MODULE limupdate2 !!====================================================================== !! *** MODULE limupdate2 *** !! LIM-3 : Update of sea-ice global variables at the end of the time step !!====================================================================== !! History : 3.0 ! 2006-04 (M. Vancoppenolle) Original code !! 3.5 ! 2014-06 (C. Rousset) Complete rewriting/cleaning !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_update2 : computes update of sea-ice global variables from trend terms !!---------------------------------------------------------------------- USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE dom_ice USE dom_oce USE phycst ! physical constants USE ice USE thd_ice ! LIM thermodynamic sea-ice variables USE limitd_th USE limvar USE prtctl ! Print control USE lbclnk ! lateral boundary condition - MPP exchanges USE wrk_nemo ! work arrays USE timing ! Timing USE limcons ! conservation tests USE limctl USE lib_mpp ! MPP library USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE in_out_manager IMPLICIT NONE PRIVATE PUBLIC lim_update2 ! routine called by ice_step !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011) !! $Id: limupdate2.F90 4578 2017-09-25 09:34:12Z ufla $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_update2( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_update2 *** !! !! ** Purpose : Computes update of sea-ice global variables at !! the end of the time step. !! !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! number of iteration INTEGER :: ji, jj, jk, jl ! dummy loop indices REAL(wp) :: zsal REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b !!------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('limupdate2') IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*)'' WRITE(numout,*)' lim_update2 ' WRITE(numout,*)' ~~~~~~~~~~~ ' ENDIF ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limupdate2', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) !---------------------------------------------------------------------- ! Constrain the thickness of the smallest category above himin !---------------------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,1) - epsi20 ) ) !0 if no ice and 1 if yes ht_i(ji,jj,1) = v_i (ji,jj,1) / MAX( a_i(ji,jj,1) , epsi20 ) * rswitch IF( v_i(ji,jj,1) > 0._wp .AND. ht_i(ji,jj,1) < rn_himin ) THEN a_i (ji,jj,1) = a_i (ji,jj,1) * ht_i(ji,jj,1) / rn_himin oa_i(ji,jj,1) = oa_i(ji,jj,1) * ht_i(ji,jj,1) / rn_himin ENDIF END DO END DO !----------------------------------------------------- ! ice concentration should not exceed amax !----------------------------------------------------- at_i(:,:) = 0._wp DO jl = 1, jpl at_i(:,:) = a_i(:,:,jl) + at_i(:,:) END DO DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi IF( at_i(ji,jj) > rn_amax_2d(ji,jj) .AND. a_i(ji,jj,jl) > 0._wp ) THEN a_i (ji,jj,jl) = a_i (ji,jj,jl) * ( 1._wp - ( 1._wp - rn_amax_2d(ji,jj) / at_i(ji,jj) ) ) oa_i(ji,jj,jl) = oa_i(ji,jj,jl) * ( 1._wp - ( 1._wp - rn_amax_2d(ji,jj) / at_i(ji,jj) ) ) ENDIF END DO END DO END DO !--------------------- ! Ice salinity !--------------------- IF ( nn_icesal == 2 ) THEN DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi zsal = smv_i(ji,jj,jl) ! salinity stays in bounds rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, - v_i(ji,jj,jl) ) ) smv_i(ji,jj,jl) = rswitch * MAX( MIN( rn_simax * v_i(ji,jj,jl), smv_i(ji,jj,jl) ), rn_simin * v_i(ji,jj,jl) ) ! associated salt flux sfx_res(ji,jj) = sfx_res(ji,jj) - ( smv_i(ji,jj,jl) - zsal ) * rhoic * r1_rdtice END DO END DO END DO ENDIF !---------------------------------------------------- ! Rebin categories with thickness out of bounds !---------------------------------------------------- IF ( jpl > 1 ) CALL lim_itd_th_reb( 1, jpl ) !----------------- ! zap small values !----------------- CALL lim_var_zapsmall !------------------------------------------------------------------------------ ! Corrections to avoid wrong values | !------------------------------------------------------------------------------ ! Ice drift !------------ DO jj = 2, jpjm1 DO ji = 2, jpim1 IF ( at_i(ji,jj) == 0._wp ) THEN ! what to do if there is no ice IF ( at_i(ji+1,jj) == 0._wp ) u_ice(ji,jj) = 0._wp ! right side IF ( at_i(ji-1,jj) == 0._wp ) u_ice(ji-1,jj) = 0._wp ! left side IF ( at_i(ji,jj+1) == 0._wp ) v_ice(ji,jj) = 0._wp ! upper side IF ( at_i(ji,jj-1) == 0._wp ) v_ice(ji,jj-1) = 0._wp ! bottom side ENDIF END DO END DO !lateral boundary conditions CALL lbc_lnk( u_ice(:,:), 'U', -1. ) CALL lbc_lnk( v_ice(:,:), 'V', -1. ) !mask velocities u_ice(:,:) = u_ice(:,:) * umask(:,:,1) v_ice(:,:) = v_ice(:,:) * vmask(:,:,1) ! ------------------------------------------------- ! Diagnostics ! ------------------------------------------------- DO jl = 1, jpl oa_i(:,:,jl) = oa_i(:,:,jl) + a_i(:,:,jl) * rdt_ice / rday ! ice natural aging afx_thd(:,:) = afx_thd(:,:) + ( a_i(:,:,jl) - a_i_b(:,:,jl) ) * r1_rdtice END DO afx_tot = afx_thd + afx_dyn DO jj = 1, jpj DO ji = 1, jpi ! heat content variation (W.m-2) diag_heat(ji,jj) = diag_heat(ji,jj) - & & ( SUM( e_i(ji,jj,1:nlay_i,:) - e_i_b(ji,jj,1:nlay_i,:) ) + & & SUM( e_s(ji,jj,1:nlay_s,:) - e_s_b(ji,jj,1:nlay_s,:) ) & & ) * r1_rdtice ! salt, volume diag_smvi(ji,jj) = diag_smvi(ji,jj) + SUM( smv_i(ji,jj,:) - smv_i_b(ji,jj,:) ) * rhoic * r1_rdtice diag_vice(ji,jj) = diag_vice(ji,jj) + SUM( v_i (ji,jj,:) - v_i_b (ji,jj,:) ) * rhoic * r1_rdtice diag_vsnw(ji,jj) = diag_vsnw(ji,jj) + SUM( v_s (ji,jj,:) - v_s_b (ji,jj,:) ) * rhosn * r1_rdtice END DO END DO ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limupdate2', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! necessary calls (at least for coupling) CALL lim_var_glo2eqv CALL lim_var_agg(2) ! ------------------------------------------------- ! control prints ! ------------------------------------------------- IF( ln_icectl ) CALL lim_prt( kt, iiceprt, jiceprt, 2, ' - Final state - ' ) ! control print IF(ln_ctl) THEN ! Control print CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Cell values : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_update2 : cell area :') CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_update2 : at_i :') CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_update2 : vt_i :') CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_update2 : vt_s :') CALL prt_ctl(tab2d_1=strength , clinfo1=' lim_update2 : strength :') CALL prt_ctl(tab2d_1=u_ice , clinfo1=' lim_update2 : u_ice :', tab2d_2=v_ice , clinfo2=' v_ice :') CALL prt_ctl(tab2d_1=u_ice_b , clinfo1=' lim_update2 : u_ice_b :', tab2d_2=v_ice_b , clinfo2=' v_ice_b :') DO jl = 1, jpl CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Category : ', ivar1=jl) CALL prt_ctl_info(' ~~~~~~~~~~') CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_update2 : ht_i : ') CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_update2 : ht_s : ') CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_update2 : t_su : ') CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_update2 : t_snow : ') CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_update2 : sm_i : ') CALL prt_ctl(tab2d_1=o_i (:,:,jl) , clinfo1= ' lim_update2 : o_i : ') CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_update2 : a_i : ') CALL prt_ctl(tab2d_1=a_i_b (:,:,jl) , clinfo1= ' lim_update2 : a_i_b : ') CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_update2 : v_i : ') CALL prt_ctl(tab2d_1=v_i_b (:,:,jl) , clinfo1= ' lim_update2 : v_i_b : ') CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_update2 : v_s : ') CALL prt_ctl(tab2d_1=v_s_b (:,:,jl) , clinfo1= ' lim_update2 : v_s_b : ') CALL prt_ctl(tab2d_1=e_i (:,:,1,jl) , clinfo1= ' lim_update2 : e_i1 : ') CALL prt_ctl(tab2d_1=e_i_b (:,:,1,jl) , clinfo1= ' lim_update2 : e_i1_b : ') CALL prt_ctl(tab2d_1=e_i (:,:,2,jl) , clinfo1= ' lim_update2 : e_i2 : ') CALL prt_ctl(tab2d_1=e_i_b (:,:,2,jl) , clinfo1= ' lim_update2 : e_i2_b : ') CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_update2 : e_snow : ') CALL prt_ctl(tab2d_1=e_s_b (:,:,1,jl) , clinfo1= ' lim_update2 : e_snow_b : ') CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_update2 : smv_i : ') CALL prt_ctl(tab2d_1=smv_i_b (:,:,jl) , clinfo1= ' lim_update2 : smv_i_b : ') CALL prt_ctl(tab2d_1=oa_i (:,:,jl) , clinfo1= ' lim_update2 : oa_i : ') CALL prt_ctl(tab2d_1=oa_i_b (:,:,jl) , clinfo1= ' lim_update2 : oa_i_b : ') DO jk = 1, nlay_i CALL prt_ctl_info(' - Layer : ', ivar1=jk) CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_update2 : t_i : ') END DO END DO CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Heat / FW fluxes : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=sst_m , clinfo1= ' lim_update2 : sst : ', tab2d_2=sss_m , clinfo2= ' sss : ') CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Stresses : ') CALL prt_ctl_info(' ~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=utau , clinfo1= ' lim_update2 : utau : ', tab2d_2=vtau , clinfo2= ' vtau : ') CALL prt_ctl(tab2d_1=utau_ice , clinfo1= ' lim_update2 : utau_ice : ', tab2d_2=vtau_ice , clinfo2= ' vtau_ice : ') CALL prt_ctl(tab2d_1=u_oce , clinfo1= ' lim_update2 : u_oce : ', tab2d_2=v_oce , clinfo2= ' v_oce : ') ENDIF IF( nn_timing == 1 ) CALL timing_stop('limupdate2') END SUBROUTINE lim_update2 #else !!---------------------------------------------------------------------- !! Default option Empty Module No sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_update2 ! Empty routine END SUBROUTINE lim_update2 #endif END MODULE limupdate2