ln_tfr2d=T) ln_bfrimp = .false. ! implicit bottom friction (requires ln_zdfexp = .false. if true) ln_loglayer = .false. ! logarithmic formulation (non linear case) / !----------------------------------------------------------------------- &nambbc ! bottom temperature boundary condition !----------------------------------------------------------------------- ln_trabbc = .true. ! Apply a geothermal heating at the ocean bottom nn_geoflx = 2 ! geothermal heat flux: = 0 no flux ! = 1 constant flux ! = 2 variable flux (read in geothermal_heating.nc in mW/m2) sn_qgh = 'Goutorbe_ghflux.nc', -12. , 'gh_flux' , .false. , .true. , 'yearly' , 'weights_Goutorbe1_2_orca025_bilinear.nc' , '' , '' / !----------------------------------------------------------------------- &nambbl ! bottom boundary layer scheme !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nameos ! ocean physical parameters !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namtra_adv ! advection scheme for tracer !----------------------------------------------------------------------- ln_traadv_cen2 = .false. ! 2nd order centered scheme ln_traadv_tvd = .true. ! TVD scheme ln_traadv_muscl = .false. ! MUSCL scheme ln_traadv_muscl2 = .false. ! MUSCL2 scheme + cen2 at boundaries ln_traadv_ubs = .false. ! UBS scheme ln_traadv_qck = .false. ! QUICKEST scheme ln_traadv_msc_ups= .false. ! use upstream scheme within muscl ln_traadv_tvd_zts= .false. ! TVD scheme with sub-timestepping of vertical tracer advection / !----------------------------------------------------------------------- &namtra_adv_mle ! mixed layer eddy parametrisation (Fox-Kemper param) !----------------------------------------------------------------------- ln_mle = .false. ! (T) use the Mixed Layer Eddy (MLE) parameterisation rn_ce = 0.06 ! magnitude of the MLE (typical value: 0.06 to 0.08) nn_mle = 1 ! MLE type: =0 standard Fox-Kemper ; =1 new formulation rn_lf = 5.e+3 ! typical scale of mixed layer front (meters) (case rn_mle=0) rn_time = 172800. ! time scale for mixing momentum across the mixed layer (seconds) (case rn_mle=0) rn_lat = 20. ! reference latitude (degrees) of MLE coef. (case rn_mle=1) nn_mld_uv = 0 ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max) nn_conv = 0 ! =1 no MLE in case of convection ; =0 always MLE rn_rho_c_mle = 0.01 ! delta rho criterion used to calculate MLD for FK / !---------------------------------------------------------------------------------- &namtra_ldf ! lateral diffusion scheme for tracers !---------------------------------------------------------------------------------- ! ! Operator type: ln_traldf_lap = .true. ! laplacian operator ln_traldf_bilap = .false. ! bilaplacian operator ! ! Direction of action: ln_traldf_level = .false. ! iso-level ln_traldf_hor = .false. ! horizontal (geopotential) (needs "key_ldfslp" when ln_sco=T) ln_traldf_iso = .true. ! iso-neutral (needs "key_ldfslp") ! ! Griffies parameters (all need "key_ldfslp") ln_traldf_grif = .false. ! use griffies triads ln_traldf_gdia = .false. ! output griffies eddy velocities ln_triad_iso = .false. ! pure lateral mixing in ML ln_botmix_grif = .false. ! lateral mixing on bottom ! ! Coefficients ! Eddy-induced (GM) advection always used with Griffies; otherwise needs "key_traldf_eiv" ! Value rn_aeiv_0 is ignored unless = 0 with Held-Larichev spatially varying aeiv ! (key_traldf_c2d & key_traldf_eiv & key_orca_r2, _r1 or _r05) rn_aeiv_0 = 0. ! eddy induced velocity coefficient [m2/s] rn_aht_0 = 300. ! horizontal eddy diffusivity for tracers [m2/s] rn_ahtb_0 = 0. ! background eddy diffusivity for ldf_iso [m2/s] ! (normally=0; not used with Griffies) rn_slpmax = 0.01 ! slope limit rn_chsmag = 1. ! multiplicative factor in Smagorinsky diffusivity rn_smsh = 0. ! Smagorinsky diffusivity: = 0 - use only sheer rn_aht_m = 2000. ! upper limit or stability criteria for lateral eddy diffusivity (m2/s) / !----------------------------------------------------------------------- &namtra_dmp ! tracer: T & S newtonian damping !----------------------------------------------------------------------- ln_tradmp = ${ln_tradmp} ! add a damping termn (T) or not (F) nn_zdmp = 2 ! vertical shape =0 damping throughout the water column ! =1 no damping in the mixing layer (kz criteria) ! =2 no damping in the mixed layer (rho crieria) cn_resto = 'resto.nc' ! Name of file containing restoration coefficient field (use dmp_tools to create this) / !----------------------------------------------------------------------- &namdyn_adv ! formulation of the momentum advection !----------------------------------------------------------------------- ln_dynadv_vec = .true. ! vector form (T) or flux form (F) nn_dynkeg = 1 ! scheme for grad(KE): =0 C2 ; =1 Hollingsworth correction ln_dynadv_cen2= .false. ! flux form - 2nd order centered scheme ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme ln_dynzad_zts = .false. ! Use (T) sub timestepping for vertical momentum advection / !----------------------------------------------------------------------- &nam_vvl ! vertical coordinate options !----------------------------------------------------------------------- ln_vvl_zstar = .true. ! zstar vertical coordinate ln_vvl_ztilde = .false. ! ztilde vertical coordinate: only high frequency variations ln_vvl_layer = .false. ! full layer vertical coordinate ln_vvl_ztilde_as_zstar = .false. ! ztilde vertical coordinate emulating zstar ln_vvl_zstar_at_eqtor = .false. ! ztilde near the equator rn_ahe3 = 0.0e0 ! thickness diffusion coefficient rn_rst_e3t = 30.e0 ! ztilde to zstar restoration timescale [days] rn_lf_cutoff = 5.0e0 ! cutoff frequency for low-pass filter [days] rn_zdef_max = 0.9e0 ! maximum fractional e3t deformation ln_vvl_dbg = .true. ! debug prints (T/F) / !----------------------------------------------------------------------- &namdyn_vor ! option of physics/algorithm (not control by CPP keys) !----------------------------------------------------------------------- ln_dynvor_ene = .false. ! enstrophy conserving scheme ln_dynvor_ens = .false. ! energy conserving scheme ln_dynvor_mix = .false. ! mixed scheme ln_dynvor_een = .true. ! energy & enstrophy scheme ln_dynvor_een_old = .false. ! energy & enstrophy scheme - original formulation / !----------------------------------------------------------------------- &namdyn_hpg ! Hydrostatic pressure gradient option !----------------------------------------------------------------------- ln_hpg_zco = .false. ! z-coordinate - full steps ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation) ln_hpg_sco = .true. ! s-coordinate (standard jacobian formulation) ln_hpg_isf = .false. ! s-coordinate (sco ) adapted to isf ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial) ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme) ln_dynhpg_imp = .false. ! time stepping: semi-implicit time scheme (T) ! centered time scheme (F) / !----------------------------------------------------------------------- &namdyn_ldf ! lateral diffusion on momentum !----------------------------------------------------------------------- ! ! Type of the operator : ln_dynldf_lap = .false. ! laplacian operator ln_dynldf_bilap = .true. ! bilaplacian operator ! ! Direction of action : ln_dynldf_level = .false. ! iso-level ln_dynldf_hor = .true. ! horizontal (geopotential) (require "key_ldfslp" in s-coord.) ln_dynldf_iso = .false. ! iso-neutral (require "key_ldfslp") ! ! Coefficient rn_ahm_0_lap = 0. ! horizontal laplacian eddy viscosity [m2/s] rn_ahmb_0 = 0. ! background eddy viscosity for ldf_iso [m2/s] rn_ahm_0_blp = -6.4e11! horizontal bilaplacian eddy viscosity [m4/s] rn_cmsmag_1 = 3. ! constant in laplacian Smagorinsky viscosity rn_cmsmag_2 = 3 ! constant in bilaplacian Smagorinsky viscosity rn_cmsh = 0. ! 1 or 0 , if 0 -use only shear for Smagorinsky viscosity rn_ahm_m_blp = -1.e12 ! upper limit for bilap abs(ahm) < min( dx^4/128rdt, rn_ahm_m_blp) rn_ahm_m_lap = 40000. ! upper limit for lap ahm < min(dx^2/16rdt, rn_ahm_m_lap) / !!====================================================================== !! Tracers & Dynamics vertical physics namelists !!====================================================================== !! namzdf vertical physics !! namzdf_ric richardson number dependent vertical mixing ("key_zdfric") !! namzdf_tke TKE dependent vertical mixing ("key_zdftke") !! namzdf_kpp KPP dependent vertical mixing ("key_zdfkpp") !! namzdf_ddm double diffusive mixing parameterization ("key_zdfddm") !! namzdf_tmx tidal mixing parameterization ("key_zdftmx") !!====================================================================== ! !----------------------------------------------------------------------- &namzdf ! vertical physics !----------------------------------------------------------------------- rn_avm0 = 1.e-4 ! vertical eddy viscosity [m2/s] (background Kz if not "key_zdfcst") rn_avt0 = 1.e-5 ! vertical eddy diffusivity [m2/s] (background Kz if not "key_zdfcst") nn_avb = 0 ! profile for background avt & avm (=1) or not (=0) nn_havtb = 1 ! horizontal shape for avtb (=1) or not (=0) ln_zdfevd = .true. ! enhanced vertical diffusion (evd) (T) or not (F) nn_evdm = 1 ! evd apply on tracer (=0) or on tracer and momentum (=1) rn_avevd = 10. ! evd mixing coefficient [m2/s] ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm (T) or not (F) nn_npc = 1 ! frequency of application of npc nn_npcp = 365 ! npc control print frequency ln_zdfexp = .false. ! time-stepping: split-explicit (T) or implicit (F) time stepping nn_zdfexp = 3 ! number of sub-timestep for ln_zdfexp=T / !----------------------------------------------------------------------- &namzdf_ric ! richardson number dependent vertical diffusion ("key_zdfric" ) !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion ("key_zdftke") !----------------------------------------------------------------------- rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e) ) rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T) rn_emin = 1.e-6 ! minimum value of tke [m2/s2] rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2] rn_bshear = 1.e-20 ! background shear (>0) currently a numerical threshold (do not change it) nn_mxl = 3 ! mixing length: = 0 bounded by the distance to surface and bottom ! = 1 bounded by the local vertical scale factor ! = 2 first vertical derivative of mixing length bounded by 1 ! = 3 as =2 with distinct disspipative an mixing length scale nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm) ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F) rn_mxl0 = 0.01 ! surface buoyancy lenght scale minimum value ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002) rn_lc = 0.20 ! coef. associated to Langmuir cells nn_etau = 0 ! penetration of tke below the mixed layer (ML) due to internal & intertial waves ! = 0 no penetration ! = 1 add a tke source below the ML ! = 2 add a tke source just at the base of the ML ! = 3 as = 1 applied on HF part of the stress ("key_oasis3") rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2) nn_htau = 1 ! type of exponential decrease of tke penetration below the ML ! = 0 constant 10 m length scale ! = 1 0.5m at the equator to 30m poleward of 40 degrees / !------------------------------------------------------------------------ &namzdf_kpp ! K-Profile Parameterization dependent vertical mixing ("key_zdfkpp", and optionally: !------------------------------------------------------------------------ "key_kppcustom" or "key_kpplktb") / !----------------------------------------------------------------------- &namzdf_gls ! GLS vertical diffusion ("key_zdfgls") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namzdf_ddm ! double diffusive mixing parameterization ("key_zdfddm") !----------------------------------------------------------------------- rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity) rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio / !----------------------------------------------------------------------- &namzdf_tmx ! tidal mixing parameterization ("key_zdftmx") !----------------------------------------------------------------------- rn_htmx = 500. ! vertical decay scale for turbulence (meters) rn_n2min = 1.e-8 ! threshold of the Brunt-Vaisala frequency (s-1) rn_tfe = 0.333 ! tidal dissipation efficiency rn_me = 0.2 ! mixing efficiency ln_tmx_itf = .true. ! ITF specific parameterisation rn_tfe_itf = 1. ! ITF tidal dissipation efficiency / !----------------------------------------------------------------------- &namzdf_tmx_new ! new tidal mixing parameterization ("key_zdftmx_new") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsol ! elliptic solver / island / free surface !----------------------------------------------------------------------- nn_solv = 1 ! elliptic solver: =1 preconditioned conjugate gradient (pcg) ! =2 successive-over-relaxation (sor) nn_sol_arp = 0 ! absolute/relative (0/1) precision convergence test rn_eps = 1.e-6 ! absolute precision of the solver nn_nmin = 300 ! minimum of iterations for the SOR solver nn_nmax = 800 ! maximum of iterations for the SOR solver nn_nmod = 10 ! frequency of test for the SOR solver rn_resmax = 1.e-10 ! absolute precision for the SOR solver rn_sor = 1.92 ! optimal coefficient for SOR solver (to be adjusted with the domain) / !----------------------------------------------------------------------- &nammpp ! Massively Parallel Processing ("key_mpp_mpi) !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namctl ! Control prints & Benchmark !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namc1d_uvd ! data: U & V currents ("key_c1d") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namc1d_dyndmp ! U & V newtonian damping ("key_c1d") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsto ! Stochastic parametrization of EOS !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namtrd ! diagnostics on dynamics and/or tracer trends ("key_trddyn" and/or "key_trdtra") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namflo ! float parameters ("key_float") !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namptr ! Poleward Transport Diagnostic !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namhsb ! Heat and salt budgets !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nam_diaharm ! Harmonic analysis of tidal constituents ('key_diaharm') !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namdct ! transports through sections !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namobs ! observation usage switch ('key_diaobs') !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &nam_asminc ! assimilation increments ('key_asminc') !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namsbc_wave ! External fields from wave model !----------------------------------------------------------------------- / !----------------------------------------------------------------------- &namdyn_nept ! Neptune effect (simplified: lateral and vertical diffusions removed) !----------------------------------------------------------------------- / EOF